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is more important in affecting the slope than is the a dependence of k/(aC). Figures
8 and 9 also indicate that the reaction order with respect to oxygen partial pressure
is much higher (about unity from the results of Figure 8, with its approximations)
than with respect to H+ ion activity.

Figure 6 shows that V decays to potentials positive of Vs, this amount increasing
with the amount of elongation of the electrode. The present model attributes this
phenomenon to an accelerated oxygen reduction on the undisturbed oxide sites
during the decay, induced by the greater negative charge on the metal side of the
double layer than existed before the electrode was deformed. This same reaction
on the unbroken oxide areas is the reason for Vmax and Vh being dependent on oxygen
partial pressure (cf. Fig. 2a) whereas Hagyard and Williams8 found these potentials
to be independent of Po2.
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This paper is a continuation of reference 1, in which we began a proof of the fact
that the Continuum Hypothesis cannot be derived from the other axioms of set
theory, including the Axiom of Choice. We use the same notation as employed in
reference 1.
THEOREM 2. 97 is a model for Z-F set theory.
The proof will require several lemmas. The first two lemmas express the princi-
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ple that forcing is a notion which is formalizable in the original model M1Z.
LEMMA 6. There is an enumeration a, of all limited statements by means of the

ordinal numbers of X, such that the usual formal operations performed on statements
are expressible by means of definable functions in M of the indices a, for example,
forming negations, conjunctions, replacing variables by particular sets, etc. Further-
more, the ordering corresponds to the definition offorcing given by transfinite induction
in Definition 6.
LEMMA 7. Let a(x,y) be a fixed unlimited statement containing two unbound vari-

ables x and y. The relation 0a(P, a,#) which says that P forces a(Fa,F9) and A is the
least such ordinal, is definable in M.

This follows from the fact that using Lemma 6 the relation "P forces Qa,, can be
formalized in Z-F as a statement about P and a. A given unlimited statement can
also be handled since, after a finite number of replacements of variables, it is re-
duced to a limited statement.

Definition 9: For a(x,y) as above, put F0 (a) = supI ,3j3 P, a, < a, 'ba(P, ala) }.
LEMMA 8. Let a(x,y) be a fixed unlimited statement, a an ordinal. For each

a' < a either there is no Fax such that a(Fa',F#) or such an Fax exists with d < ra(a).
Proof: If A is the least ordinal such that a(Fa,,FO), then a(Fa',FO) must be

forced by some Pn which clearly implies A < rF().
LEMMA 9. Let a(x,y) be an unlimited statement of the form

Q1X1Q2X2j ... ., QnXnb (XY8XXY ... , Xn)

where b has no quantifiers and Qj are either existential or universal quantifiers. In XZ,
assume a defines y as a single-valued function of x. Then for each a there exist ordinals
Yo, ... yYn such that for x E Ta, there exist y e F,0 such that a(xy) and for (xy) in
Ta X T70, the statement a(x,y) holds if and only if a(x,y) holds where a is the statement
formed by restricting the quantifiers Qj in b to range over F,

Proof: Lemma 8 implies the existence of 'yo such that for x e Ta, there is a
y e F7, such that a(xy). Define Yk by induction as follows: let gk(x,y,xl, ...

xkAI,z) be the condition
(i) if Qk is universal,

I""Qk+lXk+ly * * *z Qnxnlb(xylx .. *k-lyZXk+l ... xn) or

(ii) if Qk is existential,

Qk+lXk+ly * * * QnXnb (Xx YyXly ..* *Xk-1 yZ)Xk4-1 ..*Xn)

Lemma 8 implies that for some Yk, for all (xyxI, . . ., xk-1) E Ta X F70 X ... X
F-0k-, either no z exists such that gk(x,y,x1, .. ., xk-,,z) or there is such a z E F70.
This clearly implies the lemma.
LEMMA 10. The Axiom of Replacement holds in SZ.
Proof: If a(x,y) defines y as a single-valued function of x in Dt, then for any a if

D = {xI3z, z E Fa & a(z,x)} then by Lemma 9, D is defined by a condition in which
all variables are restricted to lie in fixed sets F,, which by the definition of the sets
Fa implies that D is a set in 9Z.
The only other axiom to verify which is nontrivial, is the Axiom of the Power Set.

