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SUMMARY

Submicroscopic changes in chromosomal DNA copy number dosage are common and have been impli-
cated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that
permits the detection of segmental changes in DNA copy number that span thousands of base pairs in
the genome. Genomewide association studies (GWAS) may simultaneously screen for copy number phe-
notype and single nucleotide polymorphism (SNP) phenotype associations as part of the analytic strat-
egy. However, genomewide array analyses are particularly susceptible to batch effects as the logistics
of preparing DNA and processing thousands of arrays often involves multiple laboratories and tech-
nicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for
batch effects can lead to incorrect inference and requires inefficientpost hocquality control procedures
to exclude regions that are associated with batch. Our work extends previous model-based approaches
for copy number estimation by explicitly modeling batch and using shrinkage to improve locus-specific
estimates of copy number uncertainty. Key features of this approach include the use of biallelic genotype
calls from experimental data to estimate batch-specific and locus-specific parameters of background and
signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease
and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the ob-
served variation in the quantile-normalized intensities, while the latter illustrates the robustness of our ap-
proach to a data set in which approximately 27% of the samples have altered copy number. Locus-specific
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estimates of copy number can be plotted on the copy number scale to investigate mosaicism and guide
the choice of appropriate downstream approaches for smoothing the copy number as a function of phys-
ical position. The software is open source and implemented in the R packagecrlmm at Bioconductor
(http:www.bioconductor.org).

Keywords: Bioinformatics; Hierarchical models; DNA copy number variations; Single nucleotide polymorphism
array.

1. INTRODUCTION

Segmental changes in DNA copy number arise through genomic rearrangements that cause insertions or
deletions of genomic fragments. Such rearrangements are thought to arise most commonly via nonallelic
homologous recombination in regions that contain low copy repeats (Guand others, 2008), and can occur
in the germline during meiosis as well as during mitosis in somatic cells. Many of the genomic rearrange-
ments that affect DNA copy number are likely to be neutral with respect to phenotype. For instance, an
extensive list of deletions and amplifications has been catalogued in apparently normal HapMap individ-
uals (Redonand others, 2006; Kidd and others, 2008). However, genomic rearrangements that occur in
regions that disrupt gene function or alter the copy number of genes that are dosage sensitive can affect
phenotypes. SeeLupski for a recent review (Lupski, 2009). Alterations of DNA copy number are impli-
cated in many diseases, including autism spectrum disorders (Autism Genome Project Consortium, 2007;
Marshalland others, 2008), bipolar disease (Zhangand others, 2008), autoimmune disorders such as type
I diabetes (McKinney and others, 2008), and cancer (Ma and others, 2009; Cappuzzoand others, 2009;
Woo and others, 2009). For other heritable diseases such as schizophrenia, the role of recurrent copy
number variants in disease remains elusive (Sutralaand others, 2007; Needand others, 2009).

Copy number variants spanning regions of the genome greater than one megabase (Mb) are detectable
by cytogenetic techniques such as spectral karyotyping and fluorescencein situ hybridization. However,
many changes to DNA copy number are thought to involve smaller segments of the genome that are below
the level of resolution attainable by cytogenetic methods. High-throughput genotyping arrays enable the
measurement of genotype and copy number across the genome. The resolution for detecting copy number
variant in current platforms is on the order of thousands of base pairs and can therefore be used to identify
segmental changes that are not detectable by spectral karyotyping (resolution: 5–10 Mb). Screening for
alterations in copy number has identified genomic regions known to be involved in disease, such as the
neurexins in autism (Autism Genome Project Consortium, 2007), as well as novel targets that suggest a
role of less well-understood pathways in disease etiology. High-throughput genotyping platforms provide
a useful genomic screen whereby loci exhibiting patterns of variation between normal and disease indi-
viduals can be identified and followed. While most genotype calling algorithms are highly concordant for
the vast majority of single nucleotide polymorphisms (SNPs), copy number estimation is more sensitive
to technological artifacts and differences in the preprocessing and normalization steps.

This paper is organized as follows. Section2 outlines our motivation for developing a multilevel model
to address batch effects and improve estimates of uncertainty. Section3 defines a theoretical framework
for copy number in hybridization-based platforms and the challenges of adapting this model to high-
throughput genotyping arrays. Section4 describes an estimation algorithm that is motivated by many of
the fundamental features of standard approaches, including maximum likelihood and empirical Bayes. In
Section5, we illustrate the main innovations of our approach using two experimental data sets and com-
pare our results with software recommended by the array manufacturer. Concluding remarks are provided
in Section6.

http:www.bioconductor.org
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2. MOTIVATION

The focus of this paper is the estimation of allele-specific copy number at polymorphic loci and the
total copy number at nonpolymorphic loci as well as the corresponding uncertainty. Statistical methods
that smooth locus-level estimates, such as segmentation algorithms or hidden Markov models (HMMs),
are downstream of the work considered here and stand to benefit from improvements to the locus-level
summaries. Additional background regarding our decision to implement a locus-level model for copy
number and a more detailed discussion of downstream methods for copy number estimation are reviewed
in Section A of the supplementary material (available atBiostatisticsonline). Figure1 in Section H of the
supplementary material (available atBiostatisticsonline) illustrates the difficulty of copy number estima-
tion as batch (here, laboratory) and true copy number changes are likely to have very similar effects on the
data. In general, our work is motivated by the observation of large batch effects in several genomewide
data sets and the need for improved estimates of copy number uncertainty that can be propagated to
the downstream algorithms reviewed in Sections A and F of the supplementary material (available at
Biostatisticsonline).

