Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 5;66(Pt 7):m723. doi: 10.1107/S1600536810019963

[5,10,15,20-Tetra­kis(4-tol­yl)porphyrin]zinc(II) dichloro­methane solvate

Sean McGill a, Vladimir N Nesterov b, Stephanie L Gould a,*
PMCID: PMC3006952  PMID: 21587669

Abstract

In the title complex, [Zn(C48H36N4)]·CH2Cl2, the ZnII atom lies on an inversion center and the dichloro­methane solvent mol­ecule is disordered around an inversion center. The tolyl substituents are twisted compared to the central aromatic ring system of the porphyrin, similar to what is seen in previously published structures of this molecule [Dastidar & Goldberg (1996). Acta Cryst. C52, 1976–1980]. The dihedral angles between the mean planes of the tolyl rings and the central ring are 66.98 (6) and 60.40 (6)°.

Related literature

For other solvates of this mol­ecule see: Dastidar & Goldberg (1996). For similar structures of ligand-bridged porphyrin sandwich-type structures, see: Diskin-Posner et al. (2002); Mak et al. (1998); Kieran et al. (2005); Dastidar et al. (1996). For the synthesis of the title compound, see: Adler et al. (1967). graphic file with name e-66-0m723-scheme1.jpg

Experimental

Crystal data

  • [Zn(C48H36N4)]·CH2Cl2

  • M r = 819.10

  • Monoclinic, Inline graphic

  • a = 14.349 (2) Å

  • b = 8.5273 (14) Å

  • c = 15.637 (3) Å

  • β = 94.995 (2)°

  • V = 1906.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2001) T min = 0.880, T max = 0.930

  • 16249 measured reflections

  • 3901 independent reflections

  • 3533 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.094

  • S = 1.00

  • 3901 reflections

  • 261 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019963/nk2033sup1.cif

e-66-0m723-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019963/nk2033Isup2.hkl

e-66-0m723-Isup2.hkl (191.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was funded by in part by the National Science Foundation (CHE-0924153) and a chemistry department grant from the Welch Foundation (AD-0007). The X-ray data were collected at the University of North Texas.

supplementary crystallographic information

Comment

While pursing ligand bridged porphyrin sandwich-type supramolecular structures, similar to those created by Diskin-Posner et al. (2002), Mak et al. (1998) and Kieran et al. (2005), we sought to crystallize zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin with pyrazine. The resulting deep red crystals that formed were found not to contain any pyrazine, but contained a well ordered porphyrin structure different than those previously published (Dastidar & Goldberg, 1996). The role of the pyrazine in the crystal deposition is unknown and will be explored further as the same crystals can not be obtained without the compound being present.

The title porphyrin (Figure 1) has a zinc atom located at the center of the porphyrin framework in near exact planarity to the porphyrin. The tolyl substituents are angled compared to the central aromatic ring of the porphyrin, similar to what is seen in previously published structures (Dastidar & Goldberg, 1996). The dihedral angles between the mean planes of the peripheral rings to the central ring are 66.98 (6) and 60.40 (6) °.

Experimental

The synthesis of zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin was carried out according literature procedures (Adler et al., 1967). Dark red crystals were grown by liquid diffusion of methanol into a dichloromethane solution containing 20 mg of zinc 5,10,15,20-tetrakis(4'- tolyl)porphyrin and 2 mg of pyrazine.

Refinement

The dichloromethane solvent molecule is disordered around a center of inversion. Non-hydrogen atoms were refined anisotropically with an occupation factor of 0.5 for C and 1.0 for Cl. All C-bound H atoms were placed in idealized positions (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms. H atoms were constrained so that Uiso(H) were equal to 1.2Ueq or 1.5Ueq of their respective parent atoms.

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot of zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin (50% probability displacement ellipsoids). Unlabled atoms are related to labeled atoms by inversion symmetry.

