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Abstract
Objectives—Muscle pain from different activities was tested with the muscle pain expected to
vary in ways that may clarify mechanisms of activity-induced exacerbation of myofascial pain.

Methods—Participants (N = 20; 45% women; 23 years old (SD = 2.09)) consented to participate
in a six session protocol. Bilateral muscle pain ratings and pressure pain thresholds (PPTs) were
collected before and for 4 days after lengthening (i.e., eccentric) muscle contractions were
completed with the non-dominant elbow flexors to induce delayed-onset muscle pain. The muscle
pain ratings were collected with the arms in several conditions (e.g., resting, moving, contracting
in a static position) and PPTs were collected with the arms.

Results—In the ipsilateral arm, muscle pain ratings at rest and during activity significantly
increased while PPTs significantly decreased after the eccentrics (η 2s = .17 – .54). The greatest
increases in pain occurred during arm extension without applied load, in which there was more
stretching but less force than isometrics. In the contralateral arm, neither muscle pain nor PPTs
changed from baseline.

Discussion—These results resemble previous electrophysiology studies showing differential
sensitization across stimuli and support that increased depth of information about aggravating
activities from clinical patients is needed.

Keywords
delayed-onset muscle soreness; stretch injury

Introduction
Pain can occur during activity in healthy adults.1–7 Activity can also exacerbate the
preexisting pain of clinical patients. For example, patients with osteoarthritis,8,9 low back
pain,10,11 chronic regional myalgia,12 fibromyalgia syndrome,13–17 migraine,18 neuropathic
pain,19,20 neuromuscular disease,21 and post-surgical pain22 have reported acute
exacerbations of pain with activity. Thus, activity should be investigated as a potential
source of spikes in patients’ pain.
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Along with ratings of clinical pain, activity has been reported to stimulate nociceptors in
basic electrophysiology studies. A classic investigation by Mense and Meyer23 found that
Group III and IV muscle nociceptors were activated by noxious pressure, noxious stretch,
and noxious contraction force. Further, after muscle inflammation, nociceptors started to
respond to innocuous levels of these stimuli. Also, a more recent investigation by Ro and
colleagues24 reported that the number of c-fos containing cells in trigeminal brainstem
nuclei increased with masseter muscle inflammation and further increased with jaw
movement. Thus, the nociceptors innervating muscle sensitize after inflammation and this
sensitization is manifested as an enhanced response to joint movement and muscle
stimulation.

Pain and nociceptor activation vary with both the intensity1,23,7 and type of
activity25,26,23,27 so the activity’s characteristics need to be considered. For example,
recalled knee pain from weight bearing activities was more strongly associated with
radiographic severity of arthritis than recalled knee pain from non-weight bearing activities.
28 Therefore, examination of different activities may advance our understanding of the
mechanisms of activity-induced exacerbation of pain.

Activity-induced exacerbations of pain can be investigated by comparing pain from
activities that differ in controlled ways. For example, Sullivan and colleagues29 have
developed an innovative canister lifting task for patients with low back pain, in which the
canister weight and canister distance from patients are varied. An alternative and novel
approach is to induce delayed-onset muscle pain in healthy participants with controlled
exercise and then investigate how controlled activities affect the pain. Such an approach is
clinically-relevant because induced delayed-onset muscle pain interferes with normal daily
activities outside of the laboratory and generates self-care behaviors such as stretching and
massaging the muscles.30,31

The purpose of this investigation was to test the hypothesis that delayed-onset muscle pain
would vary across activities even when the activities differ in simple ways. The delayed-
onset muscle pain was induced with lengthening (i.e., eccentric) contractions of the non-
dominant elbow flexors and the activities assessed were normal movements and contractions
of the elbow. The identification of activities that most increase pain in temporarily damaged
muscles may lead to insights into the mechanisms of activity-induced exacerbations of pain
in patients with myofascial pain.

