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Abstract
Reverse cholesterol transport (RCT) is a complex pro-
cess which transfers cholesterol from peripheral cells to 
the liver for subsequent elimination from the body via  
feces. Thyroid hormones (THs) affect growth, develop-
ment, and metabolism in almost all tissues. THs exert 
their actions by binding to thyroid hormone receptors 
(TRs). There are two major subtypes of TRs, TRα and 
TRβ, and several isoforms (e.g. TRα1, TRα2, TRβ1, and 
TRβ2). Activation of TRα1 affects heart rate, whereas 
activation of TRβ1 has positive effects on lipid and li-
poprotein metabolism. Consequently, particular interest 
has been focused on the development of thyromimetic 
compounds targeting TRβ1, not only because of their 
ability to lower plasma cholesterol but also due their 
ability to stimulate RCT, at least in pre-clinical models. 
In this review we focus on THs, TRs, and on the effects 
of TRβ1-modulating thyromimetics on RCT in various 
animal models and in humans. 
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INTRODUCTION
Cardiovascular disease (CVD), resulting from the progres-
sion of  atherosclerosis, is the leading cause of  mortality 
and is no longer a disease limited to Western countries 
(for data and statistics visit the World Health Organiza-
tion homepage at www.who.int). To date, the first treat-
ment choice in the prevention and treatment of  CVD are 
the 3-hydroxy-3-methylglutaryl coenzyme A reductase 
inhibitors, commonly known as statins[1]. These com-
pounds lower hepatic cholesterol levels by activation of  
sterol regulatory element binding protein 2 (SREBP2). 
Activation of  SREBP2 induces the expression of  the low 
density lipoprotein (LDL) receptor (LDLR), which results 
in increased uptake of  LDL-particles from plasma (see 
Figure 1 for a schematic representation of  lipoprotein 
metabolism). Newer drugs such as ezetimibe, which acts 
by blocking intestinal cholesterol uptake, have recently 
been proposed as complements to statin therapy. Despite 
these new therapeutic approaches there is still a demand 
for improved treatment strategies, especially in light of  the 
failure of  some clinical trials[2]. A long debated approach 
is to promote reverse cholesterol transport (RCT)[3]. RCT 
is a complex process which transfers cholesterol from pe-
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ripheral cells to the liver for subsequent elimination in the 
feces as bile acids and neutral steroids. RCT was originally 
proposed by Glomset[4] more than 40 years ago. Recently 
a non-biliary route for cholesterol elimination from the 
body has been described, named trans intestinal choles-
terol excretion (TICE), in which cholesterol can be trans-
ported directly from blood across the enterocytes into the 
intestinal lumen[5]. 

THYROID HORMONES AND THYROID 
HORMONE METABOLITES
Thyroid hormones (THs) have prominent effects on growth, 
development, and metabolism in almost all tissues[6,7].  
Thyroxine (T4) and triiodothyronine (T3) are synthesized by 
the thyroid gland and T4 is the major secreted hormone. 
Yet, T3 is classically considered as the active and more po-
tent hormone since it binds to thyroid hormone receptors 
(TRs) with higher affinity than T4. Selenoproteins known 
as deiodinases[8] convert T4 to T3 by 5’ deiodination of  
the outer ring of  molecules and regulate the local and 
systemic availability of  T3. Different types of  deiodinases 
exist: type Ⅰ are present in peripheral tissues including 
the liver; type Ⅱ are mainly present in the pituitary gland, 
brain, and brown adipose tissue; and type Ⅲ are present in 
the placenta, brain, and skin. Whereas type Ⅰ deiodinases 
convert T4 in the majority of  circulating T3, type Ⅱ de-
iodinases not only contribute to the circulating levels 
but also to the intracellular levels of  T3. Thus, type Ⅱ 
deiodinases confer to the tissues expressing this type of  
enzyme the ability to respond to circulating T4 without 
being obligated to circulating T3. Type Ⅲ deiodinases, 
together with type Ⅰ, convert T4 into reverse T3 (rT3). rT3 
was regarded as an inactive metabolite, since no metabolic 
effects of  rT3 has been reported, however, the discovery 
of  non-genomic actions of  rT3 on actin polymerization 
and microfilament organization in astrocytes and in the 
cerebellum[6,9] has shown that this molecule is active. In 
addition to deiodination, THs are metabolized by sulfation 
and glucuronidation[10]. These processes primarily occur in 
the liver, and to a lesser extent in the kidney, and results in 
relatively inactive metabolites with increased water solubil-
ity, which facilitate biliary and urinary secretion. When the 
activity of  type Ⅰ deiodinases is low (e.g. in the fetus), T3 
sulfate may serve as a reservoir of  inactive T3 from which 
the active hormone can be generated by the action of  tis-
sue and intestinal bacterial sulfatases[11]. Similarly, iodothy-
ronine glucuronides once excreted via the bile into the in-
testine can be substrates for the bacterial β-glucuronidases 
and the unconjugated THs generated can be reabsorbed 
into the body. Thus, THs undergo enterohepatic recircu-
lation[12]. 

