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Abstract
The promise of personalized medicine is now a clinical reality, with colorectal cancer genetics at
the forefront of this next major advance in clinical medicine. This is no more evident than in the
recent advances in testing of colorectal cancers for specific molecular alterations in order to guide
treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the
epidermal growth factor receptor (EGFR). In this review, we examine genetic mechanisms of
colorectal cancer and how these alterations relate to emerging biomarkers for early detection and
risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of
treatment responses (predictive markers).
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INTRODUCTION
The promise of personalized medicine is now a clinical reality, with colorectal cancer
genetics at the forefront of this next major advance in clinical medicine. This is no more
evident than in the testing of colorectal cancers for specific molecular alterations in order to
guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which
target the epidermal growth factor receptor (EGFR).1, 2, 3 Indeed, the discovery that
acquired KRAS mutations are a robust predictive marker of resistance to cetuximab and
panitumumab 4, 5 has led to clinically validated and cost-effective testing strategies to direct
these drugs to appropriate patients. This discovery resulted from a detailed understanding of
colorectal cancer genetics, including the role of KRAS mutations in colorectal
carcinogenesis, as well as knowledge of the epidermal growth factor (EGFR) signaling
pathways.6 The success of KRAS mutation testing in predicting treatment response is just the
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beginning of the use of genetic markers for directing the care of colorectal cancer patients.
Many other genetic markers in colorectal cancer show promise for their use in treatment
selection, prognosis, and early cancer detection. In this context, knowledge of the underlying
genetic mechanisms of colorectal tumorigenesis and the potential of specific genetic lesions
for clinical decision making is expected to become part of the working knowledge of care
providers managing colon cancer patients. However, despite the promising advances in the
molecular pathology of colorectal cancer that are highlighted in this review, it is important
to emphasize that clinicopathological staging of tumor tissue is still the cornerstone of
prognostication and treatment selection. The modern tumor-node-metastasis (TNM)
classification system is recommended, although the original Dukes staging system is still
used by some clinicians and is taught to pathologists in training.7 The pathologic features
with greatest prognostic power are depth of tumor invasion, burden of lymphovascular
invasion (estimated by the number of lymph nodes infiltrated by cancer), and presence of
distant metastases. Efforts to correlate genetic alterations with histologic features have had
limited success, although microsatellite instability is a molecular feature that shows modest
correlation with certain histologic features such as cribriform architecture and medullary
histology.8 Thus, molecular testing is usually required for accurate assessment of specific
gene mutations or genomic instability that provide prognostic and predictive information
beyond clinicopathologic features.

In this review, we examine genetic mechanisms of colorectal cancer and how these
alterations relate to emerging biomarkers for early detection and risk stratification
(diagnostic markers), prognosis (prognostic markers), and the prediction of treatment
responses (predictive markers) (Table 1). The genetic features of colorectal cancer that are
currently most clinically useful will be emphasized in this review, and a detailed description
of the molecular genetics and molecular biology of the germane genetic and epigenetic
alterations will be provided. We will conclude by reviewing the potential role for genetic
markers in the selection of targeted colorectal cancer therapies that are in pre-clinical
development or in Phase I and II trials.

MOLECULAR MECHANISMS OF COLORECTAL CARCINOGENESIS
The adenoma/carcinoma progression sequence

Colorectal cancer arises as the result of the accumulation of acquired genetic and epigenetic
changes that transform normal glandular epithelial cells into invasive adenocarcinomas.
Steps that transform normal epithelium to benign neoplasia (adenoma), followed by invasive
carcinoma, and eventually metastatic cancer are described in the classic tumor progression
model proposed by Fearon and Vogelstein (Figure 1).6 Since this model was originally
proposed our understanding of the molecular pathogenesis has advanced considerably and
led to numerous revisions of the Vogelstein and Fearon model. For instance, the original
model proposed that only tubular and tubulovillous adenomas had the potential to progress
to invasive adenocarcinoma. It is now recognized that serrated polyps including sessile
serrated adenomas (SSA) and traditional serrated adenomas (TSA) also have the potential
for malignant transformation.10, 11 These polyps are an alternative pathway to malignancy
whereby a subset of hyperplastic polyps progress to serrated neoplasms (SSA or TSA) and a
fraction of these serrated neoplasms progress to cancer. Premalignant serrated polyps more
frequently arise in the proximal colon 12 and are associated with microsatellite instability
and aberrant DNA methylation at CpG islands, whereas conventional tubular adenomas
arise via biallelic inactivation of the APC tumor-suppressor gene and display chromosome
instability.13 Furthermore, other molecular lesions, such as BRAF V600E mutations, are
characteristically found more often in tumors arising via the serrated neoplasia pathway.13
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Genomic and Epigenomic Instability and Chromosomal Alterations
Genomic and epigenomic instability distinguishes neoplastic from normal colonic
epithelium and is a hallmark feature of colorectal carcinogenesis.14, 15 At least four kinds of
genomic or epigenetic instability have been described in colorectal cancers: (1)
chromosomal instability (CIN), (2) microsatellite instability (MSI), (3) CpG island
methylator phenotype (CIMP), and (4) global DNA hypomethylation. Overlap between
these categories and imprecise use of these terms has led to confusion and confounds
interpretation of the literature.16 Thus, in this section we will first define the different types
of genomic and epigenetic instability in colorectal cancer and will delineate in general terms
how these mechanisms are clinically relevant.

CIN—The most common form of genomic instability is chromosome instability, which is
found in as many as 85% of colorectal cancers.17 Chromosome instability, which can be
recognized by the presence of aneuploidy, is defined as the presence of numerical
chromosome changes or multiple structural aberrations and is typically assessed by DNA
flow cytometry.18 Despite the frequent occurrence of CIN in colorectal cancer, the
mechanisms that give rise to this form of genomic stability and the role of aneuploidy in
tumor progression remain poorly understood. However, there is some evidence that CIN
promotes cancer progression by increasing clonal diversity 19, 20, 21. Importantly, from a
clinical perspective, large meta-analyses have demonstrated that CIN is a marker of poor
prognosis in colorectal cancers.18, 22

MSI—Microsatellite unstable tumors, which account for approximately 15% of colorectal
cancers, are generally regarded as being mutually exclusive of CIN tumors because they
display a normal karyotype and exhibit unique genetic features, although there does appear
to be a subset of tumors that show both CIN and MSI.16 MSI colorectal cancer has been
defined by the presence of at least 30% unstable loci in a panel of 5–10 loci consisting of
mono- and di-nucleotide tracts selected at a National Cancer Institute consensus conference.
23 Currently, many clinical laboratories assess MSI using a panel of 5 mononucleotide
markers (BAT-25, BAT-26, NR-21, NR-24 and MONO-27) that were selected for high
sensitivity and specificity.9 A subset of tumors with only 10–29% unstable loci has been
designated as a form of microsatellite tumors designated “MSI-low”. Although there is
evidence that MSI-low cancers have distinct features compared with MSI (also referred to as
“MSI-High”, or “MSI-H”) and microsatellite stable tumors, there is considerable
controversy regarding whether MSI-low is a unique molecular subclass of colorectal cancer.
16, 17, 24 Colorectal cancer patients with MSI tumors have been shown to have a better
prognosis compared to patients with CIN tumors18, 25, and probably respond differently to
adjuvant chemotherapy compared to patients with microsatellite stable (MSS) cancer.26, 27,
28

In contrast to CIN, the mechanisms underlying MSI are relatively well understood and
involve inactivation of genes in the DNA Mismatch Repair (MMR) family either by aberrant
methylation or by somatic mutation.21 Furthermore, individuals with Lynch syndrome
(hereditary non-polyposis colorectal cancer, HNPCC) almost exclusively develop MSI
colorectal cancers because they have germline mutations in the MMR genes, which include
MLH1, MSH2, MSH6, and PMS2. In contrast, sporadic MSI colorectal cancer most often
have loss of MMR activity as the result of silencing of MLH1 by aberrant methylation.21, 29

It is also now recognized that sporadic MSI tumors are associated with the serrated
neoplasia pathway and frequently carry BRAF V600E mutations, while cancers resulting
from germline mutations in MMR genes (Lynch syndrome) do not have mutated BRAF.30,
31 Thus, the presence of a BRAF mutation in an MSI tumor effectively excludes the
possibility that the tumor arose as the consequence of Lynch syndrome (Figure 2).
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CIMP—Epigenetic instability in colorectal cancer is manifested as both hypermethylation of
gene promoters that contain CpG islands (the CpG Island methylator phenotype, CIMP), and
global DNA hypomethylation. Mechanisms that give rise to CIMP are not yet clear,
although the strong association between BRAF V600E mutations and CIMP colorectal
cancer suggests a role for activated BRAF in the pathogenesis of the methylator phenotype
and a link between sporadic MSI and CIMP.32, 33 However, in vitro studies of mutant BRAF
in colorectal cancer cell lines have not demonstrated a direct cause and effect relationship
between BRAF and CIMP.34 Furthermore, although CIMP tumors do appear to represent a
distinct subset of colorectal cancer, the clinical utility of this designation is hindered by lack
of a universally accepted definition of the methylator phenotype. CIMP is usually defined as
methylation of at least three loci from a selected panel of five gene associated CpG islands.
Because this panel is not always the same across studies, attempts are being made to
facilitate standardization of CIMP markers for clinical use.33, 35 Some authors have
proposed two classes of CIMP, CIMP-low, and CIMP-high, depending on the number of
methylated marker loci detected.32 Another group suggested that CIMP colorectal cancers
be divided into two distinct classes (called CIMP1 and CIMP2) based on the results of
unsupervised cluster analysis of a large panel of methylation markers.36 Finally,
considerable overlap between CIMP and sporadic MSI tumors adds to the challenge of
incorporating CIMP-status into clinical trials and clinical decision making.33 Retrospective
studies suggest CIMP will ultimately be shown to be a predictive marker for colorectal
cancer, but the data is not adequate at this time to recommend its clinical use.36, 37 Thus,
the discovery and classification of CIMP tumors has advanced our understanding of the
molecular pathology of colorectal cancer but has not yet impacted clinical care.

In addition to aberrant gene methylation, a global decrease in methylation has also been
identified in many colorectal cancers and is tightly associated with CIN tumors.38, 39 Further
research is necessary to determine if measurement of global DNA hypomethylation in
colorectal cancer has any role in the clinical setting.

Role of Specific Genetic Alterations and Signal Pathway Deregulation
Just as important as genomic and epigenomic instability for the pathogenesis of colorectal
cancer is the accumulation of mutations in specific genes and the resulting deregulation of
specific signaling pathways that control the hallmark behaviors of cancer: cell proliferation,
differentiation, apoptosis, immortalization, angiogenesis, and invasion. The best-studied
pathways that are deregulated in colorectal cancer are the WNT-β-catenin signaling
pathway, the transforming growth factor β (TGFβ) signaling pathway, the epidermal growth
factor receptor (EGFR)-MAPK pathway, and the phosphatidylinositol 3-kinase (PI3K)
pathway.5, 16 Selected deregulated pathways in colorectal cancer and targeted therapies in
clinical use or in clinical trials are summarized in Table 2.

Key tumor suppressor genes that do not necessarily mediate their effects through signal
pathway deregulation, such as TP53, and recurrent cytogenetic aberrations such as 18q loss
of heterozygosity (LOH) are also well-studied in colorectal cancer and affect the malignant
transformation of colon epithelial cells through specific effects on the behavior of the cells
(Figure 1). The use of these molecular alterations in the management of patients with
colorectal cancer will also be discussed in more detail below.

WNT Pathway—Mutations in the adenomatous polyposis coli (APC) gene occur in up to
70% of sporadic colorectal cancers and are the cause of the familial adenomatous polyposis
(FAP) cancer predisposition syndrome. APC mutations can be found at the earliest stages of
neoplasia and are predominantly associated with the classic tubular adenoma pathway and
CIN cancers (Figure 1).6, 40, 41 The APC protein negatively regulates WNT signaling via
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targeting β-catenin for ubiquitin-mediated proteasomal degradation. Disruption of the APC
protein results in increased WNT signaling through stabilization of nuclear β-catenin.
Activating mutations in the β-catenin gene (CTNNB1) that protect the protein from APC-
mediated degradation are also observed in colorectal neoplasia, although they are found
more frequently in adenomas (12.5%) than invasive cancer (1.4%), suggesting that
CTNNB1-mutant tumors do not frequently progress to carcinoma.42 Despite the critical and
nearly universal role of WNT pathway activation in colorectal carcinogenesis, there is
currently no clinical use for APC or CTNNB1 mutations for treatment selection, prognosis,
or early cancer detection. There has been intense effort to develop small molecule inhibitors
of this pathway, but these efforts are still confined to the pre-clinical arena. If these agents
eventually reach the clinic, the assessment of APC mutations or activated β-catenin (by the
detection of nuclear localization of β-catenin by immunostaining) is likely to have a role in
directing the selection of patients who will respond to these agents.