Crystal data

[Zn(C48H36N4)]·CH2Cl2 F(000) = 848
Mr = 819.10 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8831 reflections
a = 14.349 (2) Å θ = 2.6–26.1°
b = 8.5273 (14) Å µ = 0.83 mm1
c = 15.637 (3) Å T = 100 K
β = 94.995 (2)° Block, red
V = 1906.1 (5) Å3 0.16 × 0.13 × 0.09 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 3901 independent reflections
Radiation source: fine-focus sealed tube 3533 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 26.4°, θmin = 2.6°
Absorption correction: numerical (SADABS; Bruker, 2001) h = −17→17
Tmin = 0.880, Tmax = 0.930 k = −10→10
16249 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2 + 5.P] where P = (Fo2 + 2Fc2)/3
3901 reflections (Δ/σ)max = 0.002
261 parameters Δρmax = 0.95 e Å3
1 restraint Δρmin = −1.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.5000 0.5000 0.5000 0.01504 (11)
N1 0.43558 (13) 0.5556 (2) 0.38246 (11) 0.0164 (4)
N2 0.37660 (13) 0.5259 (2) 0.55317 (11) 0.0164 (4)
C1 0.27573 (15) 0.6038 (3) 0.42370 (14) 0.0168 (4)
C2 0.34261 (16) 0.5909 (3) 0.36365 (14) 0.0170 (4)
C3 0.32403 (16) 0.6157 (3) 0.27249 (14) 0.0193 (5)
H3A 0.2649 0.6380 0.2428 0.023*
C4 0.40637 (16) 0.6012 (3) 0.23723 (14) 0.0187 (5)
H4A 0.4163 0.6145 0.1784 0.022*
C5 0.47622 (16) 0.5618 (3) 0.30559 (14) 0.0167 (4)
C6 0.57093 (15) 0.5358 (3) 0.29533 (14) 0.0163 (4)
C7 0.60335 (15) 0.5564 (3) 0.20727 (14) 0.0165 (4)
C8 0.57431 (16) 0.4550 (3) 0.14006 (14) 0.0182 (5)
H8A 0.5322 0.3721 0.1496 0.022*
C9 0.60651 (16) 0.4740 (3) 0.05923 (14) 0.0197 (5)
H9A 0.5861 0.4036 0.0143 0.024*
C10 0.66818 (16) 0.5946 (3) 0.04310 (14) 0.0208 (5)
C11 0.69649 (17) 0.6956 (3) 0.11008 (15) 0.0215 (5)
H11A 0.7385 0.7785 0.1005 0.026*
C12 0.66440 (16) 0.6775 (3) 0.19122 (14) 0.0194 (5)
H12A 0.6844 0.7485 0.2359 0.023*
C13 0.7035 (2) 0.6148 (3) −0.04444 (15) 0.0301 (6)
H13A 0.7502 0.6989 −0.0422 0.045*
H13B 0.6511 0.6420 −0.0863 0.045*
H13C 0.7321 0.5167 −0.0617 0.045*
C14 0.29318 (16) 0.5754 (3) 0.51224 (14) 0.0171 (4)
C15 0.22477 (16) 0.5933 (3) 0.57396 (14) 0.0189 (5)
H15A 0.1622 0.6288 0.5625 0.023*
C16 0.26662 (16) 0.5501 (3) 0.65116 (14) 0.0191 (5)
H16A 0.2384 0.5474 0.7039 0.023*
C17 0.36176 (15) 0.5088 (3) 0.63887 (14) 0.0167 (4)
C18 0.17871 (15) 0.6502 (3) 0.39095 (14) 0.0181 (5)
C19 0.16187 (16) 0.7945 (3) 0.35042 (14) 0.0207 (5)
H19A 0.2122 0.8654 0.3455 0.025*
C20 0.07234 (17) 0.8357 (3) 0.31716 (15) 0.0246 (5)
H20A 0.0626 0.9335 0.2887 0.030*
C21 −0.00341 (17) 0.7362 (3) 0.32472 (15) 0.0247 (5)
C22 0.01316 (17) 0.5947 (3) 0.36693 (15) 0.0241 (5)
H22A −0.0378 0.5260 0.3739 0.029*