Materials and Methods
Participants

Participants (N = 20; 45% women) with an average age of 23 years (SD = 2.09) consented to
participate in a six session protocol that was approved by the University of Missouri’s
Health Science Institutional Review Board. The restrictions for participation were the
following: (a) had not engaged in upper body strength training on a regular basis (i.e., two
times per week) for consecutive weeks within the previous six months, (b) were not
currently experiencing arm pain, (c) had no history of upper arm injury within the previous
six months, and (d) no chronic pain conditions. In addition, participants were screened by
questionnaire for potential risk factors to the exercise protocol (e.g., excessive swelling, loss
of range or motion, exertional rhabdomyolysis). Furthermore, participants were restricted
from the following behaviors: smoking 3 hours prior to a session, consuming any food or
drink except water 8 hours prior to a session, and taking analgesics throughout the study
period.
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Measures
Muscle pain ratings—In order to evaluate the multidimensional nature of pain,32 ratings
of muscle pain intensity and muscle pain unpleasantness in both arms were assessed before
and after lengthening (i.e., eccentric) muscle contractions with 0–100 numeric scales. More
specifically, ratings were collected while the participants’ arms were (1) stationary at
approximately 90° of elbow flexion, (2) moving through active range of motion without
applied load to full elbow flexion, (3) moving through active range of motion without
applied load to full elbow extension, and (4) during five repetition maximal strength tests (5
RM) at 90° of elbow flexion. The anchors of the pain intensity scales were “no pain” and
“most intense pain sensation imaginable.” The anchors of the pain unpleasantness scales
were “no unpleasantness” and “most unpleasant imaginable.” Numeric pain scales have
been found to be reliable and valid.33

Pressure Pain Threshold—Pressure pain threshold (PPT) was defined as the point at
which a pressure stimulus first became painful. The pressure stimulus was applied at 25% of
the distance from the cubital fossa to the greater tuberosity of the humerus while both arms
were stationary at approximately 90° of elbow flexion. Using a hand-held 10 kg dolorimeter
with a 1 cm rubber tip (Pain Diagnostics Inc.), pressure was increased at a rate of about 1
kg/s until the participant first reported feeling pain. The average of two repeated
measurements was analyzed for each arm.

Procedures
After a familiarization session, participants visited the laboratory for five consecutive days.
Muscle pain ratings were collected for both arms during rest, flexion, and extension and
pressure pain thresholds were assessed for both arms at rest. Lastly, participants were
positioned in a muscle testing apparatus (Biodex System 3; Biodex Medical Systems,
Shirley, NY) so that muscle pain could be measured during maximal isometric (i.e., static)
contractions by both arms. For the isometric contraction test, the participants completed a 5
repetition maximal (5 RM) test with 2 minutes of rest in between each repetition at 90° of
elbow flexion.

Following the isometric tests, eccentric contractions of the participants’ non-dominant elbow
flexors were completed with the muscle testing apparatus to induce delayed-onset muscle
pain. (The non-dominant arm was defined as the contralateral arm to the arm with which the
participants wrote.) More specifically, the participants performed 3 sets of 12 maximal
eccentric repetitions with a rest period of 60 s in between each set. Eccentric contractions
were completed at a velocity of 90°/s through the participants’ active range of motion.

It is important to clarify how the state of the elbow flexor muscles varied across the
conditions within the study. The elbow flexors were agonists during flexion and isometrics
with less force produced and more shortening during the unloaded flexion than the
isometrics. The elbow flexors were also agonists during eccentrics with more force produced
and more lengthening than during the unloaded flexion and isometrics. In contrast, the
elbow flexors were antagonists during unloaded extension with less force produced and
similar lengthening to eccentrics.34

After the eccentric exercise, participants were given a rest period of about 1 hour. During
this time, they were instructed to continue adherence to the pre-session restrictions, but they
were allowed to leave the laboratory if they desired. After the rest period, muscle pain and
pressure pain thresholds were assessed again in the same manner as before the eccentric
exercise. Then the session was terminated and participants were reminded of the schedule
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and restrictions for the subsequent sessions, which included avoiding any self-care behaviors
for muscle pain (e.g., ice or heat application, stretching, massage, etc.).

