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Abstract
Sex-associated differences in hypertension have been repeatedly observed in epidemiological
studies. However, the mechanisms conferring vascular protection to females are not totally
elucidated. Sex-related differences in intracellular Ca2+ handling or, more specifically, in
mechanisms that regulate Ca2+ entry into vascular smooth muscle cells have been identified as
players in sex-related differences in hypertension-associated vascular dysfunction. Recently, new
signaling components that regulate Ca2+ influx, in conditions of intracellular store depletion, were
discovered: stromal interaction molecule 1 (STIM1), which works as an intracellular Ca2+ sensor;
and Orai1, which is a component of the Ca+2 release-activated Ca+2 (CRAC) channels. Together,
these proteins reconstitute store-operated Ca2+ channel function. Disturbances in STIM1/Orai1
signaling have been implicated in pathophysiological conditions, including hypertension. In this
review we analyze evidence for sex-related differences in Ca2+ handling and propose a new
hypothesis where sex-related differences in STIM/Orai signaling may contribute to hypertension-
associated vascular differences between male and female subjects.
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1.0 - Introduction
Defective regulation of intracellular calcium (Ca2+) is a hallmark of hypertension-associated
vascular dysfunction and plays a key role in the augmented vascular reactivity, characteristic
of clinical and experimental hypertension. The recent discovery of new signaling
components linking intracellular Ca+2 stores to plasma membrane Ca2+ entry brought a new
insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1)
is the Ca2+ sensor protein that triggers Ca2+ influx in response to Ca2+ store depletion,
whereas Orai is an essential component of CRAC (Ca2+ release-activated Ca2+) channels.
Although research on STIM1/Orai signaling is entering an exponential phase of growth, the
role of these proteins in vascular dysfunction is unknown.

Mechanisms contributing to hypertension and its associated end-organ dysfunction are
differentially regulated in males and females. Critical sex differences are observed in the
intrinsic vascular mechanisms that regulate total peripheral resistance, namely that gonadally
intact females display less vascular dysfunction associated with experimental hypertension
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[1–6], compared to gonadally intact males. Although the existence of sex differences in
vascular Ca2+ handling is well established [7–10], no studies have addressed differences in
vascular STIM1/Orai signaling in male and female hypertensive animals.

Given the importance of STIM1/Orai signaling in intracellular Ca2+ homeostasis, it seems
plausible that increased activation of STIM1/Orai contributes to increased vascular
contraction in the vasculature of hypertensive animals.

Here we will review evidence supporting these hypotheses. First, we will address the
participation of STIM1 and Orai1 on Ca+2 handling mechanisms during physiological
condition as well as in hypertension. Then, we will focus on how alteration of STIM1/Orai
signaling contributes to differences in Ca+2 handling, and how this impairment may
contribute to sex-related differences in vascular function in hypertension.

2.0 - STIM1-Orai1 pathway represents a key Ca+2 handling mechanism
Nearly all cell types depend on cytoplasmatic Ca+2 signals to trigger specific responses [11].
Upon stimulation, most excitable cells display a biphasic increase in cytosolic Ca2+

concentrations. The initial transient increase is due to Ca2+ release from intracellular stores,
e.g. inositol trisphosphate (IP3)-mediated release of ER Ca2+, whereas the subsequent
prolonged increase requires extracellular Ca2+ influx through various pathways. Upon
depletion of Ca2+ from the ER, Ca2+ channels are activated in the plasma-membrane to refill
internal Ca2+ stores. This mechanism, by which the ER acts as a capacitor, lead to the term
store-operated Ca2+ entry (SOCE) [12,13]. SOCE carries a highly Ca2+–selective, non-
voltage-gated, inwardly rectifying current termed CRAC (Ca2+ release-activated Ca2+)
current, or ICRAC [13,14].

The discovery of new signaling components linking intracellular Ca+2 stores to plasma
membrane Ca2+ entry brought a new insight into the understanding of Ca2+ homeostasis.
Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+–
store depletion-triggered Ca2+ influx [15,16]. Roos and colleagues (2005) showed that
knockdown of STIM in Drosophila S2 cells significantly reduced thapsigargin-dependent
Ca2+ entry and completely suppressed ICRAC [15]. In addition to being an ER Ca2+ sensor,
STIM1 functions within the plasma membrane to control operation of the Ca2+ entry
channel itself [17] and STIM1 migrates from the Ca2+ store to the plasma membrane, in
conditions of store depletion [18].

It was later demonstrated that Orai1 is an essential pore subunit of the CRAC channel [19].
Accordingly, upon depletion of ER Ca2+ stores, STIM1 and Orai move in a coordinated
fashion to form closely apposed clusters in the ER and plasma membrane [20], creating the
elementary unit of SOCE [21]. In addition, the interaction between STIM1 and Orai1 is
greatly enhanced after thapsigargin treatment, which acts as selective inhibitor of the ER
Ca2+ ATPase resulting in depletion of ER Ca2+ stores [22].

2.1 - STIM1-Orai1 pathway alterations and hypertension
Since a rise in intracellular free Ca2+ concentration is the principal process that initiates
contraction of vascular smooth muscle cells (VSMCs) [23], the maintenance of the steady-
state Ca2+ is critically important to maintain vascular tone and, consequently, total
peripheral resistance [24]. Defective regulation of intracellular Ca2+ plays a major role in the
augmented vascular reactivity [25]. Augmented Ca2+ levels in VSMCs from hypertensive
animals can be attributed to various mechanisms, including increased Ca2+ release from
intracellular stores [26]; reduced Ca2+ uptake by the SR [27]; impaired function of Ca2+-
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binding proteins [28]; decreased Ca2+ extrusion mechanisms in the plasma membrane [26];
and increased Ca2+ influx [29,30].

Here we will focus on how increased Ca2+ influx through STIM1 and Orai1 pathway may
contribute to augmented vascular reactivity in hypertension. We first demonstrated that
aortas from stroke-prone spontaneously hypertensive rats (SHRSP), displayed increased
force-development during Ca2+ loading, upon depletion of intracellular Ca2+ stores [31].
The SR Ca2+ store is larger in aortas from SHRSP due to an enhanced influx of Ca2+ across
the sarcolemma rather than an impaired recycling of the cation by the SR Ca2+-ATPase [32].

It was shown that depletion of ER Ca2+ stores induces greater SOCE activation in vascular
myocytes from SHRSP, compared to that in control Wistar Kyoto (WKY - Figure 1) rats
[30]. This is associated with augmented vascular contractile responses to Ca2+, which is
blocked by molecular (neutralizing antibodies against STIM1 and Orai1) and
pharmacological (2-APB and Gd3+) inhibition of STIM1/Orai signaling. In addition,
vascular expression of STIM1 (Figure 2) and Orai proteins is increased in SHRSP versus
WKY. Thus, augmented STIM1/Orai signaling may represent a mechanism leading to
impaired control of intracellular Ca+2 in hypertension.

3.0 - Sex differences in hypertension
Blood pressure is higher in men than in age-matched women and there is a lower incidence
of hypertension in pre-menopausal women than men [33–36]. Although gender-associated
differences during hypertension have been repeatedly observed in epidemiological studies,
the mechanisms for gender differences in blood pressure control are not totally elucidated.

Additionally, because Ca+2 triggers VSMC function and its regulation is highly controlled,
differences in Ca+2 handling mechanisms have been proposed to explain sex-related
differences in vascular function during hypertension [37] as will be discussed.

3.1 - Sex differences in hypertension and Ca2+ handling by vascular myocytes
Although sex-associated differences in hypertension are well established, with important
differences in the neural, renal and vascular mechanisms associated with blood pressure
homeostasis [49–53], the mechanisms that determine differences in blood pressure control in
males and females are not totally elucidated. Considering that sex-related differences in
mechanisms that regulate Ca2+ entry and storage in VSMCs have been identified,
differential Ca+2 handling in VSMCs from males and females may explain sex-related
differences in vascular function in hypertension [37]. Accordingly, in aorta from both
normotensive and female SHR, Ca2+ influx upon contractile stimuli is decreased, compared
to that in male SHR [10]. In addition, VSMCs from female rats display reduced Ca2+ entry
and reduced depolarization-induced Ca2+ levels, compared to those in male [8]. Differences
in intracellular Ca2+ increases in VSMC from male and female SHR are abolished in the
absence of extracellular Ca2+ [37–39].

Since augmented STIM1/Orai function may represent one mechanism that contributes to
abnormal Ca+2 in VSMC, we hypothesize that vascular protection in hypertensive females
reflects an attenuated signaling through STIM1/Orai in vascular myocytes from
hypertensive females (figure 3).

In agreement with this hypothesis, we showed that upon store depletion, force development
during Ca2+ loading period is augmented in aortas from male SHRSP, compared to female
SHRSP. Interestingly, pharmacological blockade of CRAC channel is able to abolish sex-
differences in spontaneous contractions during Ca2+ loading period [40]. Additionally, after
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store depletion, neutralizing antibodies against STIM1 and Orai1 abolish sex-differences in
spontaneous contractions.

It is possible that augmented STIM1/Orai signaling represents a mechanism for increased
activation of Ca2+-dependent signaling pathways in arteries from hypertensive animals.
Identification of mechanisms leading to sex differences in hypertension may uncover a
regulatory mechanism that may be used to confer cardiovascular protection.
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Fig.1. SHRSP aortas display augmented spontaneous tone after depletion of Ca2+ stores
Inhibition of the SR Ca2+-ATPase with thapsigargin augmented contractile responses to
Ca2+ with greater effects in SHRSP. Representative traces.
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Fig. 2. SHRSP displays increased vascular expression of STIM-1
Immunocytochemistry performed in rat aorta vascular smooth muscle cells. Cells were
incubated with primary antibodies rabbit anti-STIM1 and counterstained with a Cy3-
conjugated anti-mouse IgG secondary antibody. Cells were incubated with 4′,6-diamidino-2-
phenyindole (DAPI, D-9564) to detect nuclei.
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Fig. 3. Putative mechanism by which augmented STIM-1/Orai1 signaling contributes to
abnormal Ca2+ homeostasis in vascular myocytes
Compared to female, arteries from male subjects display increased activation of STIM1/
Orai1. In conditions of depletion or decrease of intracellular Ca2+ stores, STIM1 is
activated, resulting in the dimerization of Orai1, and the formation of CRAC channels. Ca2+

influx, which is increased in VSMCs from hypertensive males compared to hypertensive
females, is stimulated via STIM1 and CRAC channels (Orai1). Therefore, arteries from
hypertensive male subjects display increased Ca2+ influx. SR Ca2+ ATPase is activated and
the intracellular Ca2+stores are refilled. However, the SR in VSMCs of female and male
hypertensive displays similar buffering capacity. Consequently, arteries from hypertensive
male subjects show increased free cytosolic Ca2+, which can lead to increased vascular
contraction.
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