The proof we give follows closely the method in reference 2 used to prove that V = L
implies the Continuum Hypothesis.
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LEMMA 11. Let W be a set in X, consisting of conditions P, such that if P1 and P2
belong to W, then P1 U P2 is not an admissible condition (i.e., contains a contradic-
tion). Then W is a countable set (in M).

Proof: Define sequences nk and P3 as follows. Put ni = 1 and P1 the first P in
W. (We assume the P are well-ordered.) If nk and P3 for j < nk are defined, put
Rk equal to the set of all conditions n e ab or '-n E a5 such that they or their negations
are contained in some P1, j < nk. Let P,, nk <j< nk+I, be finitely many P in -W,
such that for all P in W, 3j, nk<j< nk+i and P and P3 have precisely the same
intersection with Rk. This is possible since Rk is a finite set. We claim that W
consists only of the Pi. For if P e W, then since P is a finite set of conditions, and
RkC Rk+l, there exists a k such that P n Rk = P n Rk+l. Let nk <j . nk+l,
such that P3 f Rk = P n Rk. Then if P is not equal to Pi, since P nRk+l C Pi
and P3 C Rk+1, P U P, is an admissible condition, which contradicts the hypothe-
SiS.

Definition 10: Put C(P,a) = if P forces Fax E Fa and for P' 2 P, y < 3, P'
does not force F7 e Fa,,. If no such /3 exists, put C(P, a) = 0.
The function C is definable in X, by virtue of the general principle contained in

Lemma 6.
LEMMA 12. For any a, there are only countably many (in r) /3 such that for some

P, C(P,a) = d.
Proof: For each such /,. pick one P such that C(P, a) = 3. Then the set of all

such P must be countable by Lemma 10.
LEMMA 13. Let S be an infinite set of ordinals in M. There exists a set S' of

ordinals, S' D S S' = S such that S' is closed under J(i, a,/, y), Ki(a), C(P,a), I(a),
for all P and a,3, YES. Also a eS' implies a + 1 ES'.

The statement S' = S, above, means that with respect to M, the sets S and S'
are of the same cardinality.
LEMMA 14. Let S be a set of ordinals closed under the operations in Lemma 13, and

such that if a < 3R, a e S. Then there is a map g mapping S 1-1 onto an initial
segment of ordinals which preserves J, Ki, I, N, and such that if N(a) = 0 (or 9),
g(a) = /3 is the first ordinal such that N(/) = 0 (or 9) and ,3 is greater than g(a') for
a' < a. Also, g is the identity for a < 3N,

Proof: S and g in the lemma refer to sets in the model M1%. We define g by
transfinite induction. For a < 3Nr let g be the identity. If g is defined for all /3
in S less than a, if I(a) = a' (i.e., N(a) = 0), put g(a) = sup{g(3)|/3 < a and/ e S}I.
If I(a) = /3 < a, then if N(a) = 9 (i.e., a = /3 + 1), put g(a) = g(/) + 1. If
i = N(a), 1 < i < 8, put g(a) = J(i,g(Kj(a)), g(K2(a)), g(/3)). One can now show
by induction that if a e S, N(a) = 0, g maps the set of all ,3 < a onto an initial seg-
ment. The lemma then easily follows.
LEMMA 15. If we put G(Fa) = Fq7(a) for a in S, then G is an isomorphism with

respect to e of A, = {F.ae ES} onto A2 = {Fg(a,)aES}.
Proof: This follows by induction on a, in the same way as in 12.6 of reference 2.

Observe that in examining the operations l4 and a5 we need the fact that if FaE Al
and is not empty, then it has a member in AI preceding it. This is true since S is
closed under C(Pa), and C(P,a) for some P is the smallest /3 for which FoE Fa,
if F,, $=4,.
LEMMA 16. If F, C Fa,, then for some ry, F,# = F., where i ac + N, in 9RZ.
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Proof: Let S contain all 3 < a, all 3 < 3R, and A3, and be closed under the opera-
tions in Lemma 13. Let g be the corresponding isomorphism. Then clearly
g(a) = a if 3 < a. Thus, by Lemma 15, if we put -y = g(O), since F CqF, Fe
FO. Since g maps S onto an initial segment, 3= < S and so the lemma is proved.
LEMMA 17. The Axiom of the Power Set holds in 91.
Proof: Since every subset of Fa is contained in F16, where fi is the first ordinal

such that N(#3) = 0 and f>> a + NRT it is clear that the power set of F., occurs in 91.
This completes the proof that 91 is a model, the other axioms being trivially veri-

fied. Since rank F_ < a) 91 contains no new ordinals.
h LEMMA 18. If N(a) = N(Q) = 9, and Fa > Fl in 9S, then Fa > F# in 9S.