In the liver, oxidative deamination and decarboxylation 
of  the alanine chain of  T3 and T4 form triiodothyroacetic 
acid (Triac) and tetraiodothyroacetic acid (Tetrac), respec-
tively. These so-called acetic acid analogues of  THs are 
metabolically active. Tetrac has been evaluated in patients 
with myxedema and no major differences in efficacy were 
reported compared to T4, except for the need for higher 

doses of  Tetrac[13]. Also for Triac, the therapeutic doses to 
treat thyroid disorders are higher than those needed for 
T4 in order to reach similar thyroid-stimulating hormone 
suppression[14]. Interestingly, Triac had bigger hepatic 
metabolic actions without enhanced thyromimetic activity 
specific to the pituitary gland[14]. The organ-selective ef-
fects of  Triac are possibly explained by the higher affinity 
of  this acetic acid analogue to TRβ (3.5-fold) and to TRα 
(1.5-fold) than T3

[15].

THYROID HORMONE RECEPTORS
TRs are members of  the large superfamily of  nuclear re-
ceptors (NRs) and can bind DNA as monomers, homodi-
mers, or heterodimers mainly with the retinoic-X receptor 
α[16-18]. TRs are ligand-activated transcription factors and 
bind both THs and TH-response elements (TREs) classi-
cally located in the promoter regions of  their target genes. 
TRs have the typical NR structure with a central DNA-
binding domain containing two “zinc fingers” motifs 
which interact with the nucleotide of  the TRE-sequences. 
The ligand-binding domain (LBD) is composed of  twelve 
amphipathic helices, some of  which specifically interact 
with co-activators and co-repressors[19-21]. Upon ligand-
activation, TRs modify the conformation of  their LBD 
region; a process that mainly involves helix 12 and results 
in release of  co-repressors (e.g. NCoR and SMRT) and 
recruitment of  co-activators (the steroid receptor co-ac-
tivator complex[22] and the vitamin D receptor-interacting 
protein/TR associated protein complex[23]). Due to the 
interaction with co-repressors, TRs can decrease the tran-
scriptional activity of  the target genes, when not ligand-
activated by THs. The interpretation of  data generated 
in animal models in which TRs have been genetically de-
pleted require caution when compared to conditions with 
low levels of  circulating THs (e.g. after thyroidectomy, hy-
pophysectomy, or in hypothyroidism). Under these condi-
tions TRs are not ligand-activated and, being still present, 
may repress transcription. Apart from the genomic effect, 
which classically are mediated by activation of  TRs bound 
to the promoter region of  the target genes, THs may also 
regulate cells by non-transcriptional mechanisms[7].