C23 0.10252 (16) 0.5513 (3) 0.39923 (15) 0.0208 (5)
H23A 0.1120 0.4531 0.4273 0.025*
C24 −0.10064 (18) 0.7807 (4) 0.28820 (18) 0.0340 (6)
H24A −0.1464 0.7423 0.3262 0.051*
H24B −0.1133 0.7336 0.2312 0.051*
H24C −0.1053 0.8951 0.2835 0.051*
Cl1 −0.00291 (18) 1.13537 (18) 0.44337 (11) 0.1434 (9)
C1A 0.0459 (5) 0.9997 (10) 0.5120 (5) 0.081 (3) 0.50
H1AA 0.0352 1.0697 0.5615 0.098* 0.50
H1AB 0.0987 0.9580 0.4859 0.098* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01529 (18) 0.01885 (19) 0.01128 (17) 0.00098 (14) 0.00281 (13) 0.00119 (14)
N1 0.0164 (9) 0.0193 (9) 0.0138 (9) 0.0001 (7) 0.0031 (7) 0.0008 (7)
N2 0.0166 (9) 0.0203 (10) 0.0125 (9) 0.0004 (7) 0.0022 (7) 0.0014 (7)
C1 0.0173 (11) 0.0175 (11) 0.0157 (10) −0.0008 (9) 0.0020 (8) 0.0009 (9)
C2 0.0181 (11) 0.0176 (11) 0.0154 (10) −0.0011 (9) 0.0014 (8) 0.0007 (8)
C3 0.0199 (11) 0.0226 (12) 0.0150 (11) 0.0003 (9) −0.0001 (9) 0.0007 (9)
C4 0.0213 (11) 0.0217 (12) 0.0132 (10) 0.0009 (9) 0.0017 (8) 0.0010 (9)
C5 0.0203 (11) 0.0165 (11) 0.0136 (10) −0.0008 (9) 0.0026 (8) 0.0001 (8)
C6 0.0192 (11) 0.0159 (11) 0.0139 (10) −0.0013 (8) 0.0033 (8) −0.0006 (8)
C7 0.0166 (10) 0.0198 (11) 0.0133 (10) 0.0038 (9) 0.0029 (8) 0.0020 (8)
C8 0.0173 (11) 0.0202 (11) 0.0170 (11) 0.0007 (9) 0.0007 (8) 0.0011 (9)
C9 0.0211 (11) 0.0234 (12) 0.0144 (10) 0.0034 (9) 0.0011 (8) −0.0024 (9)
C10 0.0225 (12) 0.0255 (12) 0.0150 (11) 0.0058 (10) 0.0046 (9) 0.0034 (9)
C11 0.0235 (12) 0.0219 (12) 0.0200 (11) −0.0018 (10) 0.0064 (9) 0.0034 (9)
C12 0.0218 (11) 0.0211 (12) 0.0156 (11) −0.0004 (9) 0.0029 (9) −0.0014 (9)
C13 0.0384 (15) 0.0363 (15) 0.0172 (12) −0.0014 (12) 0.0106 (11) 0.0014 (11)
C14 0.0176 (11) 0.0179 (11) 0.0162 (11) −0.0008 (9) 0.0034 (8) 0.0001 (9)
C15 0.0165 (11) 0.0232 (12) 0.0175 (11) 0.0014 (9) 0.0041 (8) 0.0006 (9)
C16 0.0198 (11) 0.0230 (12) 0.0151 (10) 0.0000 (9) 0.0048 (8) −0.0008 (9)
C17 0.0197 (11) 0.0172 (11) 0.0137 (10) −0.0007 (9) 0.0044 (8) −0.0009 (8)
C18 0.0173 (11) 0.0252 (12) 0.0120 (10) 0.0014 (9) 0.0021 (8) −0.0011 (9)
C19 0.0192 (11) 0.0253 (12) 0.0177 (11) −0.0014 (9) 0.0027 (9) 0.0022 (9)
C20 0.0241 (12) 0.0301 (13) 0.0195 (11) 0.0039 (10) 0.0020 (9) 0.0051 (10)
C21 0.0183 (11) 0.0389 (15) 0.0170 (11) 0.0026 (10) 0.0018 (9) 0.0002 (10)
C22 0.0192 (11) 0.0347 (14) 0.0186 (11) −0.0056 (10) 0.0030 (9) −0.0002 (10)
C23 0.0208 (11) 0.0237 (12) 0.0182 (11) −0.0015 (10) 0.0033 (9) 0.0009 (9)
C24 0.0191 (13) 0.0513 (18) 0.0311 (14) 0.0039 (12) −0.0009 (10) 0.0072 (13)
Cl1 0.272 (3) 0.0665 (9) 0.1016 (11) 0.0678 (12) 0.0716 (14) −0.0032 (8)
C1A 0.038 (4) 0.125 (8) 0.080 (6) 0.025 (5) −0.005 (4) −0.074 (6)

Geometric parameters (Å, °)

Zn1—N2 2.0326 (18) C13—H13A 0.9800
Zn1—N2i 2.0327 (18) C13—H13B 0.9800
Zn1—N1 2.0401 (18) C13—H13C 0.9800
Zn1—N1i 2.0402 (18) C14—C15 1.443 (3)
N1—C2 1.374 (3) C15—C16 1.352 (3)
N1—C5 1.382 (3) C15—H15A 0.9500
N2—C14 1.374 (3) C16—C17 1.439 (3)
N2—C17 1.383 (3) C16—H16A 0.9500
C1—C2 1.404 (3) C17—C6i 1.401 (3)
C1—C14 1.406 (3) C18—C23 1.396 (3)
C1—C18 1.494 (3) C18—C19 1.395 (3)
C2—C3 1.443 (3) C19—C20 1.389 (3)
C3—C4 1.352 (3) C19—H19A 0.9500
C3—H3A 0.9500 C20—C21 1.392 (4)
C4—C5 1.440 (3) C20—H20A 0.9500
C4—H4A 0.9500 C21—C22 1.386 (4)
C5—C6 1.400 (3) C21—C24 1.509 (3)
C6—C17i 1.401 (3) C22—C23 1.387 (3)
C6—C7 1.502 (3) C22—H22A 0.9500
C7—C12 1.391 (3) C23—H23A 0.9500
C7—C8 1.396 (3) C24—H24A 0.9800
C8—C9 1.392 (3) C24—H24B 0.9800
C8—H8A 0.9500 C24—H24C 0.9800
C9—C10 1.394 (3) Cl1—C1Aii 1.507 (9)
C9—H9A 0.9500 Cl1—C1A 1.688 (8)
C10—C11 1.389 (3) C1A—C1Aii 1.339 (14)
C10—C13 1.510 (3) C1A—Cl1ii 1.507 (9)
C11—C12 1.396 (3) C1A—H1AA 1.0000
C11—H11A 0.9500 C1A—H1AB 0.9592
C12—H12A 0.9500
N2—Zn1—N2i 180.00 (9) C10—C13—H13C 109.5
N2—Zn1—N1 90.04 (7) H13A—C13—H13C 109.5
N2i—Zn1—N1 89.96 (7) H13B—C13—H13C 109.5
N2—Zn1—N1i 89.96 (7) N2—C14—C1 125.8 (2)
N2i—Zn1—N1i 90.04 (7) N2—C14—C15 109.68 (19)
N1—Zn1—N1i 179.999 (1) C1—C14—C15 124.5 (2)
C2—N1—C5 106.32 (18) C16—C15—C14 107.1 (2)
C2—N1—Zn1 126.80 (14) C16—C15—H15A 126.5
C5—N1—Zn1 126.87 (15) C14—C15—H15A 126.5
C14—N2—C17 106.40 (18) C15—C16—C17 107.5 (2)
C14—N2—Zn1 126.70 (14) C15—C16—H16A 126.3
C17—N2—Zn1 126.74 (15) C17—C16—H16A 126.3
C2—C1—C14 124.9 (2) N2—C17—C6i 125.9 (2)
C2—C1—C18 117.52 (19) N2—C17—C16 109.37 (19)
C14—C1—C18 117.63 (19) C6i—C17—C16 124.7 (2)
N1—C2—C1 125.5 (2) C23—C18—C19 118.0 (2)
N1—C2—C3 109.62 (19) C23—C18—C1 121.5 (2)
C1—C2—C3 124.8 (2) C19—C18—C1 120.6 (2)
C4—C3—C2 107.3 (2) C20—C19—C18 120.7 (2)
C4—C3—H3A 126.4 C20—C19—H19A 119.6
C2—C3—H3A 126.4 C18—C19—H19A 119.6
C3—C4—C5 107.2 (2) C19—C20—C21 121.2 (2)
C3—C4—H4A 126.4 C19—C20—H20A 119.4
C5—C4—H4A 126.4 C21—C20—H20A 119.4
N1—C5—C6 125.5 (2) C22—C21—C20 117.9 (2)
N1—C5—C4 109.59 (19) C22—C21—C24 120.9 (2)
C6—C5—C4 124.9 (2) C20—C21—C24 121.2 (2)
C5—C6—C17i 124.9 (2) C21—C22—C23 121.4 (2)
C5—C6—C7 117.89 (19) C21—C22—H22A 119.3
C17i—C6—C7 117.16 (19) C23—C22—H22A 119.3
C12—C7—C8 118.4 (2) C22—C23—C18 120.8 (2)
C12—C7—C6 120.2 (2) C22—C23—H23A 119.6
C8—C7—C6 121.4 (2) C18—C23—H23A 119.6
C9—C8—C7 120.7 (2) C21—C24—H24A 109.5
C9—C8—H8A 119.7 C21—C24—H24B 109.5
C7—C8—H8A 119.7 H24A—C24—H24B 109.5
C8—C9—C10 121.1 (2) C21—C24—H24C 109.5
C8—C9—H9A 119.5 H24A—C24—H24C 109.5
C10—C9—H9A 119.5 H24B—C24—H24C 109.5
C11—C10—C9 118.0 (2) C1Aii—Cl1—C1A 49.1 (5)
C11—C10—C13 120.9 (2) C1Aii—C1A—Cl1ii 72.5 (8)
C9—C10—C13 121.1 (2) C1Aii—C1A—Cl1 58.4 (6)
C10—C11—C12 121.3 (2) Cl1ii—C1A—Cl1 130.9 (5)
C10—C11—H11A 119.4 C1Aii—C1A—H1AA 90.0
C12—C11—H11A 119.4 Cl1ii—C1A—H1AA 90.0
C7—C12—C11 120.6 (2) Cl1—C1A—H1AA 90.0
C7—C12—H12A 119.7 C1Aii—C1A—H1AB 132.6
C11—C12—H12A 119.7 Cl1ii—C1A—H1AB 106.5
C10—C13—H13A 109.5 Cl1—C1A—H1AB 106.4
C10—C13—H13B 109.5 H1AA—C1A—H1AB 137.0
H13A—C13—H13B 109.5
N2—Zn1—N1—C2 −0.55 (19) C9—C10—C11—C12 −0.1 (4)
N2i—Zn1—N1—C2 179.45 (19) C13—C10—C11—C12 −179.8 (2)
N2—Zn1—N1—C5 −178.92 (19) C8—C7—C12—C11 −0.7 (3)
N2i—Zn1—N1—C5 1.08 (19) C6—C7—C12—C11 178.6 (2)
N1—Zn1—N2—C14 −4.16 (19) C10—C11—C12—C7 0.5 (4)
N1i—Zn1—N2—C14 175.84 (19) C17—N2—C14—C1 −178.3 (2)
N1—Zn1—N2—C17 −178.82 (19) Zn1—N2—C14—C1 6.2 (3)
N1i—Zn1—N2—C17 1.18 (19) C17—N2—C14—C15 1.3 (3)
C5—N1—C2—C1 −177.5 (2) Zn1—N2—C14—C15 −174.23 (15)
Zn1—N1—C2—C1 3.9 (3) C2—C1—C14—N2 −2.4 (4)
C5—N1—C2—C3 1.6 (3) C18—C1—C14—N2 177.3 (2)
Zn1—N1—C2—C3 −177.08 (15) C2—C1—C14—C15 178.1 (2)
C14—C1—C2—N1 −3.0 (4) C18—C1—C14—C15 −2.2 (3)
C18—C1—C2—N1 177.3 (2) N2—C14—C15—C16 −1.8 (3)
C14—C1—C2—C3 178.1 (2) C1—C14—C15—C16 177.8 (2)
C18—C1—C2—C3 −1.5 (3) C14—C15—C16—C17 1.4 (3)
N1—C2—C3—C4 −2.3 (3) C14—N2—C17—C6i −178.2 (2)
C1—C2—C3—C4 176.7 (2) Zn1—N2—C17—C6i −2.6 (3)
C2—C3—C4—C5 2.0 (3) C14—N2—C17—C16 −0.4 (3)
C2—N1—C5—C6 179.0 (2) Zn1—N2—C17—C16 175.12 (15)
Zn1—N1—C5—C6 −2.4 (3) C15—C16—C17—N2 −0.7 (3)
C2—N1—C5—C4 −0.3 (3) C15—C16—C17—C6i 177.1 (2)
Zn1—N1—C5—C4 178.34 (15) C2—C1—C18—C23 118.4 (2)
C3—C4—C5—N1 −1.1 (3) C14—C1—C18—C23 −61.2 (3)
C3—C4—C5—C6 179.6 (2) C2—C1—C18—C19 −61.1 (3)
N1—C5—C6—C17i 3.6 (4) C14—C1—C18—C19 119.2 (2)
C4—C5—C6—C17i −177.3 (2) C23—C18—C19—C20 −1.9 (3)
N1—C5—C6—C7 −176.6 (2) C1—C18—C19—C20 177.7 (2)
C4—C5—C6—C7 2.5 (3) C18—C19—C20—C21 1.3 (4)
C5—C6—C7—C12 113.2 (2) C19—C20—C21—C22 0.3 (4)
C17i—C6—C7—C12 −67.0 (3) C19—C20—C21—C24 −179.7 (2)
C5—C6—C7—C8 −67.5 (3) C20—C21—C22—C23 −1.3 (4)
C17i—C6—C7—C8 112.3 (2) C24—C21—C22—C23 178.7 (2)
C12—C7—C8—C9 0.6 (3) C21—C22—C23—C18 0.7 (4)
C6—C7—C8—C9 −178.7 (2) C19—C18—C23—C22 0.9 (3)
C7—C8—C9—C10 −0.2 (3) C1—C18—C23—C22 −178.7 (2)
C8—C9—C10—C11 −0.1 (3) C1Aii—Cl1—C1A—Cl1ii 0.0
C8—C9—C10—C13 179.7 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2033).

References

  1. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem.32, 476–477.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dastidar, P. & Goldberg, I. (1996). Acta Cryst. C52, 1976–1980.
  5. Dastidar, P., Krupitsky, H., Stein, Z. & Goldberg, I. (1996). J. Incl. Phen. Mol. Recogn. Chem.24, 241–262.
  6. Diskin-Posner, Y., Patra, G. K. & Goldberg, I. (2002). CrystEngComm, 4, 296–301.
  7. Kieran, A. L., Pascu, S. I., Jarrosson, T. & Sanders, J. K. M. (2005). Chem. Commun. pp. 1276–1279. [DOI] [PubMed]
  8. Mak, C. C., Bampos, N. & Sanders, J. K. M. (1998). Angew. Chem. Int. Ed.37, 3020–3023. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019963/nk2033sup1.cif

e-66-0m723-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019963/nk2033Isup2.hkl

e-66-0m723-Isup2.hkl (191.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES