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Abstract
In modern molecular biology one of the standard ways of analyzing a vertebrate immune system is
to sequence and compare the counts of specific antigen receptor clones (either immunoglobulins
or T-cell receptors) derived from various tissues under different experimental or clinical
conditions. The resulting statistical challenges are difficult and do not fit readily into the standard
statistical framework of contingency tables primarily due to the serious under-sampling of the
receptor populations. This under-sampling is caused, on one hand, by the extreme diversity of
antigen receptor repertoires maintained by the immune system and, on the other, by the high cost
and labor intensity of the receptor data collection process. In most of the recent immunological
literature the differences across antigen receptor populations are examined via non-parametric
statistical measures of the species overlap and diversity borrowed from ecological studies. While
this approach is robust in a wide range of situations, it seems to provide little insight into the
underlying clonal size distribution and the overall mechanism differentiating the receptor
populations. As a possible alternative, the current paper presents a parametric method that adjusts
for the data under-sampling as well as provides a unifying approach to a simultaneous comparison
of multiple receptor groups by means of the modern statistical tools of unsupervised learning. The
parametric model is based on a flexible multivariate Poisson-lognormal distribution and is seen to
be a natural generalization of the univariate Poisson-lognormal models used in the ecological
studies of biodiversity patterns. The procedure for evaluating a model’s fit is described along with
the public domain software developed to perform the necessary diagnostics. The model-driven
analysis is seen to compare favorably vis a vis traditional methods when applied to the data from
T-cell receptors in transgenic mice populations.
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1 Introduction
The major feature of the adaptive immune system is its capacity to generate clones of B- and
T-cells that are able to recognize and neutralize specific antigens. Both cell types recognize
antigens by a special class of surface molecules called B- and T-cell receptors (TCRs). The
purpose of the article is to describe in detail and illustrate with examples a new approach to
analyzing and comparing TCR-type data arriving from multiple TCR repertoires, based on
the use of a bivariate Poisson-lognormal distribution (BPLN) as a model of repertoire
frequencies. By means of examples derived from real TCR data, we argue that under BPLN
both the moment-based and the information-based parametric measures of dissimilarity
yield consistent and biologically meaningful results. We also show that in all examples
considered, the proposed methods outperform the standard ones in terms of their bias,
variance, and the overall recognition of the frequency patterns among TCR repertoires. The
methodology developed in this paper will apply to both types of receptors but, for the sake
of clarity and simplicity, we describe the background and the overall problem in terms of T-
cell receptors or TCRs. For a general introduction to the molecular biology of the immune
system, we refer the interested reader to Janeway (2005).

A single T-cell receptor (TCR) is composed of two chains, α and β, that are assembled
during T-cell differentiation. Both chains are formed by rearrangements of DNA segments:
Vα and Jα for the TCRα chain and Vβ, Dβ, and Jβ for the TCRβ chain. Since there are a
number of segments of each type in the genomic DNA, a great number of different α and β
chains are generated. This chain diversity is further increased by the recombination process
when individual nucleotides might be added or deleted at the junctional sites. The region
containing these highly variable junctions is the third of the complementarity-determining
regions (CDRs) that are seen crystallographically to contact an antigen and is known as the
CRD3 region. Both combinatorial and insertional rearrangements result in a huge TCR
repertoire that ensures that the immune system has the potential to recognize a large number
of antigens. For instance, it is estimated that the number of antigen-specific TCRs that can
be formed in mice exceeds 1015 (Davis and Bjorkman, 1988; Casrouge et al., 2000). For
humans, it is estimated that over 1018 different TCRs can be produced with varying
frequencies across various T-cell subpopulations (Arstila et al., 1999; Naylor et al., 2005),
like, for example, naive and regulatory T-cells. Naive T-cells are cells that have not
encountered an antigen in their lifetime, so they have never been activated, and regulatory
T-cells are cells that act to suppress the activation of the immune system and thereby
maintain immune system homeostasis and tolerance to self-antigens. Both subpopulations
belong to the so-called The frequency of individual T-cell clones in normal individuals is
very low. However, once a naive T-cell, expressing the appropriate TCR, encounters an
antigen, it becomes activated and expands, forming clones of cells. This is manifested by the
expression of cell surface molecules and by proliferation. T-cells responding to antigen may
divide many times and increase in number > 1000 fold, forming T-cell clones expressing the
same TCR (Butz and Bevan, 1998). In general, T-cells recognize only antigens bound to self
proteins called the major histocompatibilty complex (MHC). Various groups of T-cells
recognize antigens in the context of different sub-classes of the MHC molecules and these
differences seem to have a profound effect on the diversity of the TCR repertoires
(Wucherpfennig et al., 2010).
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As TCR data-producing technology is becoming increasingly more reliable (Weinstein et al.,
2009) and with several bioinformatics software suites available for antigen data
preprocessing (Collette et al., 2003; He et al., 2005), TCR repertoire studies are becoming
one of the major tools of modern immunology, providing great insight into, for example, the
origin and antigen specificity of various types of T-cells (Hsieh et al., 2004; Kuczma et al.,
2009b; Lathrop et al., 2008; Pacholczyk et al., 2006, 2007). As suggested by some authors
(Poland et al., 2008, 2009), such knowledge could eventually lead towards individual
immune system profiling and personalized vaccines. However, in order to make significant
progress towards these goals, one needs to first establish a reliable statistical methodology
for comparing TCRs across various repertoires of interest. Unfortunately, the extreme
diversity of TCR populations, both in terms of varying frequencies and numbers of different
clones, makes them particularly challenging objects for statistical analysis. Adding to this
challenge is the fact that the current laborious process of TCR data collection makes it easy
to seriously under-sample the data arriving from various TCR repertoires. In fact, under the
popular method of single-cell sorting, single-cell RT-PCR (Freeman et al., 2009), the TCR
populations are known typically to be very severely under-reported, in the sense that only a
small fraction of TCR clones is examined (see, e.g., Warren et al. 2009). For that reason, the
simple, non-parametric statistical methods, which are known to be sensitive to the
population under-sampling bias, are only of limited use for TCR repertoire comparison
studies. This includes, for instance, the popular methods based on Simpson’s diversity and
Shannon’s entropy indices discussed, for example, in Ferreira et al. (2009) and Venturi et al.
(2007). The more sensible approach seen in immunological studies relies on modeling
diversity parametrically, assuming that all clonotypes (TCR species) are equally represented
in the repertoire (Barth et al. 1985; Behlke et al. 1985). The advantage of this so-called
homogeneous model is its computational and conceptual simplicity, which contributes to its
wide use (cf. e.g., Casrouge et al. 2000; Hsieh et al. 2004, 2006; Pacholczyk et al. 2007,
2006). However, such a model is called into question by some empirical evidence (see, e.g.,
Naumov et al. 2003; Pewe et al. 2004), suggesting heavy right tails of the clonal size
distributions. To account for this heterogeneity, the homogeneous model has been expanded
to a variety of mixture models, typically under the assumption of the Poisson distribution of
the TCR clones. These Poisson abundance mixture models (Chao, 2006) assume that each
TCR variant (i.e., each clone family or clonotype) is sampled according to the Poisson
distribution with a specific sampling rate, itself varying according to a prescribed parametric
(mixing) distribution e.g., exponential, gamma, or lognormal (Ord and Whitmore 1986;
Sepúlveda et al. 2010; Bulmer 1974). The recent detailed comparative study of Sepúlveda et
al. (2010) identified one of such models, the Poisson-lognormal mixture (PLN), as
particularly well suited for modeling clonal diversity. The special appeal of the PLN seems
to be its capacity for an extension to a multivariate setting. Unlike many of the currently
used methods, such an extension would allow for the simultaneous analysis of abundance
patterns of several repertoires (Engen et al., 2002). In particular, the bivariate extension of
the PLN model could be used to derive a class of dissimilarity measures for pairwise
comparisons of the repertoires and for building a tree-based hierarchy, relating various TCR
subpopulations. Essentially, this is the idea pursued in the current paper.

The paper is organized as follows. In the next section (Section 2) we give a brief overview
of the Poisson abundance models both in univariate and multivariate (bivariate) settings. In
Section 3 we discuss one method for deriving dissimilarity measures that is particularly
relevant to TCR data studies. The method is useful to provide the formal definitions, in our
setting, of some popular measures of dissimilarity that we later employ in our data analysis.
In Section 4 we present the application of our method to two TCR datasets obtained from
the populations of naive and regulatory T-cell receptors in healthy and immune-deficient
mice. The first dataset was already described and analyzed by different methods in
Pacholczyk et al. (2006). The second dataset is a new, previously unpublished one recently
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obtained from two TCR repertoires with a very low species overlap. In order to illustrate the
advantages of our methodology, we analyze both datasets in detail using the clustering
algorithms derived under both non-parametric and BPLN models and compare the results.
For the reader’s convenience, both datasets are provided as the supplemental material
available for download from XXXX. In Section 5 we provide a concise summary of our
findings and offer concluding remarks, along with the description of the supplementary data
files. Some elementary derivations, related to the entropy function and to the narrative of
Section 3, are provided in the Appendix.

2 Poisson Models of Abundance
Poisson abundance models arrive naturally in the biodiversity studies if we assume (see,
e.g., Chao 2006) that the clone (clonal species) sampling is done by a “continuous type of
effort”, i.e., data is recorded as arriving from a mixture of Poisson processes in some time
interval. This type of model approach can be traced back to Fisher, Corbet and Williams
(Fisher et al., 1943). Consider M species labeled from 1 to M. Individuals of the i-th species
arrive in the sample according to a Poisson process with a discovery rate λi. If the
detectability of individuals can be assumed to be equal across all species (which is typically
the case in a TCR repertoire), then the rates can be interpreted as species abundances
(Nayak, 1991). In this sampling scheme, the sample size n (the number of individuals
observed in the experiment) is a random variable. Since, given the class total n, the
conditional frequencies follow a multinomial distribution with class probabilities given by

relative frequencies , many estimators are shared in both the continuous-type
Poisson models and the discrete-type (multinomial) models, where n is assumed to be a
constant. We note here that in the case of antigen receptor data, the constant n is sometimes
known (e.g., DNA sequencing data) and sometimes not known (e.g., spectratype data, see
Kepler et al. 2005). In the latter case, the Bayesian framework is typically invoked and prior
distributional form of n is assumed (see, e.g., Rodrigues et al. 2001; Lewins and Joanes
1984; Barger and Bunge 2008; Solow 1994). Since the present paper is motivated by the
single–cell DNA sequencing data, we are assuming throughout that n is known. The
extension of our model to unknown n along the lines of Rodrigues et al. (2001) is reasonably
straightforward but is not pursued here.

2.1 Univariate mixture models
Since it has been generally accepted that the antigen receptor clonal size distributions have
heavy right tails, to adjust for the over-dispersion, the species rates (λ1, λ2, …, λM) are
typically modeled as a random sample from a mixing distribution with density f(λ; θ), where
θ is a low-dimensional vector of parameters. Following the famous paper by Fisher and his
colleagues (Fisher et al., 1943), many researchers have adopted a gamma density as a
mixing model. Other parametric models include, among others, the log-normal (Bulmer,
1974), inverse-Gaussian (Ord and Whitmore, 1986), and generalized inverse-Gaussian
(Sichel, 1997) distributions (Sepúlveda et al., 2010). An obvious advantage of such
parametric models is that the inference problem reduces to estimating only a few relatively
low-dimensional parameters for which the traditional estimation procedures can be typically
applied. For any mixture density f(λ; θ), define pθ(k), k = 0, 1, … as the probability that any
TCR species is observed k times in the sample, that is

(2.1)
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Denoting by fk (k = 1, 2, …, n) the number of receptor species observed exactly k-times in
the sample we have E(fk) = Mpθ (k). Setting D = Σk fk, the likelihood function for M and θ
can be written as

The (unconditional) MLEs for M and θ and their asymptotic variances are obtained based on
the above likelihood, which, as we can see, depends on the data only through the observed
values of {fk}. The likelihood can be factored as

where Lb(M, θ|D) is a likelihood with respect to D, a binomial (M, 1 − pθ (0)) variable, and
Lc(θ|{fk}, D) is a (conditional) multinomial likelihood with respect to {fk; k ≥ 1} with cell
total D and zero-truncated cell probabilities pθ (k)/[1 − pθ (0)], k ≥ 1, i.e.,

(2.2)

The MLE of θ obtained from this likelihood can be regarded as a (conditional) empirical
Bayes estimator if we think of the mixing distribution as a prior distribution having
unknown parameters that must be estimated (see Rodrigues et al. 2001 for further reference).

2.2 Extension to bivariate models
As we shall see in the next section, for the purpose of comparing multiple TCR repertoires
simultaneously, it is of interest to also consider multivariate models of abundance. For the
sake of our discussions below we focus on the bivariate models but the modifications for
higher dimensions are rather straightforward. In direct analogy with the notation of the
previous section, we now define pθ (k, l) to be the probability that any TCR species (i.e., a
TCR clone) is present k times in the sample from the first population (repertoire) and l times
in the sample from the second one. For simplicity, assume that we have the same M species
in both populations. However, this is an assumption of convenience only, since the species
that are present in one but not the other repertoire may be considered as arriving with joined
probability pθ (k, 0) or pθ (0, l) for some k, l > 0. Accordingly, the value M could be viewed
as a number of different bivariate species of TCRs with marginally unequal counts.

Let fk,l be the empirical count and set now D = Σk,l≥0 fk,l (assuming f0,0 = 0). Let f (λ1, λ2; θ)
be the bivariate mixture distribution. The likelihood formulae from the previous section
extends to the bivariate case as

where
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(2.3)

Note that, as before, E(fk,l) = Mpθ (k, l). The likelihood function for M and θ can be again
factored as

where, in obvious analogy with (2.2), Lb(M, θ |D) is now a likelihood with respect to D, a
binomial variable with parameters (M, 1 − pθ (0, 0)), and Lc(θ |{fk,l}, D) is a (conditional)
multinomial likelihood with respect to {fk,l, k + l > 0} with cell total D and the bivariate,
zero-truncated cell probabilities {pθ (k, l)/[1 − pθ (0, 0)]}k,l, k + l > 0, i.e.,

(2.4)

3 Diversity Analysis and Clustering
When studying the evolution of TCR species, it is of interest to compare their diversity, by
which we mean herein (cf. Section 1) the clonal size distribution {pθ (k)} and the species
number M. Such repertoire diversity comparisons are of great relevance, for instance, in
clinical studies, where the quantity of interest is the “divergence” of multiple observed TCR
repertoires from the control. The individual repertoires of antigen receptors can be then
characterized in terms of their divergence from the control (Chen et al., 2003; Komatsu et
al., 2009; Pacholczyk et al., 2007, 2006). Under our adopted definition, the TCR repertoire
diversity is completely determined by the parameters (M, θ). This agrees with the original
concept of “species diversity” known from the field of ecology where the term itself relates
both to the number of species (richness) and to their apportionment within the sequence
(evenness or equitability, see Sheldon 1969). A sensible method of comparing the diversity
of multiple repertoires simultaneously is based on a concept of (pairwise) diversity
dissimilarity measure and the hierarchical clustering induced by it. The hierarchical
clustering, which we discuss in more detail below, is one of the many modern methods of
analyzing patterns in high-dimensional data on the grounds of the so-called unsupervised
statistical learning theory (cf., e.g., Hastie et al. 2001), a very dynamically developing area
of modern statistics.

3.1 Diversity dissimilarity measures
Assume that the overall “similarity” between a pair of TCR repertoires with respective
clonal abundance distributions p and q is quantified by some non-negative function Q(p, q),
referred to as the similarity index or similarity measure. Since typically the samples from the
joined distribution (frequency) of abundance are not available in data collected from TCR
repertoires, some of the crude similarity indices are based simply on the joined TCR species
presence/absence data, i.e., the number of TCR species shared by two samples and the
number of species unique to each of them (see discussion in Legendre and Legendre, 1998).
Examples of such indices are the classical Jaccard index and the closely related Sørensen
index, the two oldest and most widely used similarity indices in ecological biodiversity
studies (Magurran, 2005). One of the advantages of the Poisson mixture model described in
the previous section is that it allows for defining meaningful indices incorporating pairwise
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comparisons of the TCR species based on the joined distribution of abundance. As
representative examples of such indices, we consider here the Morisita-Horn index ( )
(Magurran, 2005), the mutual information criterion ( ), which is a special case of a
Kullback-Leibler divergence (see, e.g., Koski, 2001), and the overlap index ( ) introduced
by Smith et al. (1996). All of these indices give rise to the corresponding measures of
dissimilarity concentrated on the unit interval with the perfect correlation (or complete
overlap) between the frequency distributions yielding the value zero. Indeed, they are all
seen as special cases of the following general construction. For any bivariate probability

distribution pθ with corresponding marginal distributions  and , consider a similarity

index  satisfying

(3.1)

with the right bound attained when . Then the corresponding (normalized) -

induced measure of dissimilarity between the pair ( ) may be defined as

(3.2)

To obtain the Morisita-Horn dissimilarity index ( ), we take in (3.2)  = 

(3.3)

which obviously satisfies (3.1) for any non-negative random variables. A closely related
correlation-based dissimilarity index  is obtained when we take  =  with

(3.4)

where k̃ = (k − m1)/s1 and l̃ = (l − m2)/s2 and mi and si are, respectively, mean and standard

deviation of , i = 1, 2. In this case the inequality (3.1) simply asserts that 0 ≤  ≤ 1.

A popular dissimilarity measure, which we shall denote here by  is obtained by
averaging conditional probabilities of the presence of individual receptor species in both
samples, given its presence in one. The measure was introduced by Smith et al. (1996) to
quantify the “overlap” between repertoires, and is obtained by taking the following
similarity index.

(3.5)
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which again trivially satisfies (3.1).

Finally, in order to obtain the mutual information dissimilarity index ( ) we take in (3.2) 
=  where

(3.6)

The fact that the above function satisfies (3.1) is shown in the appendix. Note that all the
above similarity indices, , , , and  (and thus also their corresponding
dissimilarity measures), depend on the underlying mixing distribution parameter θ but not
explicitly on the species number M. This is desirable since the quantity M is typically
unknown and difficult to estimate, due to often very severe undersampling of the TCR
repertoires (cf., e.g., Sepúlveda et al. 2010). In the parametric setting considered here, if
needed, the value of M may be estimated (aposteriori) by either of the estimates

(3.7)

(3.8)

whose close numerical agreement usually indicates a robust fit of the bivariate parametric
mixture model. Note that M ̂2 is simply a parametric version of the Horvitz-Thompson
estimator (Horvitz and Thompson, 1952).

3.2 Hierarchical clustering
For a given pairwise dissimilarity measure  of TCR repertoires, it is a standard
unsupervised statistical learning approach to simultaneously compare N repertoires in terms
of  by means of building hierarchical clusters that are graphically represented by
dendrograms or “tree diagrams”. In such a hierarchical clustering procedure, the TCR data
are not partitioned into a particular cluster in a single step. Instead, as the name suggests, a
hierarchical structure is produced in which the clusters at each level of the hierarchy are
created by merging clusters at the next lower level. The main advantage of the hierarchical
clustering approach lies in the fact that no cluster number needs to be specified in advance.
Hierarchical clustering is performed via either agglomerative methods, which proceed by a
series of fusions of the N objects into groups, or divisive methods, which separate objects
successively into finer groupings. Agglomerative techniques are more commonly used, and
this is the method we consider below for TCR repertoires. The extent to which the
hierarchical structure produced by a den-drogram actually represents the data itself can be
judged by the cophenetic correlation coefficient. This is the correlation between the N(N −
1)/2 pairwise observation dissimilarities dii′ input to the clustering procedure and their
corresponding cophenetic dissimilarities cii′ derived from the dendrogram. The cophenetic
dissimilarity cii′ between two observations (i, i′) is the value of the intergroup dissimilarity at
which observations i and i′ are first joined together in the same cluster. The cophenetic
correlation coefficient may be used to assess to what extent various dissimilarity measures 
reflect the true pattern of the data, with high positive values (above .9) indicating good
agreement.
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For a general introduction to clustering and unsupervised learning, the interested reader is
referred to Chapter 14 in the popular monograph of Hastie et al. (2001).

3.3 Poisson-lognormal model
Whereas there are many possible models of parametric bivariate mixture, the recent studies
in Engen et al. (2002) and Sepúlveda et al. (2010) seem to indicate that lognormal mixing
distributions may be often an appropriate choice for TCR repertoire modeling. In that spirit
we consider herein a bivariate model based on log-binormal variates. Under the assumption
of random sampling, the number of individuals sampled from a given receptor species with
abundance λ is Poisson distributed with mean ωλ where the parameter ω expresses the
sampling intensity (see, e.g., appendix of Engen et al. 2002). If we assume that ln λ is
normally distributed with mean μ and variance σ2 among TCR species, then the vector of
individuals sampled from all M species constitutes a sample from the Poisson lognormal
distribution with parameters θ = (μ + ln ω, σ2), where μ and σ2 are the mean and variance of
the log abundances. For ω = 1 the corresponding mass function is of the general form (2.1)
and may be written as

(3.9)

where φ(·) is a standard normal density function and

is the re-parametrized Poisson distribution. Similarly, when we consider pairs of counts of
individual receptors from two different repertoires, we may think of them as a random
sample (of size M) from the bivariate Poisson-lognormal distribution (BPLN), with the
probability mass function given as in (2.3). Since the marginal sampling intensities (ω) may
be incorporated into the BPLN mean vector, we take ω = 1 throughout the remainder of the
paper, making a tacit assumption that the marginal sample sizes (Σk>0 fk) are of comparable
magnitude. This turns out to be the case for the TCR datasets discussed in the next section,
where we assume that the pairs of log abundances among species have the binormal
distribution with parameters (μ1, μ2, σ1, σ2, ρ). Under the assumed Poisson sampling, this
particular specification gives rise to the BPLN distribution, a member of a general class of
the multivariate Poisson distributions described, for instance, in Aitchison and Ho (1989). If
we let φ(u, v; ρ) denote the normal bivariate density with correlation coefficient ρ, zero
means and unite variances, then the distribution of the BPLN random variable is given in
terms of the bivariate probability mass function  for k, l ≥ 0
where

(3.10)

From the above formula it follows in particular that both marginals of BPLN are the
univariate Poisson-lognormal distributions (3.9) with respective parameters (μi, ) (i = 1,
2). Since M is usually unknown, when fitting the model we only consider the number of
individuals for the observed receptor species and thus the distribution of the number of
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observed individual receptors follows the zero-truncated BPLN distribution with probability
mass function

(3.11)

The maximum-likelihood estimators (MLEs) of the parameters of this distribution were
discussed, e.g., in Bulmer (1974) and more recently in Karlis (2003) and Engen et al. (2002).
The latter approach is conveniently implemented in the freely available R package poilog (R
Development Core Team, 2009), which we have used in the current paper to perform all the
necessary parameter fitting. In our setting, the model parameters were calculated from the
multinomial conditional likelihood function (2.4), where the truncated probability quantity
pθ (k, l)/(1 − pθ (0, 0)) was given by (3.11).

Under the assumed BPLN model, the measures of dissimilarity may be computed either
directly or by Monte-Carlo approximations. Denoting the means of the BPLN marginals by

(3.12)

the moment-based dissimilarity measures  and  are given by

(3.13)

(3.14)

where in (3.14) the quantities

(3.15)

are seen to be the marginal variances of the BPLN distribution. The formulae (3.13–3.14)
provide for a convenient way of estimating the dissimilarities  and  from the data
simply by replacing the unknown distribution parameters by their sample maximum
likelihood estimates calculated, for instance, by using the numerical algorithms implemented
in the “poilog” R-package. In view of the truncation (3.11) of the observed distribution, the
MLE inference is preferred for the PBPLN-based dissimilarity measures, due to the
intractability and/or poor performance of the other types of estimates (like, for instance, the
method of moments). Interestingly, the measure  remains unchanged under this
truncation, and consequently, the empirical, moment-based estimate of  is available.

Unfortunately, due to the fact that the mass function (3.10) is not available in a closed form,
there are no closed, MLE-based formulae for the indices , . These indices are
typically approximated by the Monte-Carlo-based bootstrap procedure resampling from the

Rempala et al. Page 10

J Theor Biol. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model with estimated parameters. The bootstrap methods are then often used to derive
confidence intervals and standard errors of such parameter estimates. The general
justification for such derivations is provided, e.g., in Gill et al. (2009) and Rempala and
Szatzschneider (2004). The reader is referred to Efron and Tibshirani (1997) for a general
introduction to the theory and practice of statistical bootstrap, which is also essential in our
modeling approach and in the data analysis described below.

4 Application to TCR Repertoire Data
In this section we illustrate the parametric inference on T-cell receptor data based on the
BPLN model and the associated pairwise dissimilarity measures. For the sake of
comparison, we also perform the more standard, non-parametric analysis of the same data.
Two datasets of different T-cell families referred to commonly as CD4+ and CD8+ are
considered. Both sets are derived from two types of a genetically-engineered (TCR-mini)
mice: the “wild” type with genetically restricted TCR repertoire and unaltered repertoire of
self antigens bound to class II MHC, and the “Ep” (B63VJEp) mice that in addition to
restricted TCR repertoire also express only single, covalently linked to MHC, Ep peptide
(Pacholczyk et al., 2006). In addition, both mice types express natural class I MHC/peptide
complexes. The description of the transgenic TCR-mini mouse was already given in the
recent work by Pacholczyk et al. (2007). Briefly, the TCR-mini mouse is a new generation,
TCR transgenic mouse in which all T-cells express one pre-specified TCRβ chain
(specifically, the chain Vβ14Dβ2Jβ2.6), and the unique TCRα mini locus. This mini locus
allows only for restricted rearrangements of a single Vα2.9 segment to one of the two Jα
(Jα26 and Jα2) segments. The mouse has no other loci encoding TCRα chains, and therefore
its entire repertoire of TCRs is derived from the artificially introduced TCRα mini locus,
resulting in a greatly reduced TCRs diversity. For these reasons the TCR-mini mouse is
considered a good biological model for analyzing TCR repertoire patterns with relatively
small samples of sequenced clones (Pacholczyk et al., 2006).

4.1 Analysis of CD4+ data
For the purpose of testing our statistical model, two subpopulations of CD4+ T-cells were
collected representing, respectively, regulatory (TR) and naive (TN) T-cells (where the TR
cells are defined as those expressing the additional marker Foxp3). In addition, these two
subpopulations of CD4+ T-cells were isolated either from (1) the peripheral lymph nodes or
(2) the thymus, giving us a total of eight TCR populations differing by the animal type, T-
cell type, and tissue location. In the thymus, gross of CD4+ T-cells undergo development
and in the lymph nodes CD4+ T-cells are retained unless activated by specific antigen and
therefore two markedly different patterns of clonal abundance in these organs are generally
expected. Additionally, because the “Ep” mice express only a single class II MHC/peptide
complex, their diversity of the CDR3 region of the TCRα chain is drastically reduced in
comparison to TCR-mini wild-type mice. Due to these pronounced biological differences
between the repertoires, the dataset seems uniquely suitable for testing the performance of
various statistical comparison methods.

The TCR data from both types of mice was collected as follows (for more details on a
similar data harvesting procedure, see also Freeman et al. 2009). Using fluorescence
activated cell sorting, populations of T-cells from different organs were single-cell-sorted
into individual wells on 96-well plates and their unique CDR3 regions of their TCRα chain
were amplified using single-cell RT-PCR (see, e.g., Kuczma et al. 2009a). Following this
amplification, the CDR3 regions were sequenced and analyzed, providing the distribution of
these regions in native subpopulation(s) of T-cells. This type of procedure has been widely
considered to be one of the most reliable methods to harvest T-cell repertoires (Luczynski et
al., 2007). Single T-cells can be separated from the cell suspension or isolated from tissue
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sections. Both the α and the β chains can be amplified and sequenced to provide
unambiguous identification of T-cell clones. This method avoids the problems of skewed
PCR amplification and varying TCR mRNA expression in different cells. Its obvious
drawback is the under-sampling issue alluded to already in Section 1: a very large number of
cells need to be analyzed to ensure detection of rare clones and to provide a global
representation of the T-cell repertoire. We note that with the availability of the next
generation sequencing technology (Wong et al., 2007), the large number of single cell RT-
PCRs could be replaced with the high throughput PCR from a heterogeneous population of
T-cells. However, at its current stage the technology is not yet recommended for repertoire
analysis due to difficulties of matching specific TCRα and TCRβ chains when amplified
simultaneously. In addition, there is also a high risk of count bias due to the skewed
amplification process in high throughput data, which tends to overexpress the most
dominant DNA sequences and underexpress (or even remove) the rare ones.

The complete dataset consisting of all sequenced receptors in eight repertoires (for a total of
1174 different clonotypes) is provided as supplementary material, which may be
downloaded from the site XXXX. The pictorial summary of the empirical frequencies for
each of the eight TCR repertoires considered is presented in Figure 1 as a set of eight bar
plots. The bars in each plot correspond to the observed frequencies (some possibly zero) of
the different clonotypes observed (sequenced) in the respective population. The ordering of
the TCR sequences remains the same across plots so as to allow for direct comparison.
Further summary statistics of the data are provided in Table 1 as follows. In the notation of

Subsection 2.1 let  and , where  is the number of clonotypes
observed k times in repertoire i, i = 1, … 8. The observed values of Di and ni based on all the
observed clonotypes are presented in Table 1. The observed overlap between (i.e., presence
in both) the TN and TR populations from combined tissues was reported in Pacholczyk et al.
(2007) as at least 39% when considering only the “frequent species”, defined as those with a
likely sufficiently high frequency (see equations (1) and (2) and Figure 1B in Pacholczyk et
al. 2007). However, when considering all the identified clonotypes, this percentage drops
considerably to about 9% of the common clones observed in Ep populations and about 5%
in wild-type populations.

4.1.1 Parametric analysis—In order to assess the usefulness of a proposed parametric
method of TCR data modeling, we have first generated the BPLN model-based estimates of
the dissimilarity matrix for the eight TCR repertoires using, separately, each of the four
dissimilarity measures  of the general form (3.2) described in Section 3. For the moment-
based dissimilarities  and  we have used the explicit formulae (3.13) and (3.14)
whereas for the remaining two measures  and  we have directly approximated the
quantities  given by (3.10) and subsequently used the parametric
bootstrap procedure to produce the empirical approximations of dissimilarities. In all cases
the BPLN distribution parameters were estimated by the maximum likelihood estimators
(MLEs) computed by maximizing the conditional multinomial likelihood function (2.4)
based on the zero-truncated probabilities (3.11). In principle, one could use the conditional
likelihood of multivariate Poisson-lognormal distribution directly, to estimate all of the
parameters simultaneously, however, due to the complicated form of the resulting mixture
probabilities, we have deemed that approach to be too unreliable numerically. On the other
hand, the iterative bivariate model fitting (fitting one BPLN model at a time, conditionally
on the remaining repertoires and iterating until convergence) was seen to be a reasonably
fast and numerically stable procedure, yielding a set of estimates consistent with marginally
MLE-fitted parameters, regardless of the order in which conditioning was performed.
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The results of the conditional MLE procedure are partially summarized in Table 2 where the
estimates of the μ and σ2 parameters for Poisson-lognormal abundance distributions for the
eight repertoires are reported along with the corresponding confidence intervals obtained via
the parametric bootstrap bias-corrected percentile method (see, e.g., Rempala and
Szatzschneider 2004 for details on bootstrap-based interval estimation). Note that the
parameters μ and σ2 are related to the marginal estimates of means and variances of the
Poisson-lognormal variates by the formulae (3.12) and (3.15), respectively. In order to
conserve space, the estimates of the BPLN correlation coefficients are not shown as they are
similar in relative values to the moment-based dissimilarities summarized in Figure 3. We
note that the marginal values of the repertoire-specific parameters in both types of
repertoires (wild-type and Ep) were found to be of similar magnitude (with estimated values
of μ parameters between −4.5 and −2.9 and σ2 parameters between 1.3 and 2). Overall, the
numerical values of the parameters indicated smaller Poisson-lognormal means for the
restricted-repertoire mice as compared with the wild-type. Additionally, the naive T-cell
repertoires generally seemed to have smaller means and larger variances of the mixing log-
normal distributions than the regulatory T-cell repertoires.

As in Engen et al. (2002), the goodness-of-fit statistics were calculated for the bivariate
marginal fit by resampling the conditional likelihood statistic (2.4). In all cases the
differences between the bivariate data and fitted models were not-significant (all p-values <.
05) as measured by the bootstrap tests, indicating a reasonably good fit of the parametric
distributions to the (zero-truncated) abundance data. In addition to the goodness-of-fit
testing, we have also performed qualitative comparisons of BPLN model versus data via
smoothed heat-map plots (Anderes et al., 2009). One example of such a comparison is
provided in Figure 2, where the smoothed heat-map illustrates both true and model-
generated bivariate abundance distributions of wild-type naive and regulatory TCR
repertoires derived from thymus (i.e., Wt TN2 and Wt TR2). For better visualization, the
smoothing of the intensities was performed via the Gaussian kernel density smoother
truncated to its non-negative support (see, e.g., Sheather and Jones 1991).

The results of hierarchical clustering analysis of the eight mice TCR repertoires under 
and  are presented in Figure 3. Panels A1 and B1 show the dendrograms obtained by
agglomerative hierarchical clustering with a complete link function (see, e.g., Hastie et al.
2001, Chapter 14 for a definition) using  (top) and  (bottom) as the dissimilarity
measures. Both dendrograms indicate a very good mutual agreement of the cluster
hierarchical structure and the correct final classification of the eight repertoires in terms of
the experimental condition (TCR-restricted vs wild-type) as well as the repertoire type
(naive or regulatory) and tissue type (thymus vs lymph nodes). Almost identical
dendrograms (not shown) were also produced by applying the remaining two measures
discussed, namely  and . Figure 3, panels A2 and B2, illustrate the bootstrap
approximations to the distribution of the Frobenius norm (see, e.g., Golub and Van Loan
1996 for more on matrix norms) of the dissimilarity matrix [  (i, j)] (top) and [  (i, j)]
(bottom) (1 ≤ i, j ≤ 8), with the one-sided 95% confidence bound marked with a vertical
line. Panels A3 and B3 show the dendrograms corresponding to the dissimilarity matrices at
the upper bound of the corresponding 95% confidence intervals (marked as vertical lines in
the central panels). The fact that the left and right dendrograms in the top and bottom panels
have identical relative hierarchies indicates a strong robustness of the hierarchical clustering
against the fluctuations of both  and . The similar robustness was also seen for ,
and . This empirical agreement between the entries of the dissimilarity matrices
generated under the BPLN model using four different dissimilarity measures , , 
and  is further illustrated in Figure 4 where the pairwise loess regressions (Cleveland and
Devlin, 1988) of the entries of the dissimilarity measures on each other are presented. The
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plots clearly indicating the monotone relationships (almost a linear one between the first
three measures), as quantified by the corresponding Spearman’s correlation coefficients.

For some additional, more quantitative assessment of the performance of  and , we
have also calculated their respective cophenetic correlations (see Section 3.2). The empirical
values of the cophenetic correlation coefficients for  (ccMH) and  (ccMI) along with
their bootstrap confidence intervals are given in Table 3. In both cases the high values of the
correlations indicate the internal consistency of  and  with their corresponding
dendrogram structures.

For the final analysis of the CD4+ dataset under the BPLN model, we have also computed
the species richness estimates (3.7) and (3.8) for each pair of repertoires (for a total of 28
pairwise comparisons) and averaged the result to obtain a pooled estimator of the ratio D/M,
which was found to be .09 with the 95% confidence interval of (.06, .11). These values
suggest a much more severe under-sampling of the TCR populations than the traditional
non-parametric estimator of Good (1953) given by f1/D ≈ .25 (where now f1 and D are
computed from the pooled repertoire data).

The overall results of the hierarchical clustering analysis summarized in Figure 3 indicate
that the BPLN model correctly identifies the dissimilarity pattern of the eight TCR
repertoires considered. According to the model, the discriminating factors between various
TCR populations are, in order of importance, (i) the type of animal (Wt vs Ep), (ii) the type
of CD4+ cell (TN or TR), and (iii) the type of tissue (thymus or lymph nodes). These
findings are consistent with our current biological knowledge about CD4+ cells, and in
particular, confirm that the regulatory CD+ T-cells that express the Foxp3 transcription
factor (TR) have a more diverse repertoire of TCRs and fewer dominant clones than the
CD4+ T-cells that do not express Foxp3 (TN). This difference is seen to persist across both
mouse types.

Whereas the similar conclusions were reached in Pacholczyk et al. (2007), the ones
summarized in Figure 3 go much further in two crucial aspects. Firstly, since the
hierarchical representation depicted in Figure 3 allows for quantitative description of the
interplay between the discriminating factors (i)–(iii), the current results are fully quantitative
and not merely qualitative, allowing therefore for much more detailed repertoire
comparisons. For instance, it is clear from the dendrograms in Figure 3 that the average
(complete) dissimilarity between TN and TR groups is larger in the wild-type populations
that in the Ep ones. These kinds of subtleties would be impossible to uncover via the
descriptive methods used in Pacholczyk et al. (2007). Secondly, and perhaps most
importantly, our analysis outlined in Figure 3 indicates that, after properly accounting for
both data under-sampling (i.e., the observed distributions zero-truncation) and unequal
marginal sample sizes, the discriminating factors (i–iii) are statistically significant. A similar
statement does not follow from the somewhat more qualitative analysis performed in
Pacholczyk et al. (2007).

4.1.2 Non-parametric analysis—In order to further examine the results of our
parametric analysis of the TCR repertoires, we have also performed the more traditional,
non-parametric hierarchical clustering of the repertoires in which we have estimated the
values of the two dissimilarity measures  and  with the non-parametric estimates
based directly on the sample frequency data. Note that  is particularly convenient to
analyze non-parametricaly as it only requires the relative estimates of the mixed and
marginal moments of order two, which may be calculated directly from the observed (zero-
truncated) joined abundance. For that reason, the parametric and non-parametric 
measures may be directly compared with each other. The information-based  measure
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may be also estimated non-parametrically, estimated by means of a recently popularized
Chao-Shen estimator (Chao and Shen, 2003) which, in a manner similar to the ACE and
Horwitz-Thomson estimates (see, e.g., Chao, 2006), attempts to adjust explicitly for the fact
of only observing the truncated joined distribution.

The result of a direct comparison between all the pairwise estimated  values under the
BPLN and the non-parametric models is presented as a scatter plot with a fitted loess trend-
line in Figure 5. The plot follows a linear trend indicative of a very close agreement between
non-parametric and parametric  values for our TCR CD4+ dataset. This apparent almost
linear relationship between the dissimilarities estimated under the two measures is also
confirmed by the dendrogram induced by the non-parametric  (Figure 6, panels A1–A3)
which gives a stable set of hierarchical clusters almost identical to those obtained under the
BPLN model (Figure 3, panels A1–A3). In order to further compare the two clusterings, we
also performed, as for the parametric case above, the bootstrap analysis of the Frobenius
norm distribution of the dissimilarity matrix obtained under the non-parametric . The
result is presented in panel A2 of Figure 6. It is interesting to note that the identified
nonparametric confidence interval of (0, .97) based on the non-parametric  is much
wider than the one based on the parametric  and depicted in the panel A2 of Figure 3,
which was found as (0, .51). This length difference points to the overall better stability
(better accuracy and better precision) of the parametric dendrogram. For an alternative
method of such cluster variability assessment in the context of TCR populations, see e.g.,
Venturi et al. (2008).

In contrast to the parametric case, we found that the non-parametric analogue of the mutual
information (MI) dissimilarity (3.6), based on the coverage-adjusted Chao-Shen entropy
estimator (Vu et al., 2007), did not agree with the non-parametric Morisita-Horn (M-H)
dissimilarity and consequently yielded a very different and biologically uninterpretable TCR
clustering, which lacked separation between the wild-type and Ep mice. These differences
between non-parametric M-H and MI measures may be clearly seen in the two top panels of
Figure 6, where also the lack of stability of the MI-dissimilarity is clearly manifested by the
large difference between dendrograms within the 95% confidence bound induced by the
Frobenius norm of the MI-dissimilarity matrix. Note that this is not the case for the M-H
dissimilarity, which appears quite stable as discussed above. The stability of the clustering
could be perhaps improved by applying the averaging method of Venturi et al. (2008)
which, among others, adjusts for the unequal marginal sample sizes. However, in view of
the relatively high overlap between the most abundant TCR species, such an adjustment, as
based only on the empirical frequencies, would be still unlikely to improve the final cluster
hierarchy (i.e., mitigate the bias present in the dissimilarity measure). This discrepancy
between the non-parametric M-H and MI dissimilarities is also evident from the values of
the cophenetic correlations presented in Table 4. Note that the copheneitc correlation values
computed under the BPLN model gave no such evidence (cf. Table 3).

The lowest three panels of Figure 6 illustrate the results of an additional non-parametric
dissimilarity analysis we have also performed, based on the coverage adjusted estimated
values of the Shannon entropy function for the eight repertoires (see, e.g., Vu et al. 2007,
and formula (A.1) in the appendix). For the purpose of this particular analysis, the pairwise
dissimilarities were computed as absolute differences between the estimated entropy values.
Such “linear” comparisons of the diversity measures across repertoires are often appropriate
when the repertoires are assumed to have similar abundance patterns (see e.g., Sepúlveda et
al. 2010). However, as we may see from the plots, for our datasets the entropy-based
clustering turned out to be only partially satisfactory, as the entropy measure was only able
to clearly separate two repertoires derived from the wild-type regulatory cells, but not the
remaining ones. Overall, it appears that for our dataset the entropy-based clustering, both via
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MI and the Shannon entropy, performed poorly whereas the M-H clustering, even though
inferior in terms of the confidence bounds, was comparable with our parametric results.
These large differences across non-parametric dissimilarities seem to be at least partially
caused by the different handling of the observed distribution truncation at zero.

4.2 Analysis of CD8+ data
The CD4+ TCR dataset with eight repertoires described above was seen to have relatively
high pairwise overlap between the repertoires. In order to test the performance of our model
with data exhibiting a different overlap pattern, we have also analyzed a second, smaller
dataset consisting of only two repertoires of TCR species in CD8+ T-cells derived from the
lymph nodes in Wt and Ep mice. This dataset is new and comes from recent, not yet
published, experiments in Dr Ignatowicz’s laboratory. Along with the CD4+ dataset, it is
available for download from XXXX. Although not as extensive as the CD4+ dataset, the
CD8+ dataset is nevertheless biologically interesting. Since Ep and Wt TCR-mini mice
express the same class I MHC/peptide complexes responsible for the development and
survival of CD8+ T-cells, one would expect these two repertoires to be more similar to each
other than the previously analyzed CD4+ repertoires. Interestingly, the analysis of the data
reveals that in fact quite the opposite may be true.

The pictorial representation of the observed frequencies in both CD8+ repertoires is given in
the left panels of Figure 7 as two sets of bar plots. As with the previous CD4+ dataset, the
observed, sequence-specific TCR frequencies are plotted in the same order in both
repertoires. Based on the empirical count, the total number of different clonotypes across
repertoires was found as D = 310. The respective marginal values for each repertoire ni and
Di, along with the fitted values of the BPLN model parameters are given in Table 5. As we
may see the values of ni are very different from those of the lymph node repertoires in CD4+
T-cells that are presented in Table 1. This indicates a possible difference in the sampling
intensity, and for that reason it seems not advisable to analyze the CD4+ and CD8+ datasets
jointly (see discussion in Section 3.3). Based on the fitting of marginal frequencies to the
Poisson-lognormal distributions, the estimated values for the parameters of log-abundances
in CD8+ populations summarized in Table 5 are in general of similar magnitudes as the
corresponding values in the lymph nodes for CD4+ given in Table 2. However, the low
correlation value for CD8+ as well as the bar plots for frequency counts in Figure 7 make it
clear that the two populations are very dissimilar due to an extremely low overlap (less than
20 clonotypes shared by both samples) in the CD8+ dataset. Consequently, the separation of
the TCR species in CD8+ repertoires is seen to be much greater than in CD4+ repertoires
from lymph nodes analyzed earlier. As already indicated earlier, this specific finding seems
to be new and biologically somewhat counterintuitive It could be related to the fact that the
backbone of the TCR-mini repertoire was engineered based on the single class II MHC/
peptide restricted TCR (Pacholczyk et al., 2007) and this feature of the TCR-mini repertoire
could result in biasing the TCRs towards class II MHC/peptide complexes, irrespective of
the presence of CD4 or CD8 co-receptors in T-cells.

In addition to a surprisingly low overlap, the CD8+ repertoires also manifested a very
dominant clonal expansion for a few clones. This feature is consistent with the findings
reported from human data (Wang et al., 2010). In an effort to conserve space, the richness
analysis for the CD8+ dataset is omitted as the results turn out to be very similar to those
obtained for the CD4+ dataset.

4.2.1 Parametric vs non-parametric dissimilarity for CD8+—The very pronounced
empirical pattern of high separation in CD8+ repertoires seems indicative of the high
dissimilarity between the CD8+ wild-type and Ep populations, and one would expect any

Rempala et al. Page 16

J Theor Biol. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reasonable dissimilarity measure to give indication to that extent. Again, overall the BPLN
dissimilarity measures seem to ferry better with respect to that criterion than the non-
parametric counterparts. This fact is best illustrated with the bootstrap estimates of the
distributions of the BPLN-based and non-parametric dissimilarity measures  and 
presented in Figure 7, panels A and B, respectively. The respective point estimates are also
listed for comparison in Table 6. Whereas both of the BPLN-based measures seem to
concentrate closer to the upper unit bound of the dissimilarity, which is more consistent with
the empirical frequencies pattern, the distribution of the non-parametric M-H appears
slightly biased (in this case, left-shifted) by the relatively high frequencies of the few
overlapping clonotypes. Note that the distribution of the non-parametric MI measure is very
different from the remaining ones and does not seem to capture at all the pattern seen in the
empirical data.

5 Summary and Discussion
We have presented a simple bivariate-Poisson-lognormal (BPLN) parametric model for
fitting and analyzing TCR repertoire data. The model may be regarded as an extension of a
univariate Poisson abundance model with lognormal mixing distribution, which was already
applied to the analysis of TCR frequencies by other researchers. The remarkable property of
the BPLN model seems to be its capability to fit into the abundance patterns present in real
TCR data collected from the pairs of repertoires, as seen in our data examples.

For illustration purpose, we have fitted the BPLN model to two sets of TCR data and
performed the repertoire dissimilarity analysis, comparing the results to those based solely
on the empirical frequencies. In the first TCR dataset of CD4+ T-cells, both methods of
analysis have confirmed the previously reported findings that in the regulatory CD4+
populations, Foxp3+ T-cells (TR) have a more diverse repertoire of TCRs than the Foxp3−
T-cells (TN). However, the model-based inference has allowed us to identify the hierarchy
of importance among the factors discriminating between the TCR populations, and to argue
the hierarchy’s statistical significance, with much higher precision (evidenced by the short
confidence intervals) than one given by the simple empirical frequencies. The example
based on the CD4+ dataset also illustrates further usefulness of the BPLN model, as a way
of producing highly self-consistent dissimilarity measures across TCR populations. This
self-consistency is demonstrated, for instance, by the high positive values of the cophenetic
correlations. These values are also higher than those for non-parametric dissimilarities,
indicating that the BPLN-based clustering algorithms fit the TCR data better than the
standard ones. This also seems to be the case in our second dataset, consisting of data from
two highly non-overlapping repertoires of CD8+ T-cells.

The BPLN model in both examples has showed great consistency across the different
dissimilarity measures applied. In contrast, when the same data has been analyzed based on
the observed frequencies only, the clusterings (and hence the hierarchy) as well as the
dissimilarity distributions are seen to behave erratically and are highly dependent upon the
particular dissimilarity measure used. Consequently, some slightly different variants of the
same non-parametric analysis may lead to entirely different conclusions in the same dataset.
Among the non-parametric measures of dissimilarity considered here, the mutual
information dissimilarity is seen to be particularly ill-behaving, yielding biologically
implausible (and thus unsatisfactory) results in both examples. In the case of another non-
parametric measure considered, based on the Morisita-Horn (M-H) index, the results of
comparable numerical quality to the BPLN model are obtained in the first dataset, albeit
with a much wider confidence interval. This good performance of the non-parametric M-H
index in the first dataset seems to be due to the relatively high overlap pattern among the
clones of high abundance in CD4+ T-cells. As illustrated in the second dataset, once the
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overlap between populations decreases, the performance of the non-parametric dissimilarity
measure based on the M-H index may deteriorate, whereas the performance of the BPLN-
based measure remains largely unaffected.

As suggested by our parametric analysis, in a typical experiment based on harvesting
sequences from single-cell TCRs, the overall under-sampling of the TCR population may be
much higher than in the macroscopic biodiversity studies, for which many of the statistical
tools of species abundance comparison had been originally developed. This fact, and the
apparent lack of agreement between the non-parametric dissimilarity measures when applied
to our relatively simple datasets, seem to indicate that many commonly used non-parametric
biodiversity statistics may perform poorly when applied to severely under-sampled TCR
repertoires. The advantage of the model-based analysis proposed here is that, even with very
severe data under-sampling, it allows for the proper adjustment for the missing abundance
information and estimation of the full set of repertoire features. The statistical package
poilog available from the CRAN archive (http://cran.r-project.org) makes the fitting of our
model particularly convenient, by providing numerical algorithms for the parameters
estimation via the maximum likelihood. Although the results of our analysis presented here
are encouraging, further studies and a larger number of TCR datasets with more sequences
are needed in order to more comprehensively evaluate the BPLN model, and to further test
its ability to discriminate between the TCR repertoires in a biologically meaningful way.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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A Appendix: Mutual Information Bounds
The fact that the bounds (3.1) hold for the dissimilarity index (3.6) follows from the general
properties of the Shannon entropy function, which is defined (see e.g., Koski 2001) for any
discrete random vector X with probability distribution p(x) as

(A.1)

with the summation is taken over x values for which p(x) > 0. Extending the definition of the
index (3.6) to any pair of discrete real random variables X, Y with joined distribution p(x, y)
and marginals p(x), p(y), we define their mutual information as

(A.2)

Due to the elementary inequality log(x) ≤ x − 1 valid for any x > 0 we have that

Rempala et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and therefore

(A.3)

Note that MI(X, X) = H(X) and therefore (due to symmetry and (A.2)) to argue upper bound
in (3.1) it suffices to show that

(A.4)

This follows easily, since

The bounds (3.1) for MI(X, Y) follow now from (A.3)–(A.4) and (A.2) as (3.6) is, of course,
a special case of MI(X, Y).
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Figure 1. Marginal empirical counts for individual clonotypes in TCR-mini mice dataset
The empirical frequencies for each TCR clonotype in eight repertoires are presented as bar
plots, with each bar corresponds to the observed frequency (possibly zero) of a particular
clone sequence observed in the respective population. The ordering of the clone sequences
remains the same across all bar plots so as to allow for direct comparison. The maximal
empirical count observed was 42, but for better readability, all the counts are truncated at 16.
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Figure 2. Model generated vs observed pairs of frequency data for CD4+ T-cells
Left panel: kernel-density-smoothed heat-map of joined frequency data of thymus naive (y-
axis) and thymus regulatory (x-axis) TCR repertoires in wild-type mice (i.e., Wt.TR2 vs
Wt.TN2). Right panel: kernel-density-smoothed heat-map for the same size sample
simulated from the distribution of BPLN random variable fitted to the data. Increased
brightness indicates higher frequency. The smoothed intensities are truncated to the
nonnegative support of the original distributions for better visualization.
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Figure 3. Repertoire dendrograms and their confidence bounds obtained under BPLN model in
CD4+ dataset
Dendrograms for hierarchical clustering and their corresponding confidence intervals
obtained using agglomerative clustering and a complete link for eight repertoires of naive
and regulatory TCRs derived from (1) lymph nodes and (2) thymus in wild-type and Ep
TCR-mini mice (cf. Figure 1). Top (A) panels: (A1) – clustering using Morisita-Horn
dissimilarity measure  given by (3.3); (A2) – bootstrap estimate of the one-sided 95%
confidence interval (CI) of the Frobenius norm of the -dissimilarity matrix; (A3) –
dendrogram corresponding to the upper bound of the one-sided 95% CI -dissimilarity
matrix. Bottom (B) panels: hierarchical clustering according to the parametric mutual
information dissimilarity measure  given by (3.6).
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Figure 4. Pairwise comparison of dissimilarities under BPLN model in CD4+ dataset
Below-diagonal panels: pairwise dissimilarities plots obtained under BPLN models fitted to
mice data for the four different  measures discussed in Section 3.1. Local (loess)
regression curves were added to the plots for better readability. Above-diagonal panels:
Spearman’s correlation coefficient values for the corresponding scatter plots.
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Figure 5. Morisita-Horn ( ) dissimilarities under parametric and non-parametric models in
CD4+ dataset
Scatter plot along with the local (loess) regression curve for pairwise dissimilarities between
eight repertoires computed under parametric (labeled M-H) and non-parametric (labeled Np.
M-H) models using Morisita-Horn index as given by (3.3). In the non-parametric case the
joined probabilities pθ(k; l) are estimated by the corresponding joined frequencies.
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Figure 6. Repertoire dendrograms and their confidence bounds under non-parametric measures
of dissimilarity in CD4+ dataset
Dendrograms under various dissimilarity measures obtained from the non-parametric
analogue of the model (3.11) using agglomerative clustering and the complete link. The
dendrograms in panels (A1), (B1), and (C1) were obtained using the point estimates of the
dissimilarity matrix calculated from the data, whereas the most right ones (A3), (B3), and
(C3) were obtained using upper 95% confidence bound on the Frobenius norm distribution
of the dissimilarity matrix. The corresponding bootstrap estimates of the entire norm
distribution are provided in the center panels (A2), (B2), and (C2) as density estimators,
with 95% bound marked with a vertical line. Top (A) panels: hierarchical clusters based on
the nonparametric version of the Morisita-Horn dissimilarity index (3.3). Center (B) panels:
clusters based on the non-parametric version of the mutual information dissimilarity (3.6).
Bottom (C) panels: clusters based on the values of the Shannon entropy function with no
direct pairwise comparisons.
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Figure 7. Results for CD8+ dataset analysis
Left panels: Marginal empirical counts for individual clonotypes in TCR-mini mouse CD8+
dataset. To illustrate the separation of TCRs, both sets of observed clonotype frequencies
were jointly sorted by decreasing Wt and Ep clonal counts. Top (A) panels: bootstrap
estimates of the distributions for M-H and MI dissimilarities under BPLN. Bottom (B)
panels: bootstrap estimates of the distributions for M-H and MI dissimilarities under non-
parametric model. Given the pattern of frequencies, the dissimilarity distributions are
expected to concentrate around unity. Note very poor performance of the non-parametric MI
dissimilarity in this regard and a very good one of its BPLN counterpart. The nonparametric
M-H dissimilarity distribution (B1) seems to be shifted to the left, as compared to the
BPLN-based distributions (A1–A2). To facilitate comparisons, the 10%, 50%, and 90%
quantiles are marked as dashed vertical lines in (A–B) panels.
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Table 3

The estimated cophenetic correlation coefficients  and  for the dissimilarity measures  and 
under the BPLN model. The bias-corrected bootstrap percentile method was used to derive the 95%
confidence intervals.

Value 95% Lo 95% Up

0.970 0.901 0.984

0.939 0.877 0.966
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Table 4

The estimated cophenetic correlation coefficients  and  for the non-parametric dissimilarity measures
 and , respectively. The bias-corrected bootstrap percentile method was used to derive the 95%

confidence intervals. The estimated values of the correlation coefficients are seen to be lower than the ones
computed under the parametric model and presented in Table 3. For the MI-based dissimilarity the cophenetic
correlation value indicates very serious lack of agreement between the pairwise dissimilarities and the
dendrogram structure.

Value 95% Lo 95% Up

0.943 0.863 0.959

0.274 0.200 0.441
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Table 6

Comparison of the estimated values of M-H and MI-based dissimilarities under BPLN and non-parametric
(NP) models for CD8+ data. The confidence intervals are obtained via the bias-corrected, non-parametric
bootstrap method. The corresponding bootstrap distributions of the dissimilarity measures are presented in
panels (A) and (B) of Figure 7.

M-H Dis. MI Dis.

BPLN 0.974 (0.937, 0.994) 0.977 (0.966, 0.998)

NP 0.945 (0.913, 0.972) 0.596 (0.583, 0.666)
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