2.1 Batch effects

Batch effects that arise from laboratory, temporal, or other experimental variation can be addressed in
several ways. One approach is to consider batch effects as part of the quality control step in the analysis
of genomewide arrays. For instance,Zhangand others(2008) excluded regions of copy number alteration
that were associated with batch in their Genomewide association studies (GWAS) for bipolar disease. This
approach is sensible if a relatively small number of loci are affected by batch. In such instances, smoothing
the locus-level estimates using a HMM or a segmentation procedure may reduce the impact of batch
effects on downstream analyses. An alternative approach is to apply a correction to the signal intensities
that effectively gives each batch the same mean signal intensity, as in the GISTIC algorithm (Beroukhim
and others, 2007). While GISTIC uses date as a surrogate for batch, one could also estimate batch using
principal components analysis applied to the raw intensities (Golden Helix, 2009). Figure1(a) and (b)
illustrate the batch effect at one locus on chromosome 15 among the European ancestry controls in a data
set for bipolar disease. The distribution of allF-statistics for chromosome 15 (Figure1c) demonstrates that
batch effects persist after quantile normalization and are not isolated to a small number of loci. The batch
effects observed on chromosome 15 were typical of the other autosomes in this data set and intermediate
to the relatively small batch effects observed in 270 HapMap samples and the very large batch effects we
have observed in studies comprised of more than 5000 individuals (data not shown).

2.2 Shrinkage

Shrinkage of the variance estimates is likely to be useful for several reasons. First, the technology used to
estimate the amount of DNA hybridized to the array affects the measured fluorescence of many probes in
similar ways. Secondly, many SNPs have a low minor allele frequency or “unobserved” biallelic genotypes
that complicate the estimation procedure discussed in Section4. Third, shrinkage reduces the sensitivity
of our approach to extreme values, such as variance estimates near zero. When propagated to HMMs or
segmentation algorithms, the shrunken estimates of uncertainty may provide a lessad hocmechanism for
handling outliers and a resolution for detecting copy number alterations that depends both on the density
of markers and the precision of the estimates.
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Fig. 1. The European ancestry controls for bipolar disease were run on 29 plates; we excluded 6 plates that had fewer
than 20 samples after removing duplicates and samples with low quality (signal to noise ratio less than 5). (a) Scatter
plots of the quantile normalized intensities of the A (x-axis) and B (y-axis) alleles forSNP A-4251622. Highlighted
in the scatter plots are the samples from the plates IMAGE and THYME. (b) Boxplots of log2(A)+ log2(B) stratified
by plate. (c) For each SNP on chromosome 15, we performed an analysis of variance (ANOVA) for the quantile
normalized log2(A) + log2(B) intensities by plate. After excluding 5 plates with fewer than 20 samples, the ANOVA
provides anF-statistic with 22 and 984 degrees of freedom for each of the 26,074 SNPs on chromosome 15.

3. MODEL

Batch effects appear to be an unavoidable feature of studies involving a large number of arrays, one that
copy number estimation algorithms should take into account. As batch can be easily identified (Figure1),
we argue that batch can be successfully modeled. Here, we introduce a model for copy number estimation
based loosely on an approach described byWangand others(2008). Our method differs from Wang and
others in several important ways. First, we model batch as a fixed effect. More generally, one can think
of batch as a variable selection problem to be inferred at each locus (see Section6). For the purpose of
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this paper, we treat batch as known. Secondly, we avoid using training data to estimate model parame-
ters. Instead, we estimate model parameters using an algorithm that relies only on the experimental data
(Section4). Third, we provide prediction regions for loci with low minor allele frequencies and potentially
unobserved genotypes. Fourth, we provide a solution for estimating copy number for nonpolymorphic
probes in the most recent generation of genotyping platforms. Fifth, we shrink locus-level estimates of
the variance and correlation across alleles that are often very noisy though a hierarchical model. Sixth, we
propose a correction step that provides less biased estimates of copy number when many subjects have
nonnormal copy number. Finally, software for fitting this model to the Affymetrix 5.0 and 6.0 platforms,
as well as several Illumina platforms, is publicly available from Bioconductor.

3.1 A multilevel model

Polymorphic loci. We propose a multilevel model for the locus-level intensities that is motivated by
past work with other hybridization-based technologies. In particular, a general framework for modeling
the normalized fluorescence intensities in gene expression arrays has been recently described (Wu and
Irizarry, 2007) and is discussed in greater detail in Section A of the supplementary material(supplementary
material available atBiostatisticsonline) . We model the observed intensityI for allelek at locusi , sample
j , and batchp as follows:

[
Ik,i j p

]
=
[(

Opticalk,i p + Nonspecifick,i p
)

×
(

δk,i j p
)]

+
[

Specifick,i j p × εk,i j p
]

≡
[

νk,i p × δk,i p
]
+
[

φk,i pck,i j p × εk,i j p
]

for k ∈ {A, B}. (3.1)

The average fluorescence arising from optical background and nonspecific hybridization are collectively
parametrized byν and referred to as background. The slope,φ, in model (3.1) provides an estimate of
the change in the average intensity at a given locus per each integer increase in the allelic copy number.
Both the background and slope are allowed to depend on the SNPi and the batchp. See Figure1a for an
illustration of these parameters in the context of anA versusB intensity scatterplot of a single SNP.