TGF-β Pathway—Deregulation of TGF-β signaling, which is generally considered a
tumor-suppressor pathway in the colon, occurs in the majority of colorectal cancers.43

Inactivating mutations have been observed in receptor genes (TGFBR2 and TGFBR1), post-
receptor signaling pathway genes (SMAD2, SMAD4), and TGF-β superfamily members
(ACVR2).17, 44, 45, 46 Functionally significant mutations in TGFBR2 are detected in as many
as 30% of all colorectal cancer and are associated with the malignant transformation of late
adenomas. TGFBR2 mutations are most common in MSI tumors, but also occur in
approximately 15% of microsatellite stable (MSS) tumors (Figure 1).46, 47, 48 SMAD4 is
located on 18q in the region commonly deleted in colorectal cancer, and is associated with
adenoma formation and adenoma-carcinoma progression in mouse models, supporting a role
for SMAD4 as a tumor suppressor gene.49 Furthermore, loss of SMAD4 expression as
detected by immunostaining has been reported in >50% of colon cancers and is associated
with lymph node metastases.50 There is still not any definite clinical role for any genetic
markers in the TGF-β signaling pathway, however there is some evidence that SMAD4
expression levels may be associated with prognosis and response to 5-Fluorouricial (5-FU)
and there is ongoing investigation of 18qLOH as a predictive marker, which is discussed
further in the next section.51, 52

18qLOH—Loss of the long arm of chromosome 18 (18q loss of heterozygosity; LOH) is
the most frequent cytogenetic alteration in colorectal cancer and is observed in up to 70% of
tumors.6, 22 Two genes thought to have a role in the tumorigenic effects of this loss are
deleted in colorectal carcinoma (DCC) and SMAD4. Additional mediators of the TGF-β
pathway, including SMAD2 and SMAD7, are also in the 18qLOH region, suggesting that
18qLOH promotes tumorigenesis at least in part through deregulation of TGF-β signaling. It
appears that deletion at 18q is associated with a worse prognosis, however efforts to
definitively link 18qLOH to prognosis are limited by a lack of consistent results across
studies and heterogeneous detection methods.22 Ongoing clinical trials (e.g. NCT00217737,
also designated ECOG 5202) are assessing the utility of 18qLOH for treatment selection.

TP53—Mutations in the tumor-suppressor gene TP53 occur in about half of all colorectal
cancers and promote the malignant transformation of adenomas (Figure 1).6 Like APC,
TP53 is a key tumor suppressor that has been extensively studied in colorectal cancer but
currently has no predictive or prognostic role in the clinical setting.16

Mediators of EGF signaling: EGFR/RAS/RAF/RAF/MAPK—KRAS, a member of the
RAS family of proto-oncogenes, is the most frequently mutated gene in all of human cancer
and arguably the most clinically important oncogene in colorectal cancer. The KRAS protein
is a downstream effector of EGFR that signals through BRAF to activate the mitogen
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activated kinase (MAPK) pathway and promote cell growth and survival (Figure 3).
Mutations in KRAS codons 12 or 13 occur in approximately 40% of colorectal cancers and
lead to constitutive signaling by impairing the ability of GTPase activating proteins to
hydrolyze KRAS-bound GTP.53 KRAS mutations occur after APC mutations in the
adenoma-to-carcinoma progression sequence, but are still a relatively early event in
tumorigenesis (Figure 1).6 Acquired KRAS mutations are maintained throughout
carcinogenesis, as evidenced by the nearly perfect concordance of KRAS-mutation status in
primary and metastatic colorectal cancer.54, 55 This fact is critical to the utility of KRAS
mutational analysis on archived primary tumor specimens in patients with metastatic disease
and usually eliminates the need for additional biopsy tissue.

The BRAF gene, mutated in ~10–15% of colorectal cancers, encodes a protein kinase that is
the direct downstream effector of KRAS in the Ras/Raf/MAPK signaling pathway. The
majority of BRAF mutations are a single base change resulting in the substitution of
glutamic acid for valine at codon 600 (V600E; sometimes referred to as “V599E”).5 KRAS
and BRAF mutations are mutually exclusive, supporting the hypothesis that an activating
mutation in either gene is sufficient to promote tumorigenesis via increased MAPK
signaling.56 As discussed above, BRAF mutations are much more frequent in MSI tumors
(~35%) compared to MSS tumors (~5%) and are very tightly linked to CIMP cancers and
the serrated neoplasia pathway.56, 57 Emerging evidence supports a role for BRAF as a
genetic marker for prediction, prognosis, and risk stratification.

Alterations in EGFR ligands and the EGFR gene itself are also observed in a subset of
colorectal cancers. There is some data to support that upregulation of the EGFR ligands
epigregulin and amphiregulin are associated with an anti-EGFR drug response.58, 59

Mediators of EGF signaling: The PI3K Pathway—Mutations in phosphatidylinositol
3-kinase (PI3K) pathway genes are observed in up to 40% of colorectal cancer and are
nearly mutually exclusive of one another.60 The most frequent mutations of the PI3K
pathway occur in the p110α catalytic subunit PIK3CA, which are reported in up to 32% of
colorectal cancers and may promote the transition from adenoma to carcinoma (Figure 1).61

Mutations are also observed in PTEN, a tumor suppressor gene that negatively regulates
PI3K signaling in as many as 30% of MSI tumors and 9% of CIN tumors.62 The PI3K
pathway is modulated by EGFR signaling in part via KRAS activation, and there is a
plausible role for both PIK3CA and PTEN mutations as predictive markers of anti-EGFR
therapy (Figure 3).63, 64 Currently, there is not sufficient evidence from clinical studies to
support the use of PI3K pathway mutations as predictive or prognostic biomarkers.

RISK STRATIFICATION AND EARLY DETECTION
One use of molecular markers in the management of colorectal cancer is in risk stratification
for identifying individuals at high-risk for developing colorectal cancer and for the early
detection of colon adenomas and early-stage colorectal cancers. With regard to risk
stratification, the most robust molecular markers to date are germline mutations in genes that
cause the hereditary colon cancer syndromes (e.g. APC mutations and Familial
Adenomatous Polyposis, BMPR1A and Juvenile Polyposis, etc.) and MSI tumor status,
which is an indicator of the possibility of Lynch Syndrome. The use of MSI tumor testing in
the diagnosis of Lynch Syndrome will be discussed below in the context of MSI testing
being a risk stratification marker because of its association with Lynch Syndrome.