Proof: The point of this lemma is that ordinals do not change their relative
cardinality in the model 91. The added complications in the definition of forcing
due to N(a) = 9 are compensated for in the proof of this lemma, in that as a runs
through the ordinals with N(a) = 9, Fa, runs through the ordinals of g1n in a manner
independent of the sequence P,. More exactly, the map a -* F, is an order-
preserving map of the ordinals a, N(a) = 9, onto all the ordinals of 1.
Thus assume that some element in 91 defines a relation so(x,y) on FP X Fo, which

is a single-valued function from Fa onto Fa. For each fi' < f, N(f') = 9 consider
the set Hp, of all y, N(zy) = 9, such that some P forces both sa(F',6F7) and (x) [P(FS,,x)

x = Fe]. The set H1t exists in 9n as does the map f' -> Ht. since the notion of
forcing is expressible in 1. We shall now show that each Hp, is countable in 91M.
For each element in Hp, choose a corresponding P which forces the above state-
ments. By Lemma 11, it is sufficient to show that these P are mutually incom-
patible. If two such P corresponding to 'yl and 72 were compatible, their union
would force both wp(Fp,,F,1) and (x) [<o(Fp,,x) - x = Fe2]. Now since -F, =

FY2 is forced, taking into account that --FF, = F72 involves only existential quan-
tifiers, it follows that --(p(F#,,F71) -- F7, = F72) is forced, which is a contradic-
tion. Thus the union of all the Hp, is of cardinality F, in 9, since we may clearly
restrict ourselves to the case where F, is infinite. If in 91, <o(Fg,,F.) holds for some
y, N(7) = 9 then since all true statements in 91 are forced by some P, y belongs to
H1,. Thus since <p is onto, the union of H,1, must contain all -y < a, N(y) = 9 which
is impossible since F,6 < Fa in 91.
LEMMA 19. There is a statement a(x,y) built up from the logical symbols and the

set V, which expresses in 91 the condition that x is an ordinal and Fx = y. Thus the
Axiom of Choice holds in 91.

Proof: This is true because our construction differs from that of reference 2,
merely in the introduction of the sets as. If we use the set V, we can of course de-
scribe their ordering and so define the construction. We can thus well-order 91 by
saying F,, precedes F, if a < A and F, $ Fe for y <13.
LEMMA 20. In 91, we have Kr < 2"' < RT+1.
Proof: By Lemma 18, the sets Nx do not change in 91. One can easily see that

no P forces any two as to be equal, hence they are distinct, which implies one half
of the lemma. Our proof of the Power Set Axiom shows that every subset of w is
some Fa with& < NTor a< r+1- Thus Lemma 19 establishes a map of N,, onto
2N°.
We have now completed the proof of part 3 of Theorem 1. We now sketch the

proof of one of the finer points involved.
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LEMMA 21. If in M X, is not the sum of countably many smaller cardinals, then
24° = Nt in the model 9l. If it is, then 2"' =

Proof: The second part follows from Lemma 20, and the theorem of Koenig
which says that the continuum is not a countable sum of smaller cardinals. Let
F, C w. To prove the first part, let S be a set of indices containing all /3 < w, the
ordinal a, and closed under J. Ki, I, + 1, and C as before, and such that S No.
The set S is definable in M by virtue of the general principle of Lemma 6. For /3 in S
define a new collection of sets Go, defined by induction on /3 as follows. If /3 < 3 N,,
Ga = FO. If N(#) = 0, put G# = {G,6,|I' < 31, and if N(/) = 9, G# = {G#,1,j' <
/3 & N(/3') = 9}. If 1 < i = N(/) < 8, K1(/3) = yi, K2(#) = 72, put G6 = i(G1W
GY2). Then the correspondence F -; Ga, is an isomorphism with respect to e.

Clearly, Fa = Ga. Let p be an isomorphism with respect to E of S onto a countable
ordinal S'. Let Ki' = pKip-1, and N' = Np-1. Then our argument shows that
Fa depends only upon S', Ki', N', p(a), and the set S n 3 RT* The number of pos-
sible S' is Ni. For each S', the number of possible Ki' and N' is Ni, since N o

N, in MZ and Ki', N' are definable in M. The number of countable subsets of 3 XT
is of cardinality N,, as follows easily from our hypothesis on ST and the fact that the
Generalized Continuum Hypothesis holds in M11. Thus the number of possible Fa
does not exceed ST and the lemma is proved.
LEMMA 22. If in M the number of subsets of MT of cardinality N, is ST} then 2K' =

MT in9.
Proof: This is very similar to Lemma 21. We merely demand that S contain all

/3 <N. The condition of the lemma may be rephrased by saying NT is not cofinal
with No or Ni. In particular, T may be 2.

This settles an old question of Lusin whether one can have 2&' = 24'. Other
examples of this type presumably can be constructed with our method. In par-
ticular, one can construct models in which the set of constructible reals is countable,
a countable union of countable sets is uncountable, etc.
We now give a short discussion of the question of how the above proof can be

formalized. Let us denote by (Z-F)' the axiom system obtained by adjoining to
Z-F the axiom:

There exists a set M which is a model for Z-F.

Observe that this axiom can be expressed as a single statement about M, because
M is a set. In the axiom system of Gbdel-Bernays this would be still simpler, since
only finitely many axioms are employed there. The classic argument of Godel2
shows that from (Z-F)' one can deduce the existence of a set 9Z which is a model for
Z-F and V = L. Similarly, the argument of this paper shows that (Z-F)' implies the
existence of a set DT, which is a model for Z-F, the Axiom of Choice, and the nega-
tion of the Continuum Hypothesis. Since our additional axiom is quite readily ac-
ceptable to most mathematicians (being merely a formal expression of the L6wen-
heim-Skolem principle, and implied by well-known axioms such as the Axiom of an
Inaccessible Cardinal), one can regard the unprovability of the Continuum Hy-
pothesis as firmly established. However, the consistency of a formal system can
also be regarded as a statement in elementary number theory, and one may ask for a
proof within elementary number theory of various implications. If (Z-F)1 denotes
Z-F with the Axiom of Choice and say 2&' = NT, the relevant question is, can we
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prove within number theory or, if need be, a system of higher type, the implication
Con(Z-F) Con(Z-F)1. By using rather standard methods, we shall show how to
prove the above implication purely within elementary number theory.

Let us enumerate the axioms of Z-F, An. For each n, there is in Z-F a proof of
the existence of a countable set 9n which satisfies the axioms Aj, j < n. Further-
more, the correspondence between n and the string of symbols corresponding to
such a proof is expressible in number theory.
We may also assume by reference 2 that the axiom V = L is valid in 1,,. We

now assert that the proof that 91 is a model for A;, j < p as well as 20' - N, can
be given under the assumption that 1 is a set satisfying Aj, for j < n where n is a
suitable number greater than p, but still an arithmetical function of p. To see this,
we observe that the notion of forcing for limited statements can in Z-F be formu-
lated for unlimited statements as well and the basic lemmas may be proved, since
no special properties of 911 are used except the transitivity of M11. To prove that
the axioms of Z-F other than the Replacement Axiom holds in 91, as well as 2"' =

N, requires only finitely many axioms to hold in 9. Each instance of the Replace-
ment Axiom to be proved in 91 requires that a finite number of instances of replace-
ment used in the proof of Lemma 8 hold in 911. Which instances are sufficient is a
simple function of the number of logical symbols used in the formula a(x,y) dis-
cussed. Since any contradiction in (Z-F)1 would involve only finitely many axioms
and since we can prove the existence of a set 91 satisfying these axioms, we would
thus be led to a contradiction in Z-F itself. This mapping from contradictions in
(Z-F)1 to contradictions in (Z-F) is expressible in an elementary number-theoretic
manner which is what was to be proved. In general the statement 24' = AT, for
r in 911, may not be capable of being expressed as a statement in Z-F or may have
different interpretations in different countable models 9 or 9Z. If r is a particular
natural number or cW2 + 1, etc., then it can readily be expressed in Z-F and the proof
sketched goes through.
The argument given in this paper to establish the independence of the Con-

tinuum Hypothesis will certainly carry over if one adjoins to Z-F the Axiom of an
Inaccessible Cardinal. It seems probable to the author that the addition of any
axiom of infinity, as the term is presently understood (i.e., of axioms such as those
introduced by P. Mahlo and Azriel Levy), will not alter the situation.
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The definitlion of I in Lemma 1 is to be supplemented by the stipulation:

I(i(ca)) = I(j(a) + 1) = j(a).


