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Abstract
We propose a semi-parametric case-only estimator of multiplicative gene-environment or gene-
gene interactions, under the assumption of conditional independence of the two factors given a
vector of potential confounding variables. Our estimator yields valid inferences on the interaction
function if either but not necessarily both of two unknown baseline functions of the confounders is
correctly modeled. Furthermore, when both models are correct, our estimator has the smallest
possible asymptotic variance for estimating the interaction parameter in a semi-parametric model
that assumes that at least one but not necessarily both baseline models are correct.
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1 Introduction
The case-only design has recently become a popular approach for making inferences on the
statistical interaction on the risk ratio scale between the effects of a genetic factor G and an
environmental factor E (or a second genetic factor G′) on the risk of a dichotomous disease
status Y. Henceforth, we always refer to the second factor as an environmental factor in
order to simplify the exposition. For dichotomous E and G, the crude case-only estimator of
the interaction parameter is the empirical marginal odds ratio (i.e. crude odds ratio) between
gene and environment among cases, and thus data on unaffected individuals is not required
(Piegorsch et al, 1994). The validity of this estimator relies crucially on the assumption that
gene and environment are independent in the population from which cases arose (Albert et
al, 2001). Efficiency considerations have also contributed to the appeal of the case-only
estimator; when the disease is rare, the case-only estimator is well known to be nearly
efficient even when data on unaffected individuals are available as, for example, in a case-
control study with controls sampled from subjects who remain unaffected at the end of the
study. In contrast, under gene-environment independence, the standard prospective logistic
regression estimator of gene-environment interaction can be less efficient. This is expected
since it does not make use of the assumed independence (Prentice and Pyke, 1979; Breslow
et al 2000).

While the case-only design allows for consistent estimation of G-E interaction on the risk
ratio scale under the assumption of G-E independence, it does not allow for the estimation of
the main effects of either G or E on the risk of disease, without which a meaningful
interpretation of interactions may be difficult. In spite of this limitation, qualitative prior
knowledge concerning main effects of both G and E can provide an appropriate background
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context for meaningful interpretation of the interaction parameters. For instance,
Vanderweele et al (2009) recently discuss situations where a case-only estimate of a
statistical interaction together with prior qualitative knowledge of main effects, may be
interpreted causally as indicating the presence of a mechanistic interaction between the
genetic factor and the environmental exposure.

To guarantee that the gene-environment independence assumption holds, it is often
necessary to condition on additional covariates Z (Piegorsch et al, 1994; Gatto et al, 2004).
Furthermore, it is often necessary to condition on covariates W that confound the
association between disease and the gene and/or the environmental factor. As covariates
included in Z may very well overlap with those included in W, we simplify notation by
letting L dente (ZT, WT)T and further assume that conditional on L, G and E are
independent and unmeasured confounding is absent. Furthermore, as in Chatterjee and
Carroll (2005), we assume that the genetic factor has finite support {g0, …,gT−1} and thus
we make use of the vector {I (G = g1), …,I (G = gT−1)} which we again denote by G to
simplify notation. The main objective of this paper is to provide a semi-parametric
framework for making inferences under a case-only design on the generalized conditional
log-odds ratio function

(1)

between G and E given L among cases (Y = 1), where h (G, E|L, Y = 1) is the retrospective
density of G and E given L and Y = 1, and (g0, e0) is a user specified point in the sampling
space which generally corresponds to an interpretable reference level for G and E such as (0,
0) in the simple case where both variables are binary. In light of the previous discussion, we
formalize our model by assuming that:

(a.1) cases follow a semi-parametric log-binomial model for the density of Y given G,
E, L with

where γ (G, E, L, ψ) is a known function and ψ0 is an unknown p–dimensional
parameter. The term γ (G, E, L; ψ) is the generalized interaction function for the effects
of E and G on Y within levels of L, on the exponential scale, and takes the value 0 if
either G = g0, E = e0 or ψ = 0, so that ψ0 = 0 encodes the null hypothesis of no
interaction on the risk ratio scale. The terms mE (E, L) and mG (G, L) represent main
effects for environment and genetic status, respectively within levels of L. We assume
that mE (e0, L) = mG (g0, L) = 0 and that there exists a function B (L) such that
maxG,E[max{|mG (G, L)|, |mE (E, L)|, |γ (G, E, L; ψ0)|}] ≤ B (L) for almost all L. The
functions mG (G, L) and mE (E, L) are otherwise unrestricted, while the function mL (L)
is restricted only by the condition maxG,E P(Y = 1|G, E, L; ψ0) < 1 for almost all L.
Note that, with this model, exp {γ (G, E, L; ψ0)} is the L-specific generalized relative
risk interaction function, i.e. multiplicative G-E interaction function (see Vansteelandt
et al, 2008 for further detail on this model);

(a.2) E and G are conditionally independent given L so that the joint conditional density
of gene and environment given L in the overall population, factorizes as fG, E|L (G, E|L)
= fG|L (G|L) × fE|L (E|L), with fG|L (G|L) and fE|L (E|L) unrestricted conditional density
functions;

(a.3) the population marginal density fL (L) of L is unrestricted;
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(a.4) the observed data (E, G, L) are randomly sampled from the density hG, E, L|Y = 1
(E, G, L|Y = 1)

Under these assumptions, we show that

(2)

in other words, the generalized interaction function between E and G within levels of L
coincides with the generalized odds ratio function relating genetic and environmental factors
within levels of L among cases only.

In section 2, we show that assumptions (a.1)–(a.4) induce a semi-parametric model for the
observed data characterized by the sole restriction (2). As our interest is in ψ0, we would
prefer that the nuisance functions mE (E, L), mG (G, L), fG|L (G|L), fE|L (E|L) and fL (L)
remain unrestricted. However, due to the curse of dimensionality, this is not possible, when
as we assume throughout, L is highly multivariate and/or includes two or more continuous
covariates. Thus, we adopt the practical yet flexible approach of Chen (2007) and Tchetgen
Tchetgen, Robins and Rotnitzky (2009). Specifically, we construct a so-called double robust
(DR) estimator of ψ0 that is regular and asymptotically linear (RAL), and thus consistent
and asymptotically normal (CAN), in the semi-parametric union model that assumes that
one but not necessarily both of the following statements hold: i) a parametric model ρG (G,
L, α) indexed by α, for the conditional density function ρG (G, L) = fG|E, Y =1, L (G|E = e0, Y
= 1, L) is correct; or ii) a parametric model ρE (E, L; η) indexed by η, for the conditional
density function ρE (E, L) = fE|G, Y =1, L (E|G = g0; Y = 1, L) is correct. It is because of this
remarkable property that our estimator is called doubly robust, to reflect the fact that it
provides the analyst with two separate chances for getting the correct answer. At the
intersection submodel where both i) and ii) hold, our estimator is locally semi-parametric
efficient in the union model, in the sense that it is a semi-parametric estimator in the union
model whose asymptotic variance attains the semi-parametric variance bound for the union
model at the intersection submodel. We should emphasize that estimation of the functions
mL (L) and fL (L) is not required by our semi-parametric approach. Also, under a rare
disease assumption, case-only estimation (in particular our proposed doubly robust case-
only approach) may also be used to evaluate the parameters of a gene-environment
generalized interaction function operating on the logit scale; because when the outcome is
rare within all strata defined by (E, G, L), assumption a. 1) may often serve as a practical
approximation to the alternate assumption a*.1) that cases arise prospectively according to a
semi-parametric logistic model logit{P(Y = 1|G, E, L; ψ0)} = mG (G, L) + γ (G, E, L; ψ0) +
mE (E, L) + mL (L); in which case our results would also hold approximately in this latter
model. However, under the logistic model of a*.1), it is well known that departures from the
rare disease assumption can result in a severely biased estimate of interaction parameters
(Schmidt and Schaid, 1999). Furthermore, as we argue below in the discussion section, even
when by common standards, the disease is considered rare, case-only test statistics and (1 −
α) confidence intervals for interaction parameters on the odds ratio scale may substantially
deviate from their nominal levels. This is in contrast to the case of gene-environment
interactions on the risk ratio scale, where the case-only estimator remains valid whether or
not the disease is rare (Schmidt and Schaid, 1999; Yang et al, 2004)

This article is organized as follows. In Section 2, we formally derive equation (2) which we
use to construct RAL estimators of ψ0 in the union model. In Section 3, results of
simulations illustrate the finite sample efficiency and robustness of our new estimators. In
Section 4, we describe a simple specification test for detecting which of the models i) and ii)
is correctly specified under the union model. In Section 5, the method is illustrated with the
data from an Israeli study of the interactions between reproductive risk factors and
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BRCA1/2 in their effects on the risk of ovarian cancer. Some closing remarks are provided
in Section 6.

In the following, to simplify notation, we suppose g0 = 0 and e0 = 0 throughout, so that γ (G,
0, L; ψ) = γ (0, E, L; ψ) = γ (G, E, L; 0) = 0.

2 Our estimators and their properties
The following theorem motivates our proposed approach

Theorem 1
Assumptions (a.1)–(a.4) imply that the observed data E, G, L follows a semi-parametric
model with sole restriction given by equation (2).

Proof: By assumption (a.3) the conditional density hL|Y =1 (L|Y = 1) is unrestricted, thus it is
sufficient to show that under assumptions (a.1), (a.2) and (a.4), the conditional density
hE, G|L, Y =1 (E, G| Y = 1, L; ψ0) of G and E given L and Y = 1 can be written

where the first equality follows from the definition of the conditional joint density

and the second equality follows from (a.2.) and the cancellation of all functions of only L
appearing in both the denominator and the numerator. Therefore,

 is a conditional
density of G, E|L, Y = 1 indexed by the conditional odds ratio function θ (G, E, g0, e0, L) = γ
(G, E, L; ψ0). Because {mG (G, L), fG|L (G|L)} are unrestricted, and {mE (E, L), fE|L (E|L)}
are unrestricted by (a.1) and (a.2), ρG (G, L) = fG|e0, Y =1, L (G|E = e0, Y = 1, L) and ρE (E, L)
= fE|g0, Y =1,,L (E|G = g0, Y = 1, L) are unrestricted baseline conditional densities satisfying ∫
exp {γ (g, e, L; ψ)} ρG (g, L) ρE (e, L) dμ (g, e) < ∞ for almost all L.

Consider working models ρG (G, L; α) and ρE (E, L; η) for density functions ρG (G, L) and
ρE (E, L) respectively, then an individual’s conditional likelihood (given L and Y = 1)
contribution for this model is hG, E|L, Y =1 (G, E|L, Y = 1; ψ, α, η) =

(3)

where α and η are variation independent parameters. Now, we could in principle obtain
likelihood-based inferences on ψ0 by taking one of the following three approaches: 1) we
could obtain the maximum likelihood estimator (mle) (ψ̂mle, η̂mle, α ̂mle) in model (3), which
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is consistent provided the model is correct. However, because we can never know that the
intersection submodel (where both ρG (·,·;α) and ρE (·, ·; η) hold) applies, this approach may
be too restrictive; and thus we may prefer the alternate approach 2) which obtains the
conditional mle (cmle) ((ψ̂cmle,1, (α ̂cmle,1) based on the conditional likelihood of the density
model for G given E, L and Y = 1; given by

, which does not depend on
ρE(E, L) unrestricted, but requires that ρG(G, L; α) is correct; or alternately, we could obtain
3) the conditional mle (ψ̂cmle,2, η̂cmle,2) by maximizing the conditional likelihood for the
density model of E given G, L and Y = 1; given by

, which leaves ρG (G, L)
unrestricted but requires that ρE (E, L; η) is correct. Although more robust than the first
approach, the analyst will generally not know which, if any, of the two models 2) or 3) is
correct. For this reason, we construct a CAN estimator which is guaranteed to be consistent
for the interaction function if at least one, but not necessarily both, of the baseline models ρE
(E, L; η) or ρG (G, L; α) is correct.

To proceed, let ε (ψ, α) = G − E(G|E, L, Y = 1; ψ, α) where E (·|·, L, Y = 1; ψ, α, η) denotes
conditional expectations with respect to hG, E|L, Y =1(G, E|L, Y = 1; ψ, η, α). Define Ψ (E, L;
ψ, α) = E {ε (ψ, α)⊗2 |E, L; ψ, α} and for a user-supplied p × (T − 1)–dimensional function
K = k (E, L), let Ũ (k; ψ, α, η) = {K − Ẽ (K|L; ψ, α, η)} × ε (ψ, α), be a function of p–
dimensions; where Ẽ {K|L; ψ, α, η} = E {k (E, L) × Ψ (E, L; ψ, α) |L; ψ, α, η} × E {Ψ (E,
L; ψ, α) |L; ψ, α, η}−1. By theorem 2 of Tchetgen Tchetgen and Robins (2009), the
estimator ψ̂ (k) is RAL in the union model, where ψ̂ (k) is the solution to

and

is the profile MLE of α at a fixed ψ,

is the profile MLE of η at a fixed ψ. Furthermore, Tchetgen Tchetgen and Robins (2000)
also show that the estimator ψ̂eff = ψ̂(k ̂eff) is locally semi-parametric efficient in the union

model at the intersection submodel, where , with γ (E, L; ψ)
the (T − 1) × 1 vector with jth component equal to γ (gj, E, L, ψ), 1 ≤ j ≤ T − 1; and ψ̃ any
preliminary estimator of ψ0 that is consistent at the intersection submodel (this could be the
mle or either cmles). Furthermore, these authors prove that under the union model and
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regardless of whether or not the intersection submodel holds, we have  is
asymptotically normal, with variance consistently estimated by

where

(4)

are the scores for η and α respectively; which can be used to obtain Wald type confidence
intervals for components of ψ0. Alternatively, inferences on ψ0 can be based on the non-
parametric bootstrap.

An alternate approach that is approximately DR locally efficient was proposed by Chen
(2007), however, his method requires the use of a computationally intensive alternating
conditional expectations (ACE) algorithm to approximate the efficient score. Because in our
setting, the efficient score can be written in closed form, we do not need Chen’s approximate
approach.

3 A Simulation Study
We perform a simulation study where we study the finite sample performance of ψ̂cmle,1,
ψ̂cmle,2, ψ̂mle and ψ̂eff in 1000 data samples (of sample size n=200, 1000) consisting of
variables L = {(L1, L2), G, E} generated by repeatedly sampling L1 from a Bernoulli(1/2)
density, L2 from a normal(0,.752); and dichotomous pairs (G, E) from the conditional
probability mass function (3) with

, where α′
= (0.1,−1, 1, −1.1) and η′ = (0.5, 0.5, −1.25, −1). Two values of ψ = 0, 1 are considered.
The first three rows of results labeled (αtrue, ηtrue) in tables 1 and 2 correspond to an
analysis that correctly specifies both baseline functions. The next three rows labeled (αtrue,
ηfalse) correspond to an analysis that misspecifies ρE(E, L; η) by using L′ = (1, L1, L2, L1L2)
in the regression model instead of LE, the following three rows labeled (αfalse, ηtrue) report
an analysis that misspecifies ρG (G, L; α) by using L in the regression model instead of LG,
and the final three rows labeled (αfalse, ηfalse) correspond to an analysis where both baseline
functions are incorrect. Under the correct model specification for the joint conditional
density of E and G give L and Y = 1 (corresponding to the first three rows of results in tables
1 and 2); all four estimators have finite sample bias of comparable but negligible size. ψ̂eff is
surprisingly efficient relative to the other estimators, including the mle which suggests that
in this simulation setting, little efficiency loss is incurred by our estimator in exchange for
potential gain in robustness. Also under (αtrue, ηtrue), close to nominal type 1 error rates are
achieved by all estimators in the null case ψ0 = 0, and nearly nominal coverage rates are
obtained in the case of ψ0 = 1. Next, we find that as predicted by theory, ψ̂cmle,1 and ψ̂cmle,2
are both severely biased under misspecification of their respective baseline function as
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nicely illustrated in the fourth row of the first table for n=1000, where the magnitude of the
bias of ψ̂cmle,2 is over twenty-fold that of ψ̂eff which remains negligible. Under model
misspecification, the mle is both biased and yields CIs with incorrect coverage as illustrated
by rows corresponding to settings (αtrue, ηfalse), (αfalse, ηtrue) and (αfalse, ηfalse) in both
tables. Interestingly, the bias of the mle is always close to that of the misspecified cmle in
rows corresponding to (αtrue, ηfalse) and (αfalse, ηtrue), with the bias, variance and coverage
of ψ̂cmle,2 under (αtrue, ηfalse) always close to those of ψ̂cmle,1 under (αfalse, ηtrue) at both
sample sizes and values of ψ0. Also in the union model, we note that ψ̂eff is surprisingly
nearly as efficient as the correctly specified cmle with corresponding close to nominal
coverage rates, as illustrated by the eighth and ninth rows of table two. Increasing sample
size has the intended effect of reducing finite sample bias and variance of consistent
estimators (ψ̂cmle,1, ψ̂eff) under (αtrue, ηfalse), and (ψ̂cmle,2, ψ̂eff) under (αfalse, ηtrue) for both
null and alternative values of ψ0. As expected, the bias of misspecified models is little
affected by increasing sample size. Finally, no estimator gives valid results when both
baseline functions are incorrect.

4 A Specification Test under the union model
Next we describe a simple specification test to detect which of the two baseline models ρE
(E, L; η) and ρG (G, L; α) is correct under the union model. The approach is based on the
following observation; if ρG (G, L; α) is correct, the corresponding cmle of ψ should be
close (within sampling variability) to the doubly robust estimator whether or not ρE (E, L;
η) holds, as both estimators should be consistent for the truth. In contrast, if ρG (G, L; α) is
incorrect, the limiting value of the corresponding cmle should differ (beyond sampling
variability) from that of the doubly robust estimator, since the former is biased, while the
latter is consistent under the union model.

Thus, our test statistic is the suitably standardized (by its covariance) difference between the
estimates of a subset of the cmle vector ψ̂cmle,1 obtained under model ρG (G, L; α) to those
obtained from the proposed doubly robust method. This strategy essentially uses an idea due
to Hausman (1978) and further developed by Newey (1985). In the simple case where ψ0 is

scalar, the statistic takes on the simple form , where

 are consistent estimates of the variance of n1/2(ψ̂dr − ψ0) and n1/2 (ψ̂cmle,1 − ψ0)

respectively, and  is a consistent estimate of the variance of n1/2 (ψ̂dr − ψ̂cmle,1)
under the null hypothesis that both estimators are consistent for ψ0. This estimator of the
variance is of the simple form of a difference by virtue of ψ̂cmle,1 being an efficient estimator
under the null semi-parametric model which specifies {γ (G, E, L, ψ), ρG (G, L; α)}
(Hausman, 1978; Newey, 1985). Thus, under the null hypothesis, T has a  asymptotic
distribution, and under the alternative it follows a non-central  asymptotic distribution,
with non-centrality parameter solely determined by the direction of the asymptotic bias of
ψ̂cmle,1 (Newey; 1985). To guarantee that T is always positive, an analytical estimate of the
variance of the numerator based on influence function arguments may be used, or
alternately, the nonparametric bootstrap estimator of the variance of the numerator may
replace the difference estimator in the denominator of the test statistic. A similar approach
yields a specification test for ρE (E, L; η) under the union model. Outside of the union
model, both cmles and the doubly robust estimator are converging to distinct values all of
which are biased. Our specification test may still be used. However, the finite sample power
of the test may be low under those rare alternatives where the two estimates being compared
have similar bias, and thus are both wrong, and yet close to each other so that the proposed
test statistic is unlikely to reject. The multivariate version of the test statistic is easily
deduced from the previous description.
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5 A Data Example
In this section, we illustrate the use of our methodology in an analysis of data from a
population-based case-control study based on all ovarian cancer patients identified in Israel
between 1 March 1994 and 30 June 1999 (Modan et al. 2001). Two controls per case were
selected from the central population registry matching on age within two years, area of birth
and place and length of residence. Blood samples was collected on both cases and controls
and used to test for the presence of mutation in two major breast and ovarian cancer
susceptibility genes BRCA1 and BRCA2. Additional data was collected on reproductive and
gynecological history such as parity, number of years of oral contraceptive use and
gynecological surgery. The main objective of the study was to examine the interplay of the
BRCA1/2 genes and known reproductive/gynecological risk factors of ovarian cancer. To
test for interactions between reproductive risk factors and BRCA1/2 in their effects on the
risk of ovarian cancer, the authors performed the unadjusted case-only analysis of
interaction of Piegorsch et al. (1994) under an assumption that genetic variants and
environment factor are unconditionally independent in the population. Chatterjee and Carroll
(2005) re-analyzed these data using a fully parametric logistic regression model for disease
given the gene, environment and confounding factors, under the additional conditional
independence assumption of gene and environment given a subset of measured covariates.
However, their results are not directly comparable to ours for two reasons; first, because
BRCA1/2 have high penetrance for the risk of ovarian cancer, the disease may not be rare
within levels of G, E and L, as a result, the interaction parameter on the logistic scale may
differ from that of the risk ratio scale (in other words, assumption (a.1*) stated in the
introduction may not hold). Second, even were the disease rare within all strata of G, E and
L, they assume a fully parametric model for the disease outcome regression model which
may result in biased estimates of interactions if their specified working models for the
functions mG (G, L), mE (E, L), mL (L) are incorrect. As a consequence, our estimated
interaction parameter is not directly comparable to that obtained by Chatterjee and Carroll
(2005). In our re-analysis, we illustrate the case-only method developed in this paper by
ignoring the data on controls. Specifically, using 832 cases who did not have bilateral
oophorectomy, were interviewed for risk factor information and successfully tested for
BRCA1/2 mutations. Our aim is to estimate the interaction between the dichotomous
variable representing a person’s BRCA1/2 mutation status and her use of oral contraceptives
and parity. We dichotomize oral contraceptive use as use for over six years vs use for six
years or less, while parity is dichotomized as having less than two children vs having two or
more children. Thus we estimate (ψ1, ψ2) in the interaction model

We assume conditional independence of gene and environmental factors given L; consisting
of age (categorical defined by decades), ethnic background (Ashkenazi or non-Ashkenazi),
the presence of personal history of breast cancer, a history of gynecological surgery, and
family history of breast or ovarian cancer (no cancer vs one breast cancer in the family vs
one ovarian cancer or two or more breast cancer cases in the family). We specified a logistic

model  for BRCA1/2 and a polytomous logistic model
log{ρE (ek, L; η) / ρE (e0, L; η)} = η0k + L′η1, k, k = 1, 2, 3, where

 and e0 = I(OC use ≤ 6yrs) × I(#children ≤ 1), e1 = I(OC use >
6yrs) × I(#children ≤ 1), e2 = I(OC use ≤ 6yrs) × I(#children > 1), e3 = I(OC use > 6yrs) ×
I(#children > 1). We then used these models to obtain four estimates (ψ̂1,cmle,1, ψ̂2,cmle,1) =
(0.99, 0.44) (bootstrap s.e.=0.43, 0.21), (ψ̂1,cmle,2, ψ̂2,cmle,2) = (1.08; 0.44) (bootstrap
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s.e.=0.42, 0.21), (ψ̂1,mle, ψ̂2,mle) = (1.05; 0.43) (bootstrap s.e.=0.40, 0.19) and (ψ̂1,eff, ψ̂2,eff) =
(1.04,0.46) (bootstrap s.e.=0.42, 0.21) of the interaction parameters. All estimates indicate
strong positive interactions between BRCA1/2 and oral contraceptive use and parity. These
results suggest that after adjusting for background variables; the well known protective
effects of oral contraceptive use and parity on ovarian cancer risk among BRCA1/2 non-
carriers (Modan et al, 2001) may no longer apply to BRCA1/2 carriers. All point estimates
are close to each other, providing convincing evidence that our models for both baseline
functions are a reasonable fit to the data (in fact, the  specification test statistic using
bootstrap covariance estimates yields p-values>0.99 in comparing each cmle to the doubly
robust estimate). Interestingly, all estimators have very similar uncertainty, suggesting that
as we also found in our simulation study, we do not necessarily give up much efficiency for
the important gain in robustness afforded by the doubly robust approach.

Finally, despite not being directly comparable to our results, we apply the standard logistic
regression approach using data both on cases and controls to estimate the interaction
between the genetic variant and OC use/parity indicators in a regression model which also
included main effects for BRCA1/2 indicator, OC use indicator, parity indicator, and L. We
obtained the following imprecise estimates (ψ̂1,logistic, ψ̂2,logistic) = (0.32, 0.005) (s.e.=1.12,
0.80), which, in light of the improved accuracy of our proposed locally efficient approach,
further illustrates the inefficiency of logistic regression for case-control data under gene-
environment independence. The first three of our estimators can be obtained from standard
software. The doubly robust locally efficient estimator is implemented in IML, SAS 9.1.3,
and can be downloaded from the first author’s website. The data can freely be obtained from
Nilanjan Chatterjee’s website at the Biostatistics Branch of the National Cancer Institute.

6 Discussion
We have developed a doubly robust locally-efficient estimator of interactions within a semi-
parametric case-only framework. The proposed methodology is a flexible and efficient
extension of the original crude and adjusted case-only estimators. We recommend its use
particularly in settings where inferences on gene-environment or gene-gene interactions are
sought, genetic information is only collected in cases, the factors of interest are known to be
conditionally independent and as in most observational studies, it is necessary to further
adjust for high dimensional confounders. However, if either the conditional independence
assumption does not hold or it does hold but the disease is not rare and data on the
unaffected is available, the approach of Vansteelandt S. et al. (2009) should be preferred to
that presented herein. This is because the case-only estimator is no longer valid in the first
setting, whereas in the second situation it is still valid, but does not make use of all of the
available information and is therefore not efficient.

As mentioned in the introduction, when the target of inference is a parameter ψ0 for a gene-
environment interaction operating on the odds ratio scale, as in the logistic regression given
in a*.1) and assumption a.2) is satisfied, seriously flawed inferences may still result from a
case-only approach, even if by common standards, the disease is considered to be rare
within levels of (G, E, L) in the population. To illustrate this point, consider the following
rare disease asymptotic analysis. Suppose for simplicity that there are no covariates L and
(G, E) are both dichotomous, so that at sample size n, the observed data is generated under
the model logit{P (Y = 1|G, E; ψ0, β0, pn)} = log{pn/ (1 − pn)}+β0(G+E) such that pn ≪ 1 is
a sequence of positive numbers which converges to zero as n goes to infinity, ψ0 = 0 and mG

(·) = mE (·) = β0 × ·. A Taylor series expansion around the limit point  shows that
the case-only estimand, i.e. the log-odds ratio relating G to E in cases only (Y = 1), is to first-
order equal to r (β0) pn where r (β0) = 2{exp(2β0)−1} − {exp(β0) − 1}]. This observation
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implies that since, the case-only estimator ψ̂ is asymptotically unbiased for the case only
estimand, the case-only estimator ψ̂, viewed as an estimator of the log prospective odds ratio
parameter ψ0 = 0, will have asymptotic bias equal to the large sample limit of n1/2r (β0)pn.
This in turn leads to the conclusion that whenever β0 ≠ 0 and pn converges to zero at a rate
no faster than n−1/2, a case-only hypothesis test of the null that ψ0 = 0, via say, either
checking whether a case-only Wald-type (1 − α)-confidence interval contains zero, or
whether the value of a Wald-type case-only test statistic rejects under the null, will in
general have incorrect coverage and type I error respectively. The practical implication of
this asymptotic analysis is that the rare disease assumption may not be useful in settings
where disease prevalence although small, is roughly of the order of magnitude n−1/2 of the
standard error of the case-only estimates, or of a larger order of magnitude (say n−1/4 >
n−1/2).

In the current paper, we have assumed that L includes all factors that one needs to adjust for
in the gene-environment conditional independence model and in the disease-risk model.
However, as pointed out by a referee, the case-only design adopted in this paper may not
always be appropriate when there are variables V listed in L such that G and E are
independent given L, but G and E are not independent given L\V; and the disease risk model
of interest and thus the G–E interaction function of primary interest do not condition on V
(see Chatterjee and Chen, 2007 for an example). The current methods would still apply in
such a situation if V were also known not to be associated with disease given L\V, which
implies but is not implied by the following assumption: γ (G, E, L; ψ0) does not depend on
V. Thus the G–E conditional interaction parameter ψ0 would have the desired marginal
interpretation, while the baseline densities ρE (E, L) and ρG (G, L) would remain functions
of the entire vector L.
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