Lynch Syndrome/Hereditary NonPolyposis Colon Cancer (HNPCC) syndrome
Identifying individuals with Lynch syndrome (also known as HNPCC) dramatically alters
their clinical management, and can lead to effective colorectal cancer prevention programs
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for these individuals and their family members. However, currently the definitive molecular
diagnosis of Lynch Syndrome requires expensive germline DNA mutation analysis of
multiple DNA Mismatch Repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2). To
facilitate the most cost-effective strategies for identifying patients at high risk for Lynch
syndrome who are candidates for genetic testing, the evaluation of molecular features of
colorectal cancers that have occurred in these individuals or other family members can be
used to predict the likelihood of identifying a germline mutation in one of the MMR genes.
It is now common practice for molecular diagnostics labs to offer a step-wise series of
molecular tests that are used to identify colorectal cancers that likely arose in the setting of
Lynch syndrome. These tests are based on the molecular pathology of colorectal cancer
(Figure 2).65 A common approach is to initially test the tumors for loss of MMR gene
products (MLH1, MSH2, MSH6, PMS2) by immuohistochemistry (IHC) and for MSI by
polymerase chain reaction (PCR) as the first-tier screening test (see for example
http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/17073),
although there is support for the use of IHC alone as a first-line test.66 Tumors that display
MSI and loss of MLH1 protein expression by IHC are then subjected to reflex testing for
BRAF V600E mutation status and MLH1 promoter hypermethylation to help distinguish
sporadic MSI tumors (~35% BRAF-mutant and 99% MLH1-methylated) from Lynch
syndrome MSI tumors (BRAF-WT, infrequent MLH1-methylation) (Figure 2, Table 3).30,
67, 68 This strategy is most effective in excluding individuals who are unlikely to have a
MMR gene mutation from undergoing germline mutation testing. It is notable that in those
tumors that have MSI and loss of MSH2, MSH6, or PMS2 the likelihood of having a
germline mutation is extremely high. Also of interest, it is now recognized that a strategy
that relies on clinical criteria alone for the diagnosis of individuals at risk for Lynch
Syndrome underdiagnose this syndrome 69. In light of the substantial effect of a missed
diagnosis on an individual’s likelihood of developing cancer in the future, a strategy that
employs universal testing of all colorectal cancer is being advocated by some experts in this
area.70 It remains to be determined if this strategy is cost-effective and if the benefits
outweigh the risks.

Molecular markers and colorectal cancer early detection
Colonoscopy is the most accurate test currently for colorectal cancer screening, however, it
is expensive and associated with procedure-related complications and poor patient
compliance. In contrast, another commonly used colorectal cancer screening test , fecal
occult blood testing (FOBT) is inexpensive and simple to perform, but has a relatively low
sensitivity and specificity.71 Advances in our understanding of the molecular pathology of
colorectal cancer, has led to the identification of promising early detection molecular
markers for use in non-invasive colorectal cancer screening assays.72, 73 Stool-based
methylated VIMENTIN (mVim) is a clinically validated marker for early colorectal cancer
detection that is now commercially available in the United States (Table 1).74 The test relies
on the fact that a majority of colorectal cancers (53–84%) carry an aberrantly methylated
vimentin (VIM) gene. A PCR-based assay that simultaneously measured mVim and DNA
integrity reported a sensitivity of 83% and a specificity of 82%, with approximately equal
sensitivity in Stage I-III colorectal cancer patients .75 At this time, methods are under
development to enhance the performance of stool- and plasma-based methylation assays for
clinical purposes.76 The use of molecular assays, such as the fecal-methylated VIM assay, in
the clinical care of patients is an area that is likely to undergo rapid advances in the near
future.
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GENETIC MARKERS AND PROGNOSIS
Genomic Instability and Prognosis: MSI vs. CIN

Meta-analyses across a diverse range of patients have firmly established that MSI colorectal
cancer have a better prognosis and that CIN tumors have an unfavorable prognosis (Table
4).18, 25 The combined hazard ratio for MSI colorectal cancers for overall survival was
estimated to be 0.65 (0.59–0.71, 95% CI) with only one of thirty-two included studies
reporting an HR >1.0.25 Conversely, the overall HR associated with CIN colorectal cancer
was determined to be 1.45 (1.27–1.45, 95% CI) based on 63 eligible studies and over 10,000
patients.18 Despite the clear association of MSI and CIN with prognosis, these markers have
not yet been adopted into routine clinical decision making. It is most likely that MSI testing
will be adopted into clinical practice before CIN testing because of the availability of a
reliable assay for assessing MSI status.

18qLOH and Prognosis
Colorectal cancer patients with 18qLOH appear to have a worse prognosis compared to
patients with tumors that do not carry 18qLOH. A meta-analysis of seventeen independent
studies that was limited by evidence of publication bias found an overall HR of 2.00 (1.49–
2.69 95% CI) for 18qLOH across all patients, and an HR of 1.69 (1.13–2.54 95% CI) in the
adjuvant setting.22 Candidate genes in the 18q region, including DCC and SMAD4, have
been studied individually for prognostic roles, with inconsistent results.77 The independent
prognostic contribution of 18q deletion in colorectal cancer has been called into question
due to the tight association between 18qLOH and CIN, and the inverse association of
18qLOH and MSI.16 This assertion is supported by a recent study that found no difference
in prognosis attributable to 18qLOH in a prospectively collected cohort of 555 non-MSI
tumors Stage I-IV.78 Thus, it is unclear at this time if 18qLOH represents an independent
prognostic marker, or is merely a surrogate marker for CIN/MSS colorectal cancers.

Mediators of EGFR and Prognosis
Several recent studies have assessed the prognostic significance of KRAS, BRAF, and
PIK3CA mutations in colorectal cancer.24, 79, 80, 81, 82, 83 Mutant KRAS was not
independently associated with differences in relapse-free or overall survival in Stage II or III
colorectal cancer, but mutant BRAF was prognostic for overall survival (OS) in this group of
patients.24, 79 In contrast, mutant KRAS and BRAF have been reported as markers of poor
prognosis in advanced colorectal cancer. In the largest study that has addressed the
prognostic role of KRAS mutations in advanced colorectal cancer to date, patients with
mutant KRAS cancers had a worse overall survival (HR= 1.40; 1.20–1.65 95%CI) but
similar PFS compared to patients with tumors bearing wild-type KRAS.81 The potential
prognostic value of KRAS mutations is of particular interest in advanced colorectal cancers
because the KRAS mutational status of tumors is now being routinely collected in this setting
in order to assess for eligibility for treatment with cetuximab or panitumumab. At this time,
the use of KRAS mutation status for prognosis in colorectal cancer is still premature but
appears to have significant potential to be adopted into clinical use in the near future.

