Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 18;66(Pt 7):o1707–o1708. doi: 10.1107/S1600536810022804

Ammonium [(1S)-(endo,anti)]-(−)-3-bromo­camphor-8-sulfonate

Muhammad Athar Abbasi a,, Aziz-ur-Rehman a, Mehmet Akkurt b,*, Muhammad Jahangir a, Seik Weng Ng c, Islam Ullah Khan a
PMCID: PMC3006721  PMID: 21587927

Abstract

In the title mol­ecular salt, NH4 +·C10H14BrO4S, the norbornane skeleton of the anion is composed of two five-membered rings in envelope conformations and a six-membered ring with one Br atom, one carbonyl O atom and a methyl group held in a boat conformation by a bridging methyl­ene group. Short intra­molecular C—H⋯O and C—H⋯Br inter­actions occur. In the crystal, the component ions are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For further synthetic details, see: Smith et al. (2008). For other structures with the norbornane skeleton, see: Jauch et al. (1992); Ustabaş et al. (2006); Ersanlı et al. (2005). For the use of 3-bromo­camphor-8-sulfonic acid and its ammonium salts as chiral auxillaries for the optical resolution of enanti­omeric amines through diasteriomeric salt formation, see: Bálint et al. (1999); Pellati et al. (2010); Roy et al. (2009); Zhao et al. (2002). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-o1707-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C10H14BrO4S

  • M r = 328.22

  • Monoclinic, Inline graphic

  • a = 7.2449 (2) Å

  • b = 7.0049 (1) Å

  • c = 13.2428 (3) Å

  • β = 104.704 (1)°

  • V = 650.06 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 296 K

  • 0.42 × 0.14 × 0.11 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995) T min = 0.336, T max = 0.711

  • 2775 measured reflections

  • 2775 independent reflections

  • 2586 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.065

  • S = 1.03

  • 2775 reflections

  • 168 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983), 1155 Freidel pairs

  • Flack parameter: −0.021 (7)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022804/hb5484sup1.cif

e-66-o1707-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022804/hb5484Isup2.hkl

e-66-o1707-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.92 (3) 1.92 (3) 2.835 (4) 173 (3)
N1—H2N⋯O2ii 0.90 (3) 2.05 (3) 2.899 (3) 157 (3)
N1—H3N⋯O2 0.92 (3) 1.97 (3) 2.887 (3) 176 (3)
N1—H4N⋯O3iii 0.92 (3) 1.93 (3) 2.827 (3) 167 (4)
C4—H4B⋯Br1 0.97 2.71 3.221 (3) 113
C8—H8A⋯O2 0.96 2.44 3.104 (3) 126
C10—H10⋯O1i 0.98 2.49 3.451 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

3-Bromocamphor-8-sulfonic acid and its ammonium salts have extensively been used as chiral auxillaries for the optical resolution of a number of enantiomeric amines through diasteriomeric salt formation (Bálint et al., 1999; Zhao et al., 2002; Roy et al., 2009; Pellati et al., 2010).

In the bicyclo[2.2.1]heptane (norbornane) skeleton of the title compound, (I), (Fig. 1), the two five-membered rings have envelope conformations, with atom C2 displaced by 0.365 (3) Å from the C2–C6 plane [the puckering parameters (Cremer & Pople, 1975) are Q2 = 0.573 (3) Å and φ2 = 5.3 (3)°] and by 0.397 (3) Å from the C2/C3/C6/C9/C10 plane [the puckering parameters: Q2 = 0.615 (3) Å and φ2 = 181.6 (3)°] and the six-membered ring (C3–C6/C9/C10) adopts a boat conformation by the puckering parameters QT = 0.970 (3) Å, θ = 92.03 (18)° and φ = 357.34 (19) °.

In (I), the C—C single-bond lengths range from 1.491 (5) to 1.575 (4) Å, with a mean value of 1.535 (4) Å. In the bicyclo[2.2.1]heptane fragment, the angles between planes A (C3/C2/C6), B (C3–C6) and C (C3/C6/C9/C10) are as follows: A/B= 53.65 (19)°, A/C= 58.14 (18)° and B/C= 68.22 (13)°.

