Skip to main content
. Author manuscript; available in PMC: 2011 Dec 1.
Published in final edited form as: Biometrics. 2010 Dec;66(4):1138–1144. doi: 10.1111/j.1541-0420.2010.01401.x

Table 2.

Simulation Results for ψ0 = 1

n=200 n=1000

ψ̂cmle,1 ψ̂cmle,2 ψ̂mle ψ̂eff ψ̂cmle,1 ψ̂cmle,2 ψ̂mle ψ̂eff
αtrue, ηtrue bias* 0.025 0.025 0.023 0.026 0.008 0.009 0.008 0.009
variance* 0.140 0.124 0.120 0.143 0.030 0.027 0.027 0.030
coverage# 0.971 0.971 0.972 0.963 0.951 0.938 0.935 0.948

αtrue, ηfalse bias 0.025 −0.234 −0.236 0.028 0.008 −0.253 −0.254 0.002
variance 0.140 0.136 0.135 0.161 0.030 0.026 0.025 0.030
coverage 0.971 0.892 0.942 0.893 0.951 0.627 0.945 0.620

αfalse, ηtrue bias −0.245 0.025 −0.230 0.037 −0.268 0.009 −0.247 0.006
variance 0.125 0.124 0.112 0.151 0.023 0.027 0.021 0.029
coverage 0.897 0.971 0.906 0.958 0.593 0.938 0.613 0.942

αfalse, ηfalse bias −0.245 −0.234 −0.251 −0.264 −0.268 −0.253 −0.251 −0.252
variance 0.125 0.136 0.126 0.126 0.023 0.026 0.024 0.024
coverage 0.897 0.892 0.879 0.916 0.593 0.627 0.580 0.617
#

Coverage of Wald confidence intervals using the second derivative of the score equations to estimate the variance of cmles and of the mle, and Σ̂ to estimate the variance of ψ̂eff.