PREDICTIVE BIOMARKERS
Although the treatment of colorectal cancer still primarily relies on the surgical resection of
the primary tumor to achieve a cure, considerable progress in the medical treatment of stage
III and IV colorectal cancer has occurred over the last 15 years. The adjuvant therapy of
stage III colorectal cancer has become more effective as the standard regimen has advanced
from 5-fluorouracil (5FU) and leucovorin to 5FU and oxaliplatin or irinotecan 84.
Furthermore, the treatment of stage IV colorectal cancer patients has expanded to include
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targeted therapies (cetuximab, panitumumab, bevacizumab; see Table 2) in addition to 5FU,
oxaliplatin, and irinotecan. With the identification of multiple effective agents for the
treatment of colorectal cancer has come a need for predictive markers for selecting optimal
treatment regimens for patients. This is particularly applicable to colorectal cancer because
of the heterogeneity in response among colon cancers and because of the toxicity and cost of
the medical treatments. The potential of genetic and epigenetic alterations to be effective
predictive molecular markers has received considerable attention lately and has led to the
use of some of these markers in the routine care of patients with colorectal cancer (Table 5).

The advent of cancer therapeutics that target specific molecules and pathways highlights the
potential for underlying genetic and epigenetic lesions in colorectal cancer to guide
personalized treatment decisions. A clear demonstration of the potential of mutant genes to
direct therapy is that of mutant KRAS and treatment with cetuximab. Only ~15% of patients
with metastatic colorectal cancer respond to monoclonal antibody (mAb) therapies targeting
the epidermal growth factor receptor (EGFR), which prompted intense research into
resistance mechanisms that could be secondary to alterations in the EGFR gene and/or
mutations in downstream effectors. These studies have produced one well-validated and
exceedingly robust predictive marker (mutant KRAS) and several more promising
biomarkers that require further validation (mutant BRAF, PIK3CA, PTEN).85 Research
efforts are also focused on identifying molecular features of colorectal cancer that predict
response to adjuvant chemotherapy with cytoxic agents: 5-FU, irinotecan, and oxaliplatin.16
In this section we will discuss genetic features of colorectal cancer that have been evaluated
for a role in guiding treatment selection. We have focused primarily on acquired tumor
mutations as predictive markers, but it is important to note that inherited (germline)
polymorphisms also influence the effects of chemotherapy on cancers and the risk for drug
toxicity , particularly in the case of 5-FU and irinotecan (Reviewed in 16).

Predictors of Response to anti-EGFR mAb Therapies
EGFR-targeted monoclonal antibodies cetuximab (Erbitux®), and the fully humanized mAb
panitumumab (Vectibix®), have proven to be effective in patients with metastatic colorectal
cancer both as single agents and in combination with traditional chemotherapy.86, 87, 88
However, while these therapies improve both progression free survival (PFS) and overall
survival (OS), they are effective in only a minority of metastatic colorectal cancer patients.
85 These drugs are generally well-tolerated, but are still associated with treatment-related
morbidity, including skin rash, diarrhea, and nausea, and are also expensive. To better target
anti-EGFR mAb therapy to patients most likely to benefit, KRAS mutation status and
additional molecular markers of cetuximab and panitumumab resistance have been
extensively evaluated.5

KRAS is an accurate predictive biomarker—Results of four large phase III
randomized have established unequivocally that metastatic colorectal cancer patients with
KRAS mutations in codon 12 or 13 do not benefit from cetuximab or panitumumab therapy.
4, 89, 90, 91 Prior to the publication of these pivotal trials, the link between KRAS mutation
status and anti-EGFR mAb response was already firmly supported by several smaller
studies92, 93, 94, but the data was not sufficient to warrant routine clinical testing. The
recently published randomized trials have established the use of KRAS mutational analysis
as a predictive marker for anti-EGFR mAb resistance in patients with metastatic colorectal
cancer in most of the relevant clinical settings. These settings include the use of cetuximab
or pantumimab in combination with conventional cytotoxic chemotherapy (e.g. 5-FU,
FOLFOX, FOLFIRI) as first line treatment of metastatic disease90, 95, 96, and as
monotherapy in relapsed/refractory patients.4, 89, 91
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A second relevant question related to anti-EGFR mAb therapy is whether mutant KRAS
predicts an adverse outcome in the setting of these treatments. The reported hazard ratios
(HR) were almost exactly 1.0 in a total of 348 KRAS-mutant chemotherapy-resistant or
refractory cancers treated with either panitumumab89 or cetuximab4 as monotherapy,
confirming lack of benefit, but also suggesting no harm from anti-EGFR mAb treatment
related to PFS or OS in this population. In contrast, the reported HRs were usually greater
than 1.0 in studies of cetuximab or panitumumab as first line treatment in combination with
FOLFOX4 (fluorouracil, leucovorin, and oxaliplatin) or FOLFIRI (fluorouracil, leucovorin,
and irinotecan) chemotherapy.85 The results of the OPUS trial (Oxaliplatin and Cetuximab
in First-Line Treatment of Metastatic Colorectal Cancer) in particular suggest it may be
harmful to add anti-EGFR mAb treatments to 5FU, leukovorin, and oxaliplatin in patients
with KRAS-mutant metastatic colorectal cancer.90

Based on the evidence from large trials, European and United States practice guidelines
either recommend or require KRAS mutational analysis on colorectal cancer tumor tissue
prior to the initiation of cetuximab or panitumumab treatment.1, 2, 3 The European health
authority confines use of panitumumab monotherapy, and cetuximab as mono- or
combination therapy, to metastatic colorectal cancer patients who are found to carry non-
mutated (wild-type, WT) KRAS in the primary tumors.1 The American Society for Clinical
Oncology recently published a provisional opinion stating that “All patients with metastatic
colorectal carcinoma who are candidates for anti-EGFR antibody therapy should have their
tumors tested for KRAS [codon 12 and 13] mutations…and [KRAS-mutant] patients should
not receive anti-EGFR antibody therapy”.3 Similarly, the National Comprehensive Cancer
Network (NCCN) guidelines require evidence of wild-type KRAS prior to cetuximab or
panitumumab therapy in all metastatic colorectal cancer settings.2

Despite the nearly perfect negative predictive value of mutant KRAS, it is still only a
minority (~30%) of KRAS codon 12/13 wild-type patients who respond to anti-EGFR mAb
therapy.85 This has led to research into additional biomarkers that might predict lack of
benefit in those individuals with tumors that have wild-type KRAS. There is evidence that
rare KRAS mutations in codons 61 or 146 (~2% of colorectal cancer) behave similarly to
codon 12/13 mutations97, but incorporating these mutations into routine clinical practice will
require analysis of a larger group of patients. Other promising markers of anti-EGFR mAb
resistance are BRAF V600E mutations, PIK3CA mutations, and loss of PTEN protein
expression.5

BRAF: another predictor of anti-EGFR mAb response?—The biological rationale
for BRAF V600E mutations as an additional biomarker of anti-EGFR mAb resistance is
strong: (1) BRAF is the immediate downstream effector of KRAS in the Ras/Raf/MAPK
signaling pathway (Figure 3), and (2) BRAF V600E activating mutations are 100% mutually
exclusive of KRAS mutations in colorectal cancer, implying that activation of either protein
is sufficient for colon tumorigenesis. Existing limited data supports BRAF V600E mutations
as a negative predictor of response to anti-EGFR mAb therapy, leading to the evolving use
of BRAF mutation testing in KRAS-WT patients prior to treatment as a means to further
stratify patients into responders and nonresponders. A retrospective analysis showed that
0/11 tumors with mutant BRAF responded to cetuximab or panitumumab compared to 22/68
(32%) of BRAF-WT/KRAS-WT patients.98 Similar results were observed for patients treated
with cetuximab plus irinotecan. None of the patients with tumors with mutant BRAF (N=13)
responded compared to 24/74 (32%) patients with tumors with BRAF-WT/KRAS-WT.97

These finding were supported by work presented at the 2009 American Association of
Cancer Research and American Society of Clinical Oncology annual meetings85, although
not all studies have found as robust a relationship between BRAF V600E mutation status and
anti-EGFR antibody response.82, 99 BRAF mutations also appear to be associated with worse
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prognosis independent of treatment, which can confound the assessment of its role as a
predictive marker for response to EGFR directed therapies.82, 99 Despite the currently
limited data, and lack of complete consensus, it is likely that BRAF mutation status has a
role in anti-EGFR mAb treatment decisions and soon will be adopted into the planning for
treatment with cetuximab and panitumumab.

PI3K Pathway Activation and anti-EGFR mAb Resistance—Molecular lesions in
the PI3K pathway, which in colorectal cancer are primarily mutations in PIK3CA and loss of
PTEN protein expression, have been proposed as additional anti-EGFR mAb resistance
markers because the PI3K pathway is also stimulated by EGFR.85 However, the relationship
of oncogenic alterations in PI3K signaling and cetuximab or panitumumab response is much
less clear than that of KRAS and BRAF mutations. In several small studies published to date,
PIK3CA mutations or PTEN loss have been associated with lack of response to cetuximab.
64, 100, 101, 102 Both PIK3CA mutations and PTEN loss may coexist with KRAS or BRAF
mutations, which weakens the biological rationale of the activation of this pathway as an
absolute predictor of anti-EGFR mAb therapeutic response. Nonetheless, the balance of
evidence points towards a probable predictive role of molecular events that activate the
PI3K pathway for being negative predictive markers for EGFR monoclonal antibody based
therapy. In fact, there is modest data demonstrating that when PIK3CA mutations and PTEN
loss of expression are combined with KRAS and BRAF mutational analysis, up to 70% of
patients unlikely to respond to cetuximab or panitumumab may be identified.85, 102 This
observation has led to the idea that colon cancer may be able to be classified like breast
cancers (e.g. triple negative breast cancers), and these cancers have been termed “quadruple-
negative” for patients who do not have alterations in any of these four biomarkers.85, 102
However, at this time, further studies are needed to determine if mutant PIK3CA or PTEN
loss should be incorporated into clinical practice.

EGFR Mutations and Amplification—The most obvious candidate biomarker for
resistance to antibodies which target EGFR is the EGFR gene itself. Early studies that
focused on EGFR overexpression assessed by immunohistochemistry did not show a
consistent relationship with treatment response, in part because of lack of standardization of
the assay, which were based on either immunostaining, fluorescent in-situ hybridization
(FISH) or quantitative RT-PCR, and inter-observer variability inherent in the technique.103

EGFR gene amplification is more promising for being a predictive biomarker, but has also
been fraught with technical challenges that limit the interpretation of existing data, such as
dilution of tumor DNA with wild-type DNA in PCR-based assays, and lack of consistent
tissue processing and scoring systems in FISH assays.5 Activating mutations in the EGFR
catalytic domain are seen frequently in lung cancer and are associated with sensitivity to
anti-EGFR tyrosine kinase inhibitors, but these mutations are quite rare in colorectal cancer.
5 Thus, EGFR does not appear likely to be a clinically useful predictive marker for anti-
EGFR monoclonal antibody therapy. Furthermore, although preliminary studies have shown
that the EGFR ligands amphiregulin and epiregulin are overexpressed in colorectal cancer
and may predict response to cetuximab, lack of standardization of the assays and studies that
reproducibly demonstrate the same effect have prevented amphiregulin and epiregulin
expression levels from being used as clinical biomarkers for directing therapy with EGFR
monoclonal antibodies.58

Predictive molecular markers for response to 5-FU, irinotecan, and oxaliplatin
Currently, the tumor biomarkers that demonstrate the greatest promise for guiding adjuvant
chemotherapy with conventional drugs in colorectal cancer patients include MSI and
18qLOH.
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MSI—5-FU based regimens have been shown to be ineffective, or even detrimental to
patients with MSI tumors.28, 104 Evidence that a functioning MMR system is required for
the cytotoxic effect of fluorouracil provides a plausible biological rationale for 5-FU
resistance in MSI tumors.17, 27 However, the finding of 5-FU resistance in MSI colorectal
cancer is not uniform, and may vary with tumor stage.105, 106 An ongoing phase III
randomized trial of patients with completely resected stage II colorectal cancer
(NCT00217737) will prospectively assess the role of MSI in predicting response to adjuvant
chemotherapy in localized cancers.16

MSI tumors appear to be more responsive to irinotecan-based adjuvant chemotherapy.26

Recently published results from a large randomized trial of Stage III colorectal cancer
demonstrated improved outcomes (both PFS and OS) in MSI patients treated with an
irinotecan-containing regimen that included 5-FU compared to 5-FU/luekovorin alone.107 In
light of the prior results of the CALGB 98303 study showing no benefit of adding irinotecan
to 5FU as adjuvant therapy in unselected Stage III colorectal cancer patients, the finding that
MSI is a predictive biomarker for irinotecan suggests MSI could be useful for adjusting
adjuvant therapy for colorectal cancer patients.108 Replication of these results in
independent studies is required to validate MSI-status as an inclusion criteria for irinotecan-
based adjuvant chemotherapy. Currently, neither the European Group on Tumour Markers
nor the American Society of Clinical Oncology have recommendations on the use of MSI
for guiding therapy in stage II or stage III colorectal cancer patients.

An important issue to consider with regards to MSI is that the majority of colorectal cancers
that have MSI are sporadic colorectal cancers that have inactivated the MLH1 gene through
aberrant promoter methylation. The majority of these sporadic MSI tumors also can be
classified as CIMP cancers as well. It is not known whether the associations seen between
5FU and irinotecan effects in sporadic MSI tumors also apply to MSI tumors that arise in the
setting of Lynch syndrome.

Loss of 18q—Loss of 18q has been associated with an adverse response to 5-FU based
adjuvant chemotherapy.52, 109 There is some evidence that this effect is due to loss of the
SMAD4 gene located in the 18q21 deleted region although this remains to be determined
with more definitive studies.51, 52 A number of ongoing clinical trials are assessing the
predictive value of 18qLOH and MSI status for the treatment of colon cancer. These include
an ECOG trial of stage II colorectal cancer patients being treated with 5-FU, oxaliplatin and
bevacizumab (NCT00217737), a trial in patients being treated with olaparib for metastatic
disease (NCT00912743), as well as a retrospective analysis assessing MSI and 18qLOH in
patients with colorectal cancer (stage II or III) treated with 5-FU or 5-FU and irinotecan
(CLB-9581 or CLB-89803).

Topo1—In a large randomized trial that compared 5-FU alone to 5-FU with irinotecan and
5-FU with oxaliplatin in advanced colorectal cancer, higher expression of topoisomerase 1
(Topo1) measured by immunohistochemistry was significantly correlated with
responsiveness to irinotecan.110 Conversely, cancers with low Topo1 expression (602/1269;
47%) did not appear to benefit from the addition of irinotecan (HR 0.98; 95% CI, 0.78 to
1.22). Irinotecan is a Topo1 inhibitor, thus the level of Topo1 expression has a clear
biological rationale as a biomarker for predicting irinotecan response. Replication of these
initial results in multiple independent studies is required before Topo1 should be considered
for use as a predictive marker.
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Polymorphisms and their role as molecular markers for colorectal cancer
We emphasize again that germline polymorphisms that alter pharmacokinetics and
pharmacodynamics of adjuvant chemotherapy are also potential biomarkers for guiding
treatment selection. For example, alterations in thymidylate synthetase and
dehydropyrimidine dehydrogenase have been extensively studied in relation to 5-FU
response and look promising. However, very few of these polymorphisms have been
thoroughly validated and so the majority are not ready to be used clinically.111, 112 one
exception to this generalization is a homozygous polymorphism that reduces the activity of
UDP-glucuronosyltransferase (UGT1A1, an enzyme that detoxifies irinotecan), which is
associated with a dose-related increased incidence of irinotecan toxicity.113, 114 This has
led to a commercial UGT1A1 genotyping test that was approved by the Food and Drug
Administration in 2005 to help guide irinotecan dosing.

CONCLUSIONS AND FUTURE DIRECTIONS
More than three decades of investigations into the molecular mechanisms of colorectal
cancer carcinogenesis is finally culminating in biomarkers that are sufficiently validated for
routine clinical use. KRAS-mutational analysis to guide anti-EGFR treatment stands as one
of the first successes in the era of personalized medicine. MSI and BRAF-mutations already
have a clear role in triaging molecular genetic testing in Lynch syndrome, and these markers
are poised to take on a much greater role in prognostication and prediction of therapeutic
responses for sporadic colorectal cancers. The use of assays for mutant KRAS, mutant
BRAF, and MSI demonstrate how the molecular testing of colorectal cancer tissue can
reduce medical costs and improve patient outcomes by targeting therapies to the appropriate
patient population. Thus, it is anticipated that the use of molecular genetic markers in
clinical decision making is likely to expand as more markers are identified and validated.
For example, studies are in progress for assessing the efficacy of the multikinase/BRAF-
inhibitor sorafinib, and specific inhibitors of PI3K signaling in the treatment of colorectal
cancer.5 There is evidence that sorafinib restores sensitivity to anti-EGFR mAb therapy in
BRAF-mutant cell-lines, which has prompted an ongoing Phase II National Cancer Institute
sponsored clinical trial of sorafinib plus cetuximab in metastatic colorectal cancer patients
(NCT00343772).98 If these initial findings are validated, the indications for mutational
analysis of BRAF and KRAS would expand. Furthermore, colorectal cancer patients with
tumors carrying mutant BRAF might also benefit from newer selective BRAF-inhibitors
such as PLX-4032 combined with anti-EGFR mAb therapy. PIK3CA mutations or PTEN
loss are likely to become clinically relevant for the treatment of colorectal cancer patients as
specific PI3K pathway inhibitors (such as XL147, BGT226, GDC0941, XL765, and NVP-
BEZ325) move into Phase II clinical trials.115 The expanding repertoire of drugs designed to
inhibit specific oncogenes and oncogenic signaling pathways again highlights that molecular
mechanisms of colorectal cancer will increasingly play a role in the clinical care of patients
with colorectal cancer. The use of molecular markers for risk stratification and early
detection of colorectal cancer is also showing promise and will be part of the era of
molecular medicine that is rapidly emerging.

Box 1: Summary Points

• Chromosome instability (CIN) and microsatellite instability (MSI) are distinct
mechanisms by which colorectal cancers arise, associated with unique molecular
features.

• Key pathways that drive colorectal cancer are WNT signaling, TGF-β
signaling , and Epidermal growth factor receptor (EGFR) signaling; Ras/Raf/
MAPK and phosphatidyl inositol 3-kinase (PI3K) pathways are both stimulated
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by EGFR. Currently, only downstream mediators of EGFR have a clinical role
as biomarkers.

• KRAS mutations in codon 12/13 are a highly validated predictive marker for
resistance to monoclonal antibody drugs that target EGFR; BRAF V600E
mutation is likely to be a second predictive marker. Additional resistance
markers including PIK3CA mutations and PTEN protein loss are being
evaluated.

• MSI+ cancers have a better prognosis and CIN+ cancers do worse; 18q LOH+
tumors also have a worse prognosis but are frequently with CIN. Downstream
mediators of EGFR are under study for prognostication.

• The role of colorectal cancer molecular biomarkers in clinical decision making
is likely to expand as more targeted drugs become available.
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Figure 1. The adenoma-to-carcinoma progression sequence
Colorectal carcinogenesis progresses by at least two well-recognized pathways. The
chromosome instability (CIN) pathway is characterized by classic tubular adenoma
histology and the early acquisition of APC mutations that lead to deregulated WNT
signaling, frequent activating mutations of the KRAS oncogene at the early adenoma stage,
loss of heterozygosity at chromosome 18q (18qLOH) in late adenomas, and TP53 mutations
that facilitate the transition to frank malignancy. By contrast, tumors that harbor
microsatellite instability (MSI) frequently acquire BRAF mutations and are not associated
with 18qLOH or TP53 mutations. Sporadic MSI cancers appear to commonly arise via the
serrated neoplasia pathway, in which sessile serrated adenomas are the most frequently
observed pre-cancerous lesions.
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Figure 2. Testing strategies for Lynch Syndrome (HNPCC)
A multi-stage approach to facilitate the cost-effective diagnosis of Lynch Syndrome is
outlined. Patients with a high clinical suspicion of Lynch Syndrome are first screened by
immunohistochemistry (IHC) studies of the tumor tissue to assess for loss of Mismatch
Repair proteins (MMR) expression and by MSI testing of the tumor DNA (Tier 1 Screening
Tests). Patients with tumors that show microsatellite instability (MSI) with loss of MSH2,
MSH6, or PMS2 by IHC undergo germline DNA mutation analysis of the gene
corresponding to the missing protein. In contrast, patients with MSI tumors that lack MLH1
are further assessed with assessment of the tumor for MLH1 promoter methylation and
mutant BRAF V600E (Tier 2 Screening Test) because most sporadic MSI colon cancers
have methylated MLH1 and Lynch Syndrome MSI cancers rarely harbor BRAF mutations.
When there is not evidence of MLH1 promoter methylation or BRAF mutation, mutation
analysis of the MLH1 gene is performed to identify Lynch Syndrome patients with
mutations in this gene.
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Figure 3. Mediators of EGFR signaling and anti-EGFR antibodies
EGFR forms a homodimer after ligand activation, which results in phosphorylation/
activation of the intra-cellular kinase domain and a cascade of downstream signaling
including activation of the Ras/Raf/MAPK and phosphoinositol-3-kinase (PI3K) pathways
that are associated with cell growth, differentiation, survival, and invasion. Monoclonal
antibodies used to treat patients with metastatic colorectal cancer including cetuximab and
panitumumab bind to the extracellular portion of EGFR and inhibit signaling in some
patients. Activating mutations in KRAS occur in ~40% of colorectal cancers and are thought
to confer resistance to these drugs by bypassing the need for upstream EGFR signals.
Activating mutations in BRAF – the direct downstream effector of KRAS – occur in ~10%
of colorectal cancers and also probably confer resistance to anti-EGFR monoclonal
antibodies. Emerging evidence supports an additional role of oncogenic aberrations in the
PI3K pathway in cetuximab and panitumumab resistance.
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Table 2

Pathways Commonly Deregulated in Colorectal Cancer and Targeted Drugs in Clinical Use (bold) or in
Clinical Trials

Pathway Specific Target Drugs

EGF/MAPK EGFR (mAb) Cetuximab, Panitumumab

EGFR (TKI) Erlotinib, Gefitinib

KRAS Tipifarnib, Lonafarnib

BRAF Sorafenib, PLX4032, XL281

MEK Selumetinib

PI3K PI3K BKM120, BGT226, XL147, GDC-0941

mTOR Everolimus, XL765

AKT Perifosine

WNT Resveratrol

TGFβ TGFβ2 AP 12009

VEGF VEGF Bevacizumab

VEGFR Vatalanib, AMG706, Pazopanib,
Cediranib

HGF HGF mAb AMG102

IGF IGF-1 mAb AMG479, IMC-A12

EGF= epidermal growth factor; MAPK= mitogen activated protein kinase; mAb= monoclonal antibody; TKI= tyrosine kinase inhibitor; TGFβ=
transforming growth factor beta; PI3K= phosphatidylinositol 3-kinase; VEGF= vascular endothelial growth factor; IGF= insulin-like growth factor;
HGF= hepatocyte growth factor
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Table 3

Biomarkers Used in The Diagnosis of Lynch Syndrome (HNPCC)

Biomarker

Frequency

Sporadic Lynch Syndrome

Microsatellite Instability (MSI) 15% >95%

BRAF V600E Mutations
35% of sporadic MSI

5% of MSS
10% overall

<1%

Mismatch Repair Protein Loss by IHC 10–15%, mostly MLH1 ~90%

MLH1 Promoter Hypermethylation
~99% of sporadic MSI

<1% MSS
15% overall

<1%

MSS= microsatellite stable; IHC= immunohistochemistry
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Table 4

Prognostic Biomarkers in Colorectal Cancer

Biomarker
Mutation

Frequency Prognosis Evidence Status

Microsatellite Instability (MSI) 15% Favorable Strong Testing available but not yet
widely used

Chromosome Instability (CIN) 70% Unfavorable Strong No readily available test, not in
clinical use

18qLOH/SMAD4 Loss 50% Unfavorable Moderate No readily available test, not in
clinical use

BRAF V600E Mutations 10% Probably unfavorable Moderate
Testing available but

insufficient evidence to use for
prognosis

KRAS Codon 12/13
Mutations 40% Probably unfavorable

in advanced disease Limited
Testing widely available but

insufficient evidence to use for
prognosis

PIK3CA Mutations 20% Possibly unfavorable Limited No readily available test, not in
clinical use
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Table 5

Colorectal Cancer Biomarkers as Predictors for Drug Selection

Biomarker
Mutation

Frequency Drug Selection Evidence Status

KRAS Codon 12/13
Mutations 40% Predicts Resistance to anti-

EGFR Therapy Strong Validated, In Routine
Clinical Use

KRAS Codon 61/117/146
Mutations 1% Probably Predicts Resistance to

anti-EGFR Therapy Moderate In Clinical Use, Not Fully
Validated

BRAF V600E Mutations 10%
Probably Predicts Resistance to
anti-EGFR therapy, May Predict

Response to BRAF-inhibitors
Moderate In Clinical Use, Not Fully

Validated

PIK3CA Mutations 20% May Predict Resistance to anti-
EGFR Therapy Limited No Readily Available

Test, Not in Clinical Use

PTEN Loss 30% May Predict Resistance to anti-
EGFR Therapy Limited No Readily Available

Test, Not in Clinical Use

Microsatellite Instability
(MSI) 15%

May Predict adverse outcome
with 5-FU and improved
outcome with Irinotecan

Moderate
Not Yet in Routine
Clinical Use As a

Predictive Biomarker

18qLOH/SMAD4 Loss 50% May Predict Resistance to 5-FU Moderate No Readily Available
Test, Not in Clinical Use

Topo1 Low 50% May Predict Resistance to
Irinotecan Limited No Readily Available

Test, Not in Clinical Use

5-FU= 5-Fluorouricil
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