Participants returned to the laboratory at one, two, three, and four days after the eccentric
contractions in order for us to evaluate changes in muscle pain across time. These sessions
were held either in the morning or afternoon hours in congruence with the previous session
so that all the sessions of a single participant were either in the morning or afternoon. During
each laboratory session, the muscle pain measures were repeated. Muscle pain ratings and
pressure pain thresholds were completed as previously described.

Data Analyses
In order to test our hypotheses for changes in muscle pain ratings, we conducted repeated
measures analyses of variance (ANOVAs) with three factors: ARM (ipsilateral – eccentric
contractions - and contralateral), CONDITION (resting, flexing, extending, and maximally
contracting in static position), and TIME (pre-exercise, 1-hr post-exercise, 1 day, 2 days, 3
days, 4 days) with pain intensity or pain unpleasantness as the dependent variable.
Significant 3-way interactions were followed up with CONDITION by TIME repeated
measures ANOVAs within each arm, which were followed up with CONDITION repeated
measures ANOVAs within each time point.

In order to test our hypotheses for changes in pressure pain thresholds, we conducted
repeated measures ANOVAs with two factors: ARM (ipsilateral – eccentric contractions -
and contralateral) and TIME (pre-exercise, 1-hr post-exercise, 1 day, 2 days, 3 days, 4 days).
Significant 2-way interactions were followed up with TIME repeated measures ANOVAs
within each arm and pairwise comparisons.

All analyses were conducted using SPSS software (SPSS, Inc., Chicago, IL) with
Greenhouse-Geisser correction of degrees of freedom to adjust for violations of sphericity.
Statistical significance was defined as p < .05 and eta squared (η 2) was calculated to
determine the meaningfulness of the results. Eta squared values of .01, .06, and .14
corresponded to small, medium, and large effect sizes, respectively.35

Results
Muscle Pain Ratings

Pain intensity and unpleasantness were affected by a large interaction among the factors of
arm, arm condition, and measurement time point (ARM by CONDITION by TIME: F 15, 255
= 8.35, p < .001, η 2 = .33 and F 15,240 = 7.44, p < .001, η 2 = .32). Follow-up analyses
within the ipsilateral arm, revealed that the ratings changed differently across time
depending upon the arm condition. However, in general, both pain intensity and pain
unpleasantness increased significantly by large amounts to a peak at 2 days post-exercise
with the largest increases occurring during arm extension, next largest during flexion and
isometrics, and smallest at rest. (See Table 1.)

Additional analyses comparing arm condition within each time point showed that before
exercise, both pain intensity and unpleasantness were higher during the isometric maximal
contraction than at rest and during flexion and extension. However, this pattern changed
after the eccentric contractions. One hour after the exercise, there were non-significant and
small differences among the arm condition for pain intensity or unpleasantness. One to four
days after the exercise, both pain intensity and unpleasantness were the highest during
extension, followed by flexion and isometrics, and were lowest at rest. (See Table 2 and
Figures 1 and 2.)
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A different pattern of results was observed for the contralateral arm. The muscle pain ratings
for the contralateral arm were unaffected by the ipsilateral arm’s eccentric contractions so
that the pain in the contralateral arm remained highest during maximal contractions as was
found in the ipsilateral arm before the eccentric contractions. (See Table 3.)

Pressure Pain Thresholds
Pressure pain thresholds after the eccentric contractions changed across time differently in
the ipsilateral and contralateral arms (ARM by TIME: F 5,90 = 10.74, p < .001, η 2 = .37),
but the pressure pain thresholds were generally lowest at 1 and 2 days post-exercise (TIME
effect F 5,90 = 4.33, p = .007, η 2 = .19) and lower in the ipsilateral arm than the contralateral
arm (ARM effect F 1,18 = 7.44, p = .014, η 2 = .29). More specifically, within the ipsilateral
arm, pressure pain thresholds decreased significantly by a large amount and were lowest at 1
day, 2 days, and 3 days after exercise (F 5,90 = 8.99, p < .001, η 2 = .33). Within the
contralateral arm, non-significant and small changes from baseline were detected. (F 5,90 =
2.53, p = .068, η 2 = .12). (See Figure 3.)

Discussion
This investigation detected that the eccentric muscle contractions successfully induced
spontaneous pain (i.e., pain at rest) and allodynia to movement and pressure. Few
investigations of eccentric contractions have reported muscle pain at rest. Of those that have
assessed muscle pain at rest, one study detected increased resting pain36 while two other
studies did not.37,38 Thus, the literature is currently mixed and more research is needed
because pain at rest is clinically relevant due to its occurrence with clinical pain in humans
and peripheral and central sensitization in animals.39–41

The movement and pressure allodynia that we detected are consistent with numerous studies
of post-exercise muscle pain, but the novel pain measurement methodology in this study
enabled comparison of specific types of movements and/or contractions. The muscle pain
ratings differed depending upon the activity with lengthening producing the greatest pain in
the damaged muscles. These findings resemble Mense and Meyer’s23 observation that
inflammation-induced sensitization of Group III and IV fibers differed across stimuli (e.g.,
stretch, contraction, etc.). Thus, the findings support the potential of Mense and Meyer’s
findings with induced muscle inflammation in cats to translate to temporary endogenous
muscle damage in humans.

As stated previously, the elbow flexors were agonists and shortening during unloaded
flexion and isometrics and antagonists and lengthening during unloaded extension. Because
the movement allodynia was highest during extension when the damaged muscles are
antagonists and lengthening, it appears that stretch sensitive peripheral afferents were
particularly sensitized by the eccentric contractions. , low threshold stretch receptors may be
behaving as nociceptors and/or high threshold stretch sensitive nociceptors may have
lowered activation thresholds. In fact, inflammation can make low threshold
mechanoreceptors act like nociceptors 42–46 and can lower the stimulation thresholds of
nociceptors,39,41 which is important because inflammation does occur with muscle damage
from eccentric muscle contractions.47,48 It may be possible to use animal models of
eccentric contractions, such as the one developed by Taguchi and colleagues,49,50 to
compare the activation level of stretch sensitive peripheral afferents to different types of
activities before and after the eccentric contractions.

Our findings confirm that assessments of activity-related pain are affected by relatively
simple differences among the activities. Detailed information about the characteristics of
aggravating activities from clinical pain patients beyond “least, usual, worst, and current”
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pain ratings may enable important biomechanical modifications to how activities are
performed and improved prescriptions for therapeutic exercise. For example, patients with
myofascial pain may benefit from incorporation of assistive devices (e.g., reaching tools)
and/or strengthening exercises that minimize muscle lengthening. Reducing activity-related
pain may reduce activity avoidance and deconditioning because numerous studies have
found that pain impairs adherence to therapeutic exercise in patients with chronic pain.51–59

Unique strengths of this study’s methodology were measuring bilateral muscle pain
responses across 4 days post-exercise and our assessment of muscle pain ratings when both
arms were performing different activities. Limitations of the investigation were the generally
low levels of induced muscle pain and the absence of additional sensory tests such as
temporal summation to heat or pressure. Future studies could easily address these limitations
and further advance our understanding of the mechanisms and treatments for activity-related
pain.
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Figure 1.
Means and standard errors for the ratings of muscle pain intensity in the ipsilateral arm
before and across 4 days after the eccentric contractions. Ratings at all time points increased
from baseline when the ipsilateral arm was resting, flexing, and extending (p < .05). Ratings
did not change significantly from baseline when the ipsilateral arm was maximally
contracting in a isometric position.
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Figure 2.
Means and standard errors for the ratings of muscle pain unpleasantness in the ipsilateral
arm before and across 4 days after the eccentric contractions. Ratings at all time points
increased from baseline when the ipsilateral arm was extending (p < .05). Ratings at 1 to 4
days increased from baseline when the ipsilateral arm was resting, flexing, and maximally
contracting in a static position (p < .05).
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Figure 3.
Means and standard errors for the pressure pain thresholds before and across 4 days after the
eccentric contractions. Pressure pain thresholds at 1 to 3 days were significantly decreased
from baseline for the ipsilateral arm. Pressure pain thresholds did not change significantly
from baseline for the contralateral arm.
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