In the crystal, adjacent molecules of (I) are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

3-Bromocamphor-8-sulfonic acid ammonium salt was prepared by modification in the reported method (Smith et al., 2008). 3-Bromocamphor-8-sulfonic acid (1 g) was dissolved in 15 ml of ethanol and then 6 ml of NH3 solution were added. The mixture was stirred until a clear solution was observed (about 20 min). The solution was slowly concentrated on water bath to half the volume over a 2 h period. The concentrate was allowed to crystallize undisturbed for 48 h. The resulting colourless prisms of (I) were carefully separated by filteration and washed with three 0.5-ml portions of petroleum ether.

Refinement

In the ammonium ion, H atoms bound to N atoms were located in difference Fourier maps and their positional parameters were refined freely using a DFIX instruction [N—H = 0.93 (3) Å] in SHELXL97, with Uiso(H) = 1.5Ueq(N). H atoms bound to C atoms were placed in idealized positions and refined using a riding model with C—H = 0.96, 0.97 and 0.98 Å for CH3, CH2 and CH, respectively. Uiso(H) values were set at 1.5Ueq(C) for the methyl groups, and 1.2UeqUeq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed down the b-axis. The hydrogen-bonds are drawn as a dashed lines. H-atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

NH4+·C10H14BrO4S F(000) = 336
Mr = 328.22 Dx = 1.677 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 3356 reflections
a = 7.2449 (2) Å θ = 2.9–28.3°
b = 7.0049 (1) Å µ = 3.33 mm1
c = 13.2428 (3) Å T = 296 K
β = 104.704 (1)° Prism, colourless
V = 650.06 (3) Å3 0.42 × 0.14 × 0.11 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 2775 independent reflections
Radiation source: sealed tube 2586 reflections with I > 2σ(I)
graphite Rint = 0.0000
φ and ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters) h = −9→9
Tmin = 0.336, Tmax = 0.711 k = −8→9
2775 measured reflections l = 0→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.033P)2 + 0.1814P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2775 reflections Δρmax = 0.35 e Å3
168 parameters Δρmin = −0.47 e Å3
5 restraints Absolute structure: Flack (1983), 1155 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.021 (7)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.09450 (4) 0.00017 (4) 0.27520 (3) 0.0440 (1)
S1 0.65799 (9) 0.68509 (9) 0.36429 (5) 0.0242 (2)
O1 0.7216 (3) 0.8793 (3) 0.3541 (2) 0.0434 (8)
O2 0.8199 (3) 0.5560 (3) 0.39714 (16) 0.0332 (6)
O3 0.5283 (3) 0.6697 (4) 0.42972 (17) 0.0448 (8)
O4 0.2268 (4) 0.0517 (4) 0.0568 (2) 0.0596 (10)
C1 0.5311 (4) 0.6201 (4) 0.2339 (2) 0.0277 (8)
C2 0.4754 (4) 0.4086 (4) 0.2154 (2) 0.0213 (7)
C3 0.3597 (3) 0.3263 (4) 0.2899 (2) 0.0223 (7)
C4 0.1802 (4) 0.4500 (4) 0.2647 (2) 0.0272 (8)
C5 0.1351 (4) 0.4758 (5) 0.1462 (2) 0.0352 (9)
C6 0.3067 (4) 0.3804 (4) 0.1148 (2) 0.0310 (9)
C7 0.3318 (6) 0.4411 (6) 0.0112 (2) 0.0519 (13)
C8 0.6514 (4) 0.2949 (4) 0.2067 (2) 0.0316 (9)
C9 0.2719 (4) 0.1690 (5) 0.1248 (2) 0.0342 (9)
C10 0.3097 (4) 0.1283 (4) 0.2418 (2) 0.0298 (8)
N1 0.8032 (3) 0.1906 (4) 0.4952 (2) 0.0311 (7)
H1A 0.41550 0.69600 0.21450 0.0330*
H1B 0.60920 0.65480 0.18710 0.0330*
H3 0.42880 0.32500 0.36380 0.0270*
H4A 0.20390 0.57210 0.30010 0.0330*
H4B 0.07600 0.38650 0.28480 0.0330*
H5A 0.12590 0.61000 0.12770 0.0420*
H5B 0.01620 0.41320 0.11210 0.0420*
H7A 0.22080 0.40620 −0.04250 0.0780*
H7B 0.44200 0.37920 −0.00150 0.0780*
H7C 0.34880 0.57700 0.01080 0.0780*
H8A 0.74270 0.29220 0.27340 0.0470*
H8B 0.70750 0.35440 0.15630 0.0470*
H8C 0.61420 0.16680 0.18500 0.0470*
H10 0.42240 0.04610 0.26290 0.0360*
H1N 0.775 (5) 0.096 (4) 0.445 (2) 0.0470*
H2N 0.914 (4) 0.170 (6) 0.543 (2) 0.0470*
H3N 0.806 (5) 0.305 (4) 0.461 (3) 0.0470*
H4N 0.706 (4) 0.195 (6) 0.528 (3) 0.0470*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0329 (2) 0.0300 (2) 0.0673 (2) −0.0085 (1) 0.0093 (1) 0.0087 (2)
S1 0.0199 (3) 0.0209 (3) 0.0303 (3) −0.0028 (2) 0.0036 (2) −0.0024 (3)
O1 0.0492 (13) 0.0217 (11) 0.0526 (15) −0.0096 (9) 0.0007 (11) −0.0030 (9)
O2 0.0246 (9) 0.0298 (11) 0.0393 (12) 0.0024 (7) −0.0029 (8) −0.0036 (8)
O3 0.0304 (10) 0.0674 (17) 0.0391 (13) −0.0101 (11) 0.0133 (9) −0.0175 (12)
O4 0.0552 (15) 0.060 (2) 0.0580 (16) −0.0138 (12) 0.0042 (12) −0.0336 (13)
C1 0.0241 (13) 0.0248 (14) 0.0298 (15) −0.0018 (11) −0.0010 (11) 0.0010 (11)
C2 0.0168 (12) 0.0239 (13) 0.0226 (13) −0.0016 (10) 0.0041 (10) −0.0026 (10)
C3 0.0170 (11) 0.0207 (12) 0.0274 (14) −0.0020 (9) 0.0022 (10) −0.0004 (10)
C4 0.0184 (11) 0.0235 (15) 0.0403 (16) 0.0017 (9) 0.0084 (10) −0.0020 (11)
C5 0.0222 (12) 0.0368 (19) 0.0406 (16) 0.0024 (13) −0.0030 (11) 0.0017 (14)
C6 0.0239 (13) 0.0409 (17) 0.0248 (15) −0.0040 (12) −0.0002 (11) −0.0024 (12)
C7 0.056 (2) 0.070 (3) 0.0247 (17) −0.0134 (18) 0.0011 (15) 0.0033 (15)
C8 0.0206 (13) 0.0359 (16) 0.0382 (17) −0.0007 (12) 0.0074 (11) −0.0104 (13)
C9 0.0198 (12) 0.0392 (17) 0.0405 (16) −0.0051 (12) 0.0018 (11) −0.0130 (14)
C10 0.0213 (12) 0.0212 (13) 0.0444 (17) −0.0006 (10) 0.0039 (11) −0.0016 (11)
N1 0.0266 (12) 0.0334 (13) 0.0329 (13) 0.0019 (11) 0.0066 (10) 0.0030 (11)

Geometric parameters (Å, °)

Br1—C10 1.945 (3) C6—C7 1.491 (4)
S1—O1 1.454 (2) C6—C9 1.514 (4)
S1—O2 1.457 (2) C9—C10 1.530 (4)
S1—O3 1.435 (2) C1—H1B 0.9700
S1—C1 1.797 (3) C1—H1A 0.9700
O4—C9 1.201 (4) C3—H3 0.9800
N1—H1N 0.92 (3) C4—H4B 0.9700
N1—H2N 0.90 (3) C4—H4A 0.9700
N1—H3N 0.92 (3) C5—H5A 0.9700
N1—H4N 0.92 (3) C5—H5B 0.9700
C1—C2 1.539 (4) C7—H7A 0.9600
C2—C3 1.558 (4) C7—H7B 0.9600
C2—C6 1.575 (4) C7—H7C 0.9600
C2—C8 1.532 (4) C8—H8B 0.9600
C3—C4 1.527 (4) C8—H8C 0.9600
C3—C10 1.531 (4) C8—H8A 0.9600
C4—C5 1.530 (4) C10—H10 0.9800
C5—C6 1.558 (4)
O1—S1—O2 111.00 (13) C3—C10—C9 102.4 (2)
O1—S1—O3 113.46 (15) S1—C1—H1B 108.00
O1—S1—C1 104.17 (14) S1—C1—H1A 108.00
O2—S1—O3 111.96 (14) C2—C1—H1A 108.00
O2—S1—C1 107.84 (13) C2—C1—H1B 108.00
O3—S1—C1 107.92 (14) H1A—C1—H1B 107.00
H3N—N1—H4N 109 (3) C10—C3—H3 114.00
H2N—N1—H4N 109 (3) C4—C3—H3 114.00
H1N—N1—H3N 107 (3) C2—C3—H3 115.00
H1N—N1—H4N 108 (3) C5—C4—H4A 111.00
H1N—N1—H2N 113 (3) C3—C4—H4B 111.00
H2N—N1—H3N 111 (3) C3—C4—H4A 111.00
S1—C1—C2 116.52 (19) C5—C4—H4B 111.00
C1—C2—C8 108.8 (2) H4A—C4—H4B 109.00
C1—C2—C6 111.8 (2) H5A—C5—H5B 109.00
C1—C2—C3 114.6 (2) C4—C5—H5A 111.00
C6—C2—C8 110.7 (2) C4—C5—H5B 111.00
C3—C2—C6 93.6 (2) C6—C5—H5A 111.00
C3—C2—C8 116.6 (2) C6—C5—H5B 111.00
C4—C3—C10 108.9 (2) H7B—C7—H7C 109.00
C2—C3—C4 102.5 (2) C6—C7—H7C 109.00
C2—C3—C10 100.4 (2) C6—C7—H7A 110.00
C3—C4—C5 103.9 (2) C6—C7—H7B 109.00
C4—C5—C6 104.2 (2) H7A—C7—H7B 109.00
C7—C6—C9 114.9 (3) H7A—C7—H7C 109.00
C2—C6—C7 119.5 (3) C2—C8—H8B 109.00
C2—C6—C5 102.8 (2) C2—C8—H8A 109.00
C5—C6—C9 103.6 (2) H8A—C8—H8C 109.00
C2—C6—C9 99.2 (2) C2—C8—H8C 109.00
C5—C6—C7 114.5 (3) H8A—C8—H8B 109.00
O4—C9—C6 128.6 (3) H8B—C8—H8C 110.00
O4—C9—C10 125.2 (3) C9—C10—H10 109.00
C6—C9—C10 106.3 (2) Br1—C10—H10 109.00
Br1—C10—C3 116.24 (18) C3—C10—H10 109.00
Br1—C10—C9 111.62 (19)
O1—S1—C1—C2 169.7 (2) C2—C3—C4—C5 39.1 (3)
O2—S1—C1—C2 51.7 (2) C10—C3—C4—C5 −66.7 (3)
O3—S1—C1—C2 −69.4 (3) C2—C3—C10—Br1 −159.47 (17)
S1—C1—C2—C3 54.3 (3) C2—C3—C10—C9 −37.5 (3)
S1—C1—C2—C6 159.2 (2) C4—C3—C10—Br1 −52.3 (3)
S1—C1—C2—C8 −78.2 (3) C4—C3—C10—C9 69.7 (3)
C1—C2—C3—C4 61.2 (3) C3—C4—C5—C6 −5.6 (3)
C1—C2—C3—C10 173.5 (2) C4—C5—C6—C2 −29.3 (3)
C6—C2—C3—C4 −54.8 (2) C4—C5—C6—C7 −160.5 (3)
C6—C2—C3—C10 57.5 (2) C4—C5—C6—C9 73.6 (3)
C8—C2—C3—C4 −170.0 (2) C2—C6—C9—O4 −144.1 (3)
C8—C2—C3—C10 −57.8 (3) C2—C6—C9—C10 34.8 (3)
C1—C2—C6—C5 −67.8 (3) C5—C6—C9—O4 110.3 (4)
C1—C2—C6—C7 60.4 (4) C5—C6—C9—C10 −70.9 (3)
C1—C2—C6—C9 −174.0 (2) C7—C6—C9—O4 −15.4 (5)
C3—C2—C6—C5 50.6 (2) C7—C6—C9—C10 163.5 (3)
C3—C2—C6—C7 178.7 (3) O4—C9—C10—Br1 −54.7 (4)
C3—C2—C6—C9 −55.7 (2) O4—C9—C10—C3 −179.8 (3)
C8—C2—C6—C5 170.7 (2) C6—C9—C10—Br1 126.4 (2)
C8—C2—C6—C7 −61.1 (4) C6—C9—C10—C3 1.3 (3)
C8—C2—C6—C9 64.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.92 (3) 1.92 (3) 2.835 (4) 173 (3)
N1—H2N···O2ii 0.90 (3) 2.05 (3) 2.899 (3) 157 (3)
N1—H3N···O2 0.92 (3) 1.97 (3) 2.887 (3) 176 (3)
N1—H4N···O3iii 0.92 (3) 1.93 (3) 2.827 (3) 167 (4)
C4—H4B···Br1 0.97 2.71 3.221 (3) 113
C8—H8A···O2 0.96 2.44 3.104 (3) 126
C10—H10···O1i 0.98 2.49 3.451 (4) 167