The errorsδ and ε in model (3.1) account for array-to-array variation within a batch of the back-
ground and slope terms, respectively. These terms are each approximately log normal and assumed to be
independent across loci and independent of each other:

log
(
δk,i j p

)
∼ N

(
0, τ2

k,i p

)
and log

(
εk,i j p

)
∼ N

(
0, σ 2

k,i p

)
for k ∈ {A, B}.

Note, however, that the error terms are not independent across alleles. In particular, Figure1(a) and (b)
suggest that the correlation of theA and B intensities is most pronounced for samples with allelic copy
numbers greater than 0. The correlation reflects cross-hybridization of theA allele probe to theB allele
target sequence (and vice versa). As inWangand others(2008), we assume that the joint distribution of
the log intensities conditional on the allelic copy number is approximately bivariate normal:

[
log2(I A,i j p )

log2(I B,i j p )

∣
∣
∣
∣

CA,i j p = cA

CB,i j p = cB

]

∼ N

([
log2(νA,i p + cAφA,i p)

log2(νB,i p + cBφB,i p)

]

, 666i p

)

. (3.2)

The diagonal elements of666 are as follows:

(
666i,p

)
11 = τ2

A,i pI[cA=0] + σ 2
A,i pI[cA>0] and

(
666i,p

)
22 = τ2

B,i pI[cB=0] + σ 2
B,i pI[cB>0]. (3.3)

The correlation of theA andB intensities,ρi p, is SNP and batch specific.
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At the next level of the model specification, prior distributions are selected for666. A commonly used
prior is an inverse Wishart. However, we view this prior as too restrictive as a single degree of freedom is
required for the variances. As666 is a 2× 2 matrix, we have considerable flexibility for exploring different
priors for the standard deviations and correlation. We use independent inverse chi-squared priors withdA

anddB degrees of freedom for the background,

1

τ2
A,i p

∝
1

dAt2
A,p

χ2
A,dA

and
1

τ2
B,i p

∝
1

dBt2
B,p

χ2
B,dB

, (3.4)

and slope variances,

1

σ 2
A,i p

∝
1

dAs2
A,p

χ2
A,dA

and
1

σ 2
B,i p

∝
1

dBs2
B,p

χ2
B,dB

. (3.5)

The termst2
A,p, t2

B,p, s2
A,p, ands2

B,p in (3.4) and (3.5) correspond to the median variance of the back-
ground and slope terms, respectively. Note that these values are the same for all loci and depend only
on the batchp. For the correlation structure, we use the priorρi p ∼ Beta(α, β) , whereα andβ are
estimated empirically and place more mass at typical values. The motivation for an informative prior on
the correlation is that cross-hybridization of theA andB alleles gives rise to positive correlations. In our
experience, negative correlations (after conditioning on the allelic copy number) are spurious and usually
occur when an insufficient number of observations are available to estimate the correlation.

Nonpolymorphic loci. For nonpolymorphic probes, only one allele is interrogated at each locus. We
generically denote this allele asT . Again, we propose a theoretical model for the observed intensity for
allele T at locusi , samplej and batchp as a convolution of fluorescence from optical background and
nonspecific binding of other probes,νT , and fluorescence arising from specific hybridization of the probe
to the target sequence,φT . Explicitly,

IT,i j p = νT,i pδT,i j p + cT,i j pφT,i pεT,i j p , where (3.6)

log(δT,i j p ) ∼ N(0, τT,i j p ) and log(εT,i j p ) ∼ N(0, σT,i j p ).

Again, the background and signal parameters are allowed to depend on both the nonpolymorphic locusi
and batchp. The error terms corresponding to background and signal account for array to array variation
within a batch and are assumed to be log normal, independent across loci, and independent of each other.
Inverse chi-squared priors forδT andεT variances complete the specification of the hierarchical model:

1

τ2
T,i p

∝
1

dT t2
T,p

χ2
T,dT

and
1

σ 2
T,i p

∝
1

dT s2
T,p

χ2
T,dT

.

Challenges. There are several challenges to fitting models (3.1) and (3.6). First, the parametersννν andφφφ
cannot be reliably estimated from training data because of batch effects. Therefore,νA, νB, νT , φA, φB,
φT , cA, cB, andcT are allowed to depend on both the locus and batch and must be estimated from the
experimental dataset. Secondly, the error termsδA, δB, δT , εA, εB, andεT that capture within-batch varia-
tion of the background and signal intensities across arrays are not Gaussian. In principle, these parameters
can be estimated using maximum likelihood or empirical Bayes. However, least squares and method of
moments approaches to parameter estimation are well known to be biased, particularly when the variance
of these parameters is large. The standard approach is a generalized linear model with an exponential
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link function, as employed byLaFramboiseand others(2007). Such an approach requires an iterative
estimation procedure that we view as impractical for platforms that interrogate millions of loci. Thirdly,
for polymorphic loci, the covariance matrix is a function of the allelic copy number. Finally, outliers are
common and robust-to-outlier approaches are needed. Again, least squares and method of moments are
not robust to outliers. Taken together, the size of current genotyping platforms, the inevitability of batch
effects in studies involving a large number of arrays, errors that are non-Gaussian, and the need for ro-
bustness has led us to develop anad hocapproach motivated by the fundamental features of the standard
approaches.

4. COPY NUMBER ESTIMATION ALGORITHM

We prescribe a general strategy for copy number estimation that (i) develops naive estimates of the allelic
copy number that are taken to be known, (ii) uses a linear model to estimate batch- and locus-specific
parameters for the background and slope terms, and (iii) updates the naive estimates of allelic copy num-
ber. Robust-to-outlier procedures for preprocessing and copy number estimation are emphasized. Several
problems remain after steps (i)–(iii), including unobserved genotypes at many polymorphic loci and vari-
ance estimates that are based on a small number of observations. We propose solutions to each of these
problems that take advantage of the large number of observations available from other loci.

Prior to copy number estimation, all arrays are quantile normalized to a target reference distribution.
The normalized intensities are summarized to the level of the locus. For example, the Affymetrix 6.0
platform has 3 and occasionally 4 identical probes for each allele at polymorphic loci and 1 probe for
each nonpolymorphic locus. For the polymorphic loci, we quantile normalize the raw intensities and then
summarize the normalized values by the median. For the nonpolymorphic probes, the Affymetrix 6.0
platform has only one probe per target sequence and we use the quantile-normalized intensities directly.

4.1 Allele-specific copy number

The parameters forνk, φk, andck in model (3.1) are unknown for allelek ∈ {A, B}. As a first step,
we genotype all the samples on the array using thecrlmmsoftware (Carvalhoand others, 2007, 2010),
obtaining genotype calls of AA, AB, and BB for the polymorphic loci. The genotype calls provide a naive
estimate of the allele-specific copy number—an integer value of 0, 1, or 2 for each allele. We denote the
naive estimates for the A and B alleles byc?

A andc?
B, respectively. We use quantile-based estimators, the

median and the median absolute deviation (MAD), to obtain robust estimates of the mean (μ̂GT
k,i p) and

variance (̂ξGT
k,i p) on the intensity scale for genotypeGT. (The median is typically more robust to outliers

than a trimmed mean.) For example,μ̂AA
B,i p is computed as the median of intensitiesI B,i j p for samplesj

with genotypeAA. Inverse chi-squared priors with degrees of freedomdξ , 1
ξGT
k,i p

∝ 1
dξ s2

ξk,p
χ2

ξk,dξ
, are used

to shrink locus-specific estimates of the variance to the batch-specific median variance,s2
ξk,p. Note that

the within-genotype centers are approximately normal regardless of the distribution ofI . We (and others)
have observed that the relationship of the within-genotype centers is approximately linear with the integer
copy number (Huangand others, 2006; Wangand others, 2008). Using the naive estimate of the integer
copy number in the design matrix, we use weighted least squares regression to estimateνA andφA:

1
ξ̂A, ip

×







μ̂BB
A,i p

μ̂AB
A,i p

μ̂AA
A,i p





 = diag

(
1

ξ̂A, ip

)





1 0

1 1

1 2




 ×

[
νA i p

φA i p

]

+ mA,i j p . (4.1)
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Fig. 2. Scatterplots of the A and B allele intensities forSNP A-1969022 on chromosome 21 in the trisomy data
set. (a) Our approach for copy number estimation uses naive estimates of allele-specific copy number based on the
biallelic genotype calls. A weighted linear regression is fit on the intensity scale to quantile-based estimators of the
within-genotype location and scale. Estimates ofνA , νB, φA , andφB are locus and batch specific. The ellipses
demarcate a 95% confidence region for copy number 2. (b) Prediction regions for copy number 1, 2, and 3. Plotting
symbols now denote the trisomy phenotype which is not known by the regression model. Note that the prediction
regions are robust to incorrect biallelic genotype calls —here, 26 of the 96 subjects had chromosome 21 trisomy and,
therefore, incorrect biallelic genotypes.

The errorsmA,i j p are approximately independent multi-Gaussian. We repeat the procedure for the B-allele
to obtain batch- and locus-specific estimates ofνB andφB. See Figure 2 of the supplementary material
(available atBiostatisticsonline) for an illustration of the linear model. The naive estimates of allele-
specific copy number are updated by subtracting the estimated background from the observed intensity
and scaling by the slope coefficient. Specifically,

ĉk,i j p = max

{
1

φ̂k,i p

(
Ik,i j p − ν̂k,i p

)
, 0

}

for k ∈ {A, B}. (4.2)

As discussed in Section6, the assumption that the median intensity is linear with copy number appears
reasonable for a limited range. We have observed departures from linearity for larger copy numbers as the
fluorescence becomes more saturated. In practice, we constrainĉA,i j p +ĉB,i j p 6 6. The above prescription
for copy number estimation is predicated on the assumption that at any given locus the median copy
number is 2. We explore the robustness of this approach to misspecification of the initial values for allele-
specific copy number in an experimental data set (Section5) and through simulation in Section D of the
supplementary material (available atBiostatisticsonline).

4.2 Unobserved genotypes and nonpolymorphic loci

For many polymorphic loci, the minor allele is rare and one or more of the three possible biallelic geno-
types are not observed. For SNPs with genotype GT not observed, we imputeμGT

A andμGT
B via regression.
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For example, to imputeμAA
A for SNPs with genotype AA unobserved, we regressμ̂AA

A on μ̂AB
A andμ̂BB

A
using a set of SNPs for which all 3 genotypes were observed. With estimates of the coefficients forμ̂AB

A
and μ̂BB

A , we predict the value ofμAA
A from the observed̂μAB

A and μ̂BB
A at this locus. We repeat the

procedure for the B allele to imputeμAA
B . For a polymorphic locus with 2 genotypes not observed, we

impute the unobserved within-genotype mediansvia regression again using SNPs with all 3 genotypes
observed. The variance terms for the unobserved genotype GT,ξ̃GT

A , andξ̃GT
B are obtained from the prior

1
ξGT
k,i p

∝ 1
dξ s2

ξk,p
χ2

ξk,dξ
. A straightforward extension of our approach is to scale the prior variance by the

uncertainty of the imputed values estimated using techniques such as multiple imputation.
For nonpolymorphic loci, the parameters for the background,νT , and the slope,φT , in model (3.6)

are difficult to estimate as there are no genotype clusters to guide the estimation procedure. For each
nonpolymorphic probe, we assume that the median of the observed intensities across samples in the batch
corresponds to normal copy number. The current approach in the R packagecrlmm(see version number in
Section I of the supplemental material available atBiostatisticsonline) is to imputeφT from polymorphic
loci in which all 3 genotypes were observed. Briefly, for SNPs with 3 biallelic genotypes observed, we
fit a linear model usinĝμAA

A andμ̂B B
B as the explanatory variables and the corresponding slopes,φ̂A and

φ̂B, as the response variables. The coefficients from this model are used to impute the slope parameter for
nonpolymorphic loci,φ̂T . Note that the background fluorescence,νT , is determined by the relationship
μ̂T −2φT . Transforming the nonpolymorphic intensities to the copy number scale is achieved bycT,i j p =

max

{
1

φ̂T,i p

(
IT,i j p − ν̂i p

)
, 0

}
.

Contamination. In many applications, DNA is isolated from a mixture of 2 or more cell types that may
have different somatic alterations. As the DNA in the cell populations may differ, noninteger copy numbers
are plausible. HMMs that assume integer copy number states are not appropriate. The transformation in
(4.2) for polymorphic loci, and the analogous transformation for nonpolymorphic loci, allow one to plot
ĉA + ĉB andĉT as a function of the physical position to assess contamination. When contamination is
likely to have occurred, a variety of nonparametric segmentation approaches are available that can be
used to identify noninteger copy number gain and loss.

4.3 Uncertainty

Estimates of the uncertainty are important for downstream algorithms that smooth estimates of the copy
number as a function of the physical position. As mentioned previously, a critical choice governing the
suitability of a smoothing algorithm is the presence of a mixture of cell populations that can result in
noninteger copy number. In the absence of cell contamination, we advocate an HMM that can be fit
directly to bivariate normal scatterplots of the log A and log B intensities. (The approach of fitting a
HMM directly to the log A and log B intensities was first described byKorn and others(2008).) When cell
contamination is likely, we prefer nonparametric segmentation algorithms that can identify any noninteger
shift in copy number. Our focus in this section is improving estimates of the uncertainty for the prediction
regions of allele-specific copy number.

Integer copy number.As HMMs can incorporate locus-specific estimates of the location and scale in
the emission probabilities, HMMs for detecting copy number alterations can therefore be applied directly
to the bivariate normal scatterplots without first transforming the intensities to the copy number scale
(Korn and others, 2008). Conditional on the allelic copy number, the logarithm of theIA and IB intensi-
ties is approximately bivariate normal with a mean and covariance that is locus and batch specific, as in
model (3.2). Again, our procedure utilizes naive estimates of the allelic copy number from the biallelic
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genotype calls to provide an estimate of666. To illustrate this approach, we describe the estimation of666
for an SNP with biallelic genotype AA(c?

A = 2, c?
B = 0). From (3.3), the diagonal elements of666i p

are(666i p)11 = σ 2
A,i p and (666i p)22 = τ2

B,i p. The background varianceτ2
B,i p is estimated as the MAD of

the log intensities for the B allele across all subjects with genotype AA at locusi . The signal variance
σ 2

A,i p is estimated as the MAD of the log intensities for the A allele across all subjects with genotype AA
at locusi . Implicitly, we assume that the variance ofδA is small relative to the variance ofεA such that
Var

{
log(I A,i j p |c?

A > 0
}

≈ σ̂ 2
A,i p. The assumption that the variance is constant forc?

A greater than zero ap-
pears reasonable on the log scale. Similarly, an initial estimate for the correlation of the log intensities for
the A and B alleles,ρi p, is estimated empirically among subjects with genotype AA. The within-genotype
empirical estimates for the variance terms and the correlation parameter provide an initial estimate of666.
These estimates can be very noisy when based on a small number of observations. Therefore, we shrink
the initial estimates of666 using inverse chi-squared priors as described in Section3. Specifically, shrinkage
estimates for the background and signal variances for(c?

A = 2, c?
B = 0) are obtained by

σ̃ 2
A,i p =

(NAA,i p − 1)σ̂ 2
A,i p + dAs2

A,p

NAA,i p − 1 + dA
and

τ̃2
B,i p =

(NAA,i p − 1)τ̂2
B,i p + dBt2

B,p

NAA,i p − 1 + dB
.

The countNGT,i p denotes the number of subjects with genotypeGT at locusi in batchp. The degrees
of freedom for the priors,dA and dB, can be estimated as described inLönnstedt and Speed(2001).
Median values of the background and signal variance, denoted byt and s, respectively, are estimated
across all loci and allowed to depend on the batch. In addition to the variances, we also shrink the empirical
estimate of the correlationρi,p. As motivated in Section3, we suggest a Beta prior that puts most of the
mass on typical values. The resulting covariance matrix,6̃66i,p, can be used to plot prediction regions for
any (c?

A > 0, c?
B = 0). For instance, see the ellipses for in Figure1(b). The covariance matrices for

(c?
A = 0, c?

B > 0), (c?
A > 0, c?

B > 0) and(c?
A = 0, c?

B = 0) are obtained using a similar procedure.
By scaling6̃66i,p by a sample-specific estimate of the variance across all loci, the variance estimate can
incorporate information on the overall noise of the sample relative to other samples.

4.4 Common copy number variants

Our approach for estimating copy number uses robust estimates of the within-genotype location and scale
of the intensities. In particular, we use medians for the location and MADs for the variance to limit the
influence of outliers on parameter estimates. However, many regions of the genome appear to contain
common variants in apparently normal individuals (McCarroll and others, 2008; Kidd and others, 2008),
and many diseases may have regions that are commonly altered. For genomic locations where a large
number of subjects harbor a copy number alteration, estimates ofν andφ can be biased. We propose an
update for the background and slope parameters that provides additional robustness to regions with a large
number of alterations. This procedure does not requirea priori knowledge of the genomic locations of the
common variants, an important feature as these are often not well characterized or highly variable across
different populations.

The general strategy is to estimate the parametersνA, φA, νB, φB, νT , andφT as described previ-
ously. Using initial estimates of these parameters, we calculate the posterior probability of belonging to a
prediction region corresponding to an aggregate copy number of 0, 1, 2, or 3. Given the total copy number,
we assume that any of the integer(cA, cB) combinations are equally likelya priori. At each locus, we
tabulate the frequency for which the posterior probability of an amplification or deletion is greater than the
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posterior probability of normal copy number. If the frequency is uneven for amplifications and deletions,
we recompute the within-genotype location and scale parameters after trimming observations from the
tail of the distribution that has a greater frequency. See Section5 for an application.

5. RESULTS

We illustrate our approach for copy number estimation using 2 data sets that were assayed on the
Affymetrix 6.0 genotyping platform: a data set containing 26 individuals with chromosome 21 trisomy
and 70 apparently healthy controls (referred to as the Chakravarti data set), and a GWAS for bipolar
disease (dbGaP accession number phs000017.v3.p1). For the Chakravarti data set, we analyzed the 96
samples as a single batch and assessed the robustness of our estimation procedure to a large fraction of
samples with nonbiallelic genotypes. For the bipolar data set, we use chemistry plate as a surrogate for
batch and restrict our analysis to the 1094 European ancestry controls that were processed on 29 plates
over a 2-month period. For both analyses, we used default settings for the priors as described in Section E
of the supplementary material (available atBiostatisticsonline). A difficulty in comparing our method to
the Birdseye and Canary algorithms in the Birdsuite software suggested on the Affymetrix Web site for
copy number analysis is that these algorithms do not provide locus-level estimates of copy number. Rather,
Birdsuite provides output from a HMM, Birdseye, for the detection ofde novocopy number variants and
a separate algorithm, Canary, for the detection of common copy number variants (Korn and others, 2008;
McCarrolland others, 2008).

5.1 Common copy number variants

We applied our algorithm to the Chakravarti data set to explore the robustness of our approach to the
assumption that the typical copy number is 2 at any given locus. As discussed in Section4, our algorithm
uses biallelic genotype calls to develop naive estimates of copy number and parameter estimates for the
prediction regions. After 1 iteration of the algorithm, the estimates of copy number are biased toward
small values as the trisomy samples skew the within-genotype estimates of location and scale (Figure3).
However, the posterior probability that a trisomy sample has 2 chromosomal copies at a given locus tends
to be low, and these samples can be discounted during a second iteration of the algorithm that updates
the linear model parameters as described in Section4.4. Subtle shifts in the prediction regions following
the update can be observed for 3 example SNPs in Figure3. Boxplots of the copy number for all SNPs
on chromosome 21 demonstrate the bias reduction (Figure3d and e). A simulation to assess when the
fraction of subjects with altered copy number overwhelms the assumptions of the linear model is included
in Section D of the supplementary material (supplementary material available atBiostatisticsonline). We
estimate that the breaking point is approximately 30%, beyond which the copy number estimates for the
trisomy subjects begins to approach the noise level for copy number 2.

While locus-specific copy number estimates are not available from the Birdsuite software, an overall
copy number estimate for each chromosome is provided by the Birdseye algorithm for the purpose of
assessing mosaicism. The overall chromosome 21 estimates plotted in Figure3 suggest that both the
normal and trisomy samples are mosaic in copy number. The reason for the apparent mosaicism is that the
Birdseye HMM (Table1) is not particularly robust to departures from the assumption that most individuals
at a given locus have normal copy number. To more formally compare our approach to the Birdseye HMM,
we fit a HMM available in theR packageVanillaICE to the polymorphic loci (Scharpfand others, 2008).
For both HMMs, we used the default settings for the software versions indicated in Section I of the
supplementary material (supplementary material available atBiostatisticsonline). Assuming that the true
copy number is 2 in the normal samples and 3 for the trisomy samples, we calculated the proportion
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Fig. 3. (a–c) The ellipses denote prediction regions for copy number 1, 2, and 3 before (dashed lines) and after
(solid lines) bias adjustment for 3 SNPs on chromosome 21 in the Chakravarti data set. Boxplots of the copy number
estimates for SNPs on chromosome 21 before (d) and after (e) the bias correction for common copy number variant.
The bias correction does not use any phenotypic information of the samples, nor does it requirea priori specification
of regions that are thought to harbor common copy number variants. The circle plotting symbols denote the overall
copy number estimate from Birdseye.

of correct calls for each HMM. Our approach maintains high sensitivity and specificity for detecting
alterations despite approximately 27% of the samples having a known copy number alteration. That is,
naive estimates of copy number provided by the biallelic genotype calls can be incorrect in a large number
of samples, but still provide unbiased estimates of copy number in regions that are commonly variant.
In comparison to the Birdsuite calls based on the blended output of the Birdseye HMM and Canary fit
to the full marker set (Table1), our approach has both higher sensitivity in the trisomy subjects (0.955
versus 0.918) and comparable specificity in the normal subjects (0.996 versus 0.991, data not shown).
When we fit the HMM to the full marker set, for which the copy number estimates at nonpolymorphic
loci remain biased toward 2, the VanillaICE and merged results from Birdseye and Canary again perform
comparably in terms of specificity for the normal subjects (0.991 versus 0.996), but the sensitivity for
copy number estimates among the trisomy subjects decreases from 0.96 to 0.89, revealing the need for
improved univariate prediction regions at the nonpolymorphic loci in future versions ofcrlmm. As the
entire chromosome is assumed to be either copy number 2 or copy number 3, an inherent limitation of
this comparison is the lack of a penalty for over-smoothing that would limit the detection of smaller
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Table 1. The proportion of integer copy number estimates that agree with the true copy number for
chromosome 21 in the trisomy data set computed for 2 HMMimplementations

Copy number 2 Ĉ N = 1 Ĉ N = 2 Ĉ N = 3

Birdseye / Canary SNPs + NPs 0.0042 0.9914 0.0043

crlmm& VanillaICE SNPs 0.0003 0.9957 0.0041
crlmm& VanillaICE SNPS + NPs 0.0004 0.9962 0.0034

Copy number 3 Ĉ N = 1 Ĉ N = 2 Ĉ N = 3

Birdseye / Canary SNPs + NPs 0.0006 0.0817 0.9177

crlmm& VanillaICE SNPs 0.0000 0.0454 0.9546
crlmm& VanillaICE SNPs + NPs 0.0000 0.1069 0.8931

Notes: The true copy number for loci on chromosome 21 is assumed to be 3 for the 26 trisomy samples
and 2 for the 70 normal samples. The results from Birdsuite are a merge of the Birdseye HMM and Canary
calls. The VanillaICE HMM was fit to the set of polymorphic markers using the adjusted prediction regions
described in Section4.4(row 2) and has fewer false negatives that Birdsuite for 3-copy loci. The addition of
the set of nonpolymorphic markers to the analysis (row 3) results in more false negatives among the trisomy
subjects relative to the polymorphic set alone (0.955 versus 0.893). At 2-copy loci (the normal subjects),
the specificity was 0.991 for Birdsuite and 0.996 for VanillaICE in both the full (SNPs + NPs) and the
SNP-only analysis (data not shown).

microdeletions and amplifications. The comparable specificities and sensitivities in the analysis with the
full set of markers (SNPs + nonpolymorphic markers [NPs]) suggests that the default settings for the two
HMMs provide comparable smoothing. A more detailed explanation of the technical considerations for
this comparison is provided in Section B of the supplementary material (available atBiostatisticsonline).

5.2 Batch effects

The batch effect for SNPs on chromosome 15 in Figure1(c) was comparable to the batch effects observed
at polymorphic and nonpolymorphic loci on other chromosomes in the European ancestry bipolar con-
trols (data not shown), demonstrating that quantile normalization alone was insufficient for removing the
batch effect. Figure4(a) plots the normalized log intensities for the A and B alleles forSNP A-4251622,
highlighting samples from 2 of the 29 chemistry plates used for the bipolar controls. The correspond-
ing estimates of total copy number from a linear model that ignores the batch effect (here, plate effect)
demonstrates that plate explains much of the variability in the copy number estimates (F-statistic 53.93).
As much of the variation in the log A versus log B scatterplots is attributable to plate, the ellipses repre-
senting our uncertainty of the copy number prediction in Figure4(a) are inflated. Allowing the parameters
νA, νB, νT , φA, φB, and φT to depend on batch, the resulting prediction regions in Figure4(a) more
accurately reflect the uncertainty of the copy number estimates and are more robust to differences across
batch (Figure4b). A comparison with the Birdsuite software on this data is is provided in Section C of the
supplementary material (available at Biostatistics online).

6. DISCUSSION

In this paper, we propose a multilevel model that provides absolute estimates of allele-specific copy num-
ber at polymorphic loci and total copy number at nonpolymorphic loci. Our observation that batch effects
and copy number changes are often indistinguishable in their effects on the data has led to an estimation
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Fig. 4. (a) Scatter plots of the quantile normalized intensities for the A (x-axis) and B (y-axis) alleles ofSNP A-
4251622 in the bipolar data set. Highlighted in each panel are the samples from plates IMAGE and THYME. Note
that much of the variance in the normalized intensities is explained by batch. (b) Boxplots of total copy number before
(top) and after adjustment for plate (bottom). A multilevel model that allows the prediction regions to depend on plate
improves estimates and removes batch-driven artifacts.

procedure that defines batch-specific prediction regions for rare, nonbiallelic genotypes from more com-
monly observed biallelic genotypes. In particular, biallelic genotype calls of samples in the experimental
data set provide naive estimates of allele-specific copy number that are used to derive robust-to-outlier
parameters for the background and slope in a linear model fit on the intensity scale. Conditional on the
naive estimates of copy number, the log A and log B intensities are correlated due to cross-hybridization
of the probes for these alleles. As locus-specific estimates of the covariance are often based on a small
number of observations, shrinking these estimates toward typical values provides additional robustness
to unusually small or large variance estimates. The copy number estimates obtained from this approach
are robust to batch effects and robust to a large proportion of individuals having a copy number alter-
ation. Copy number estimates plotted versus physical position can be used to assess issues such as cell
contamination.
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Our procedure for locus-level estimation of copy number reduces the impact of batch effects in several
ways. First, we quantile normalize the raw intensities for each sample to a target reference distribution.
Quantile-normalizing samples to a target distribution ensures that the distribution of intensities is the same
across batches and can reduce the occurrence ofin silico batch effects incurred by how the samples were
grouped by the software. Secondly, we do not rely on external data for training the model or a reference
set for estimating ratios. In our experience, external data sets are unlikely to provide useful extrapolations
due to (i) batch effects and (ii) latent biological differences between the external samples and the test sam-
ples. Third, we fit a multilevel model to the summarized intensities that allows locus-specific parameters
for background and signal to depend on batch. Finally, we provide an option to iteratively estimate model
parameters and compute copy number such that the bias of the estimated copy number in regions of the
genome that are commonly altered is relatively robust to the assumption that the median copy number
is 2. This approach does not require prior knowledge of the locations of regions that are commonly
altered.

The R packagecrlmmmay not be appropriate for some data sets. For the study of germline traits, our
model is most useful when 25 or more samples have been processed together in a batch. Batches with
fewer than 25 samples tend to have a large number of SNPs with unobserved biallelic genotypes. For such
SNPs, the additional uncertainty from the imputation of the within-genotype moments further reduces the
resolution for detecting copy number alterations. For the study of somatic cell diseases such as cancer,
copy number alterations in a substantial fraction of the genome are not uncommon. The ability to accu-
rately estimate the absolute copy number in cancer samples will depend to a large degree on an appropriate
experimental design, in particular, whether normal controls were processed alongside the cancer samples
throughout the experiment. In such a setting, we have demonstrated through simulation that copy number
estimates for the test samples can be computed from model parameters that were estimated from only the
normal controls with relatively small bias.

Of the models previously proposed in the literature, the models ofWangand others(2008) andKorn
and others(2008) are the most similar to ours as both develop bivariate normal prediction regions for
altered copy number. The Wang model provides allele-specific estimates of copy number that accounts
for the correlation of A and B allele intensities. However, the Wang model is designed for an earlier ver-
sion of the Affymetrix platform that contained only SNP probes and relies on training data to estimate
model parameters. In addition, the Wang model does not address batch effects or explore shrinkage for
improving variance estimates. The Korn model is similar to the Wang model with a few important dif-
ferences. First,Korn and othersrecommend fitting their software by plate to address batch effects. In
our experience, batch effects persist in by plate analyses with Birdsuite. Secondly, Birdsuite does not
provide locus-specific estimates of copy number. Rather, Birdsuite houses separate algorithms for call-
ing rare and common copy number variants that each borrow strength from neighboring loci to iden-
tify regions of copy number gain or loss. As locus-level estimates are not available, options to explore
alternative smoothing algorithms, such as segmentation for samples that are mosaic in copy number, are
not available. By contrast,crlmm advocates an approach in which the decision to explore segmentation
or HMMs can be evaluated from visualizations of the locus-level summaries. In particular, mixtures of
cell populations that give rise to noninteger copy number can be assessed by plotting the locus-level
summaries.

Our model can be extended in several ways to improve the prediction regions for biallelic and nonbial-
lelic genotypes. First, our model assumes that the average intensity increases linearly with allelic dosage.
The linearity assumption appears reasonable for many SNPs and can be used to help discriminate between
outliers and sparsely populated non-biallelic genotypes. However, the linearity is not apparent for many
SNPs and departures from linearity become more pronounced for allelic copy numbers greater than 2.
Approaches that allow departures from linearity are a future direction of this work. Secondly, improve-
ments to the univariate prediction regions at nonpolymorphic loci are needed. Again, approaches that relax
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the assumption of linearity are needed. Thirdly, we currently model batch as a fixed effect. A compromise
between a fixed-effect and random-effect model that borrows strength across batch is likely to be very
effective, particularly for small batches and SNPs with low minor allele frequencies. Finally, adjusting for
sequence characteristics such as GC content and fragment length can be helpful for reducing the variance
associated with the probe effect. We will explore methods that adjust for these factors along with batch
effects in the future.

Our results provide a strong indication that a model-based approach for estimation of absolute, allele-
specific copy number can be effective in large studies with pronounced batch effects, and that borrowing
strength across loci can be useful for estimating the variance. Estimates of copy number and the corre-
sponding uncertainty will be useful for downstream assessments of copy number–phenotype association.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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