The human TRs are encoded by the THRA and THRB 
genes, located on chromosome 17 and 3, respectively; the 
two TRα isoforms [TRα1, TRα2 (or c-erbAα2)] are gen-
erated by alternative splicing of  the TRα mRNA whereas 
the two TRβ isoforms (TRβ1 and TRβ2) are generated by 
alternative promoter choice[16,24]. Both TRα1 and TRβ1 
are expressed in almost all tissues[25], but the latter is the 
predominant TR isoform in the liver, brain, and kidney, 
whereas the former is predominantly expressed in muscle 
and brown adipose fat. TRβ2 is expressed in the hypothal-
amus, in the anterior pituitary gland, and in the developing 
brain[25-27].

LESSONS FROM STUDIES IN RODENTS
The generation of  TR specific knock-out mice revealed 
that the T3-induced cardiovascular liability is mediated by 
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TRα1[28,29], while the effect of  T3 on plasma cholesterol 
levels is mediated through TRβ1[30]. These findings raised 
interest in the development of  thyromimetic compounds 
that specifically modulate TRβ1, either by selective hepatic 
uptake and/or by higher binding affinity to TRβ1, rather 
than TRα1. The first thyromimetic compound to be de-
scribed was SK&F L-94901, which does not preferentially 
bind to either TRα or TRβ; instead the TRβ1 selective 
action is achieved by its liver-specific uptake[31]. L-94901 
reduced plasma cholesterol levels, mainly in the LDL frac-
tion, in cholesterol-fed hypothyroid and euthyroid rats[32]. 
Likewise, GC-1 (sobetirome) and KB-141 reduced plasma 
cholesterol levels in normal and hypothyroid mice and 
rats[33,34]. T-0681 decreased plasma apoB-containing lipo-
proteins and reduced atherosclerosis in cholesterol-fed 

rabbits[35], while MB07811 elicited a similar lipid-lowering 
effect in rats, as well as in obese mice[36]. 

The ability of  thyromimetic compounds to reduce 
LDL-cholesterol can partly be explained by increased 
clearance through increased hepatic LDLR expression. 
KB-141, MB07811, and T-0681 induced hepatic LDLR 
expression in several mouse models[35,36], and T-0681 in-
creased hepatic LDLR levels (approximate 2.5-fold) in 
hypercholesterolemic rabbits[35]. In accordance, LDLR ex-
pression was suggested to be crucial for the thyromimetic 
effect on lipid metabolism, since mice deficient in LDLR 
do not respond to treatment with either MB07811[36] or 
T-0681[35]. However, T3 and sobetirome failed to induce 
hepatic LDLR mRNA expression and activity, despite 
reduced circulating levels of  LDL-cholesterol in hyper-
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Figure 1  Schematic overview of cholesterol, bile acid, and lipoprotein metabolism. CE: Cholesteryl esters; FC: Free cholesterol; BA: Bile acids; CM: Chylo-
microns; CMR: Chylomicron remnants; VLDL: Very low density lipoprotein; LDL: Low density lipoprotein; HDL: High density lipoprotein; apoAI: Apolipoprotein AI; 
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ACAT1: Acyl-coenzyme A cholesterol acyltransferase 1; ACAT2: Acyl-coenzyme A cholesterol acyltransferase 2; HMGCoA reductase: 3-hydroxy-3-methylglutaryl co-
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cholesterolemic euthyroid mice[34]. Similarly, T-0681 had 
no effect on the hepatic LDLR protein expression in ei-
ther C57BL/6 or apoE-/- mice[35]. Thus, the stimulation of  
LDLR by thyromimetics is not an obligatory finding. 

In all animal models, the lipid-lowering effects were 
achieved at doses that did not affect the heart rate. For so-
betirome and KB-141, the concentrations that produced 
tachycardia were almost 30-fold higher than the therapeu-
tic concentrations in rats and even greater in non-human 
primates[33]. 

EFFECTS OF THYROID HORMONES AND 
THYROMIMETICS ON RCT IN RODENTS
Evidence from animal studies suggested that THs and 
thyromimetics have the capacity to promote RCT. Despite 
its complexity, the RCT pathway can be summarized in 
four major steps: (1) synthesis and lipidation of  apoli-
poprotein AI (apoAI) to generate nascent high density 
lipoprotein (HDL); (2) efflux of  excess cholesterol from 
peripheral cells (e.g. macrophages) to plasma HDL; (3) 
hepatic uptake of  cholesterol from HDL via scavenger re-
ceptor class B type Ⅰ (SRBI) and LDL via LDLR - the lat-
ter especially in the presence of  cholesterol ester transfer 
protein (CETP); and (4) biliary secretion of  cholesterol, as 
such, or after its conversion to bile acids, for final excre-
tion from the body in feces. 

Studies in rodents showed that T3 and the thyromi-
metic compound CGS-23425 increased the levels of  
plasma apoAI[37,38], suggesting that TR stimulation may 
promote the synthesis of  HDL and thus affect the initial 
step of  RCT. Whether thyromimetic compounds stimu-
late cholesterol efflux to HDL by a direct action on pe-
ripheral cells (e.g. macrophages) is still unclear. Studies in 
rodents show that the ability of  THs and thyromimetics 
to increase RCT is related to their capacity to stimulate 
the hepatic and final steps of  this process by increasing 
the expression and activity of: (1) SRBI, responsible for 
the uptake of  cholesterol-enriched HDL; (2) cholesterol 
7α-hydroxylase (CYP7A1), which converts cholesterol 
into bile acids in the liver; and (3) ATP-binding cassette 
transporter G5 (ABCG5) and G8 (ABCG8), which pro-
mote biliary cholesterol excretion[30,34-36].

The regulation of  bile acid synthesis by TRs and THs 
has been widely demonstrated in rodents[39-41]. In mice, 
TRβ has been identified as the primary mediator of  the 
effect of  T3 on the stimulation of  CYP7A1 expression 
and activity[30]. Also thyromimetic compounds such as 
MB07811, KB-141, T-0681, or sobetirome have been 
shown to increase the expression of  hepatic CYP7A1[34-36]. 
In addition to the stimulation of  bile acid synthesis, we 
were able to show that sobetirome increases the hepatic 
SRBI protein expression in normal and hypercholestero-
lemic euthyroid mice, leading to lower HDL-cholesterol 
levels and higher fecal bile acid excretion[34]. A limitation 
of  our study was that a direct quantification of  the in vivo  
RCT was not performed. RCT can be quantified in vivo 
by assessing the transport of  [3H]cholesterol from intra-
peritoneally injected macrophages to plasma, liver, and 

feces (called the macrophage-to-feces RCT)[42,43]. Re-
cently, T-0681 was shown to stimulate the in vivo RCT in 
C57BL/6 mice[35] resulting in elevated fecal excretion of  
radiolabeled cholesterol, both as neutral sterols and as bile 
acids. This was paralleled by an increase in the hepatic ex-
pression of  SRBI, CYP7A1, and ABCG5/G8[35]. 

Mice and rats have no plasma activity of  CETP, which 
transfers cholesteryl esters from HDL to LDL. Thus, the 
RCT pathway in these rodent models does not properly 
resemble the human RCT, in which part of  the cholesterol 
originally carried by HDL is delivered to the liver by LDL. 
Overexpression of  human CETP in mice stimulates the  
in vivo RCT and, as expected, a considerable amount of  the 
radiolabeled cholesterol effluxed from the macrophages 
was transferred from HDL to LDL for subsequent uptake 
by hepatic LDLR[44]. Surprisingly, T-0681 failed to stimu-
late in vivo RCT in mice overexpressing human CETP[35], 
despite the stimulation of  hepatic SRBI and LDLR. In this 
mouse model, T-0681 did not affect hepatic ABCG5/G8 
and CYP7A1 expression, as observed in wild-type mice[35]. 
Plasma CETP-mass was reduced and the authors sug-
gested this was a possible cause of  disturbed delivery of  
cholesterol to the liver[35]. Nevertheless, it is evident that 
it is difficult to draw any definite conclusions relevant to 
humans by studying mice overexpressing human CETP. In 
apoE knockout mice, treatment with T-0681 for 8 wk de-
creased plasma cholesterol levels and reduced the develop-
ment of  atherosclerosis, whereas treatment for 4 wk slightly 
increased small fatty streak lesions[35]. In line with the above 
observation, up-regulation of  both hepatic ABCG5/G8 
and CYP7A1 were only observed after 8 wk of  treat-
ment[35]. Recently, we treated (up to 25 wk) apoE-deficient 
mice with the new thyromimetic compound KB3495 
(KaroBio AB). Reduced atherosclerosis and increased fecal 
excretion of  neutral and acidic sterols were observed inde-
pendently of  the circulating levels of  cholesterol in apoB-
containing lipoproteins. This suggests that stimulation of  
RCT was per se sufficient to achieve the antiatherogenic 
effects[45]. Furthermore, no major effects on the hepatic 
expression of  ABCG5/G8 mRNA were seen suggest-
ing that TRβ1 modulation may increase RCT possibly by 
stimulation of  TICE[5]. 

LESSONS FROM STUDIES IN HUMAN 
AND PRIMATES
It has been known since 1930 that hyperthyroidism is as-
sociated with reduced plasma cholesterol levels[46]. Also, 
studies have shown that hyperthyroid women have lower 
HDL-cholesterol and apoAI levels compared to healthy 
controls[47,48]. In addition, treatment with 1-thyroxine in 
patients with severe primary hypothyroidism significantly 
increased apoAI but modestly decreased HDL-cholesterol 
levels[49]. Interestingly, subjects with resistance to thyroid 
hormone, defined genetically by mutations in TRβ, have 
lower HDL-cholesterol levels compared to controls[50].

So far, no human or non-human primate studies that 
specifically aimed to investigate the role of  thyromimetics 
in RCT have been performed. Rodents, unlike humans, 

5961 December 21, 2010|Volume 16|Issue 47|WJG|www.wjgnet.com

Pedrelli M et al . Effects of thyromimetics on RCT



transport plasma cholesterol mainly in HDL-particles, lack 
CETP activity in plasma, and do not develop atheroscle-
rosis. Also, the feed-forward response on Cyp7A1 activity 
by dietary cholesterol, which is mediated by activation of  
liver X receptor α (LXRα) in mice, is absent in humans, 
because functional LXRα response elements are not 
present within the human CYP7A1 promoter[51]. Hence, 
caution is required when extrapolating mechanisms in 
RCT from rodent studies to humans. 

EFFECTS OF THYROMIMETICS ON BILE 
ACID SYNTHESIS IN HUMANS
Bile acid synthesis serves as the major elimination route of  
excess cholesterol, participating in maintenance of  choles-
terol homeostasis and in the hepatic part of  RCT. In the 
liver, cholesterol is converted to 7α-hydroxycholesterol 
by the microsomal enzyme CYP7A1, the rate-limiting 
enzyme of  the classic pathway, which is then converted to 
7α-hydroxy-4 cholesten-3-one (C4). In humans, the clas-
sic pathway is responsible for the main part of  bile acid 
synthesis[52]. Thus, it has been shown that plasma levels of  
C4 reflect bile acid synthesis and that plasma levels of  C4 
correlate with the enzymatic activity of  CYP7A1 assayed 
in human hepatic microsomes[53-56].

Studies in human hepatoma cells and in primary hu-
man hepatocytes suggest that human CYP7A1 expression 
and promoter activity is actively repressed in response to 
THs[57,58], suggesting that THs and thyromimetic com-
pounds would decrease bile acid synthesis. Nevertheless, 
treatment of  moderately overweight and hypercholestero-
lemic subjects with eprotirome (KB2115), administered at 
100 and 200 µg orally once daily for 2 wk, increased bile 
acid synthesis (C4) by approximate 50% and 100%, respec-
tively. Since no effect on cholesterol synthesis in the body 
(indirectly measured as the ratio of  lathosterol to choles-
terol in plasma)[59] was observed it seems that eprotirome 
may induce a net cholesterol efflux from the body[59]. 

EFFECTS OF THYROMIMETICS ON HDL, 
apoAI, apoB AND LIPOPROTEIN (a) IN 
HUMANS AND NON-HUMAN PRIMATES
Measurement of  apoAI, the major apolipoprotein in 
HDL, is as important as the measurement of  HDL-
cholesterol and the balance between apoB and apoAI (i.e. 
the apoB/apoAI ratio) indicates cardiovascular risk[60]. 
In a study by Ladenson et al[61], patients with hypercho-
lesterolemia, who were already receiving simvastatin or 
atorvastatin, were administered 25, 50 or 100 µg epro-
tirome (KB2115) or placebo daily for 12 wk in addition 
to continued statin-therapy[61]. Serum total-, LDL-, and 
HDL-cholesterol, as well as apoB, apoAI, apoB/apoAI 
ratio, TG, and lipoprotein (a) [Lp(a)] decreased in the 
eprotirome-treated subjects[61] without adverse effects on 
heart or bones. In the study by Berkenstam et al[59], treat-
ment with eprotirome was found to reduce serum total- 
and LDL-cholesterol levels as well as the apoB/apoAI 

ratio without detectable effects on the heart[59]. No sig-
nificant changes in HDL-cholesterol, TG, Lp(a), or body 
weight were observed[59]. The discrepancies between these 
two studies with regard to HDL-cholesterol and apoAI, 
and whether the combination-therapy with statins and 
eprotirome[61] affects this, needs to be further investigated 
by studying CETP and lecithin cholesterol:acyltransferase 
(LCAT) activities, C4, hepatic gene expression (e.g. SRBI, 
CYP7A1, ABCG5/G8, ABCA1), and by studies on sterol 
fecal excretion.

Intestinal and hepatic ABCA1 regulates HDL lev-
els[62,63]. Co-transfection experiments, performed in hu-
man embryonal kidney cells (HEK293) with the human 
ABCA1 promoter and an expression vector for TRβ, 
showed suppression of  the ABCA1 promoter activity in 
the presence of  T3

[64]. Whether TRβ1-modulators sup-
press the hepatic and intestinal ABCA1 transcription and 
expression in vivo in humans remains to be elucidated.

Lp(a) may contribute to the development of  athero-
sclerosis, and extreme levels have been shown to increase 
the risk for myocardial infarction[65]. Cynomolgus mon-
keys have a lipoprotein cholesterol profile that resembles 
the human profile and express Lp(a). Sobetirome and 
KB141 reduce plasma levels of  Lp(a) in this non-human 
primate model[33]. Eprotirome in combination with statin-
treatment reduced the levels of  Lp(a)[61] which was not 
observed in patients treated with eprotirome only[59], sug-
gesting again that a possible synergism between statins 
and eprotirome may exist.

CONCLUSION
Compounds that specifically target TRβ1 have consistent-
ly been shown to stimulate RCT and decrease atheroscle-
rosis in animal models, and may hypothetically be useful as 
a complement to statin therapy in the prevention of  CVD. 
However, future studies evaluating the effects of  these 
compounds on RCT in humans need to be performed. 
Clarification of  the primary effect of  TRβ1 modulation 
on human RCT is of  great scientific value and strategic 
interest. The attractiveness of  drugs able to promote RCT 
and lower LDL-cholesterol in humans - especially if  not 
only acting via stimulation of  LDLR - is immense. 
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