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5484).

References

  1. Bálint, J., Egri, G., Fogassy, E., Böcskei, Z., Simon, K., Gajáry, A. & Friesz, A. (1999). Tetrahedron Asymmetry, 10, 1079–1087.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Ersanlı, C. C., Çoruh, U., Hökelek, T., Vázquez-López, E. M. & Daştan, A. (2005). Acta Cryst. E61, o263–o265.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Jauch, J., Laderer, H. & Walz, L. (1992). Acta Cryst. C48, 1246–1248.
  9. Nardelli, M. (1983). Comput. Chem.7, 95–98.
  10. Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  11. Pellati, F., Cannazza, G. & Benvenuti, S. (2010). J. Chromatogr. A, 1217, 3503–3510. [DOI] [PubMed]
  12. Roy, B. N., Singh, G. P., Srivastava, D., Jadhav, H. S., Saini, M. B. & Aher, P. (2009). Org. Process Res. Dev.13, 450–455.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Smith, E. D., Vinson, N. A., Zhong, D., Berrang, B. D., Catanzaro, J. L., Thomas, J. B., Navarro, H. A., Gilmour, B. P., Deschamps, J. & Carroll, F. I. (2008). Bioorg. Med. Chem.16, 822–829. [DOI] [PMC free article] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Ustabaş, R., Çoruh, U., Yavuz, M., Salamci, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o1149–o1150.
  17. Zhao, M. M., McNamara, J. M., Ho, G.-J., Emerson, K. M., Song, Z. J., Tschaen, D. M., Brands, K. M. J., Dolling, U.-H., Grabowski, E. J. J. & Reider, P. J. (2002). J. Org. Chem.67, 6743–6747. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022804/hb5484sup1.cif

e-66-o1707-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022804/hb5484Isup2.hkl

e-66-o1707-Isup2.hkl (136.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES