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The cell nucleus is a highly compartmentalized organelle harboring a variety of dynamic 

membraneless nuclear bodies1–4. How these subnuclear domains are established and 

maintained is not well understood5–8. Here we investigated the molecular mechanism of 

how one nuclear body, the paraspeckle, is assembled and organized. Paraspeckles are 

discrete ribonucleoprotein bodies found in mammalian cells and implicated in nuclear 

retention of hyperedited mRNAs9–11. We developed a live-cell imaging system that allows 

for the inducible transcription of Men ε/β (also known as Neat112) noncoding (nc) RNAs 

and the direct visualization of the recruitment of paraspeckle proteins. Using this system, we 

demonstrate that Men ε/β ncRNAs are essential to initiate the de novo assembly of 

paraspeckles. These newly formed structures effectively harbor nuclear retained mRNAs 

confirming that they are bona fide functional paraspeckles. By three independent 

approaches, we show that it is the act of Men ε/β transcription, but not ncRNAs alone, that 

regulates paraspeckle maintenance. Finally, FRAP analyses supported a critical structural 

role of Men ε/β ncRNAs in paraspeckle organization. Together, this study establishes a 

model in which Men ε/β ncRNAs serve as a platform to recruit proteins to assemble 

paraspeckles.

Two distinct models of nuclear body formation have been proposed: (1) random self-

organization and (2) ordered assembly pathway6–8. The random self-organization model 

posits that the recruitment of individual subunits from the soluble nucleoplasmic pool is self-

organizing in a random and stochastic fashion. This has been supported by tethering 

experiments of Cajal body components to a specific genomic locus in living cells. 

Essentially, immobilization of any given key Cajal body protein was able to initiate the 

nucleation of a Cajal body13.

To access the possibility that such a model applies to paraspeckles, which are known to 

contain Men ε/β ncRNAs, core paraspeckle proteins PSP1, p54nrb, and PSF, and other 

proteins such as PSP214, we individually tethered multiple paraspeckle proteins fused with 
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EYFP-Lac repressor (LacI) to a 256 repeat Lac operator (LacO) array stably integrated into 

the genome of C2C12 myoblast cells. These paraspeckle proteins were detected in the 

endogenous paraspeckles shown by either transient expression of multiple paraspeckle 

proteins or antibody labeling of an endogenous paraspeckle marker (Fig. 1a, arrowhead), 

indicating that they were correctly targeted. To distinguish the newly tethered foci from the 

endogenous paraspeckles, ECFP-LacI was coexpressed (Fig. 1a, arrow). Upon tethering of 

EYFP-LacI-PSP1, mCherry-p54nrb was recruited to the tethering site, but mCherry-PSP1, 

PSP2, endogenous PSF, or Men ε/β failed to be recruited (Fig. 1a).

Immobilization of PSP1 resulted in the recruitment of p54nrb in 87% of the cells and vice 

versa (Fig. 1b). Our results agree with previous studies indicating that PSP1 and p54nrb can 

form heterodimers in vivo and even in vitro15. However, the other essential components of 

paraspeckles were not recruited to the immobilized foci. Therefore, the efficient recruitment 

of one paraspeckle protein component is not an indication of bona fide paraspeckle 

formation, but rather due to direct protein:protein interaction. Quantification shows that 

immobilized PSP1 and p54nrb were unable to initiate paraspeckle formation (Fig. 1b). 

Tethered PSF was capable of recruiting some paraspeckle proteins (PSP1 in 35%, p54nrb in 

17%, and PSP2 in 58% of the cells examined) in a relatively more efficient manner. 

However, PSF recruited Men ε/β ncRNAs in only 6% of the cells (Fig. 1b).

To address the question of how PSF recruits paraspeckle proteins but not RNAs, we 

performed co-immunoprecipitation (IP) experiments from C2C12 cells. Transiently 

expressed PSF was immunoprecipitated by anti-PSF antibody and both PSP1 and p54nrb 

were detected in the IP by immunoblotting (Fig. 1c). We then performed the co-IP 

experiment after RNase A treatment to abrogate paraspeckles10,15, and found that PSF still 

immunoprecipitated PSP1 and p54nrb (Fig. 1c), confirming that LacI-PSF did not initiate 

paraspeckle formation but rather induced protein:protein interactions. These results further 

suggested that the artificial scaffold created by protein tethering may not faithfully reflect 

bona fide formation of a nuclear body in vivo6.

None of the paraspeckle proteins examined was able to efficiently initiate paraspeckle 

assembly arguing that the random self-organization model does not seem to apply to 

paraspeckles. The alternative model is the hierarchical assembly pathway, in which single, 

some or all subunits are assembled in an ordered fashion around a central scaffolding 

component6–8. Men ε/β are nuclear ncRNAs that have been shown by us and other groups 

to play important roles in paraspeckle organization16–19. The depletion of Men ε/β ncRNAs 

in cells disrupts paraspeckles implicating that they act as structural RNAs in paraspeckle 

formation16–19. However, whether Men ε/β ncRNAs are the seeding molecules during 

paraspeckle assembly has not been directly demonstrated and if so, how this process occurs 

in vivo has not been investigated.

In order to characterize the de novo assembly of paraspeckles, we developed a live-cell 

imaging system that enables the control and visualization of the transcription of Men ε/β 

reporter ncRNAs with the capacity to directly observe the recruitment of mCherry-

paraspeckle proteins (Fig. 2a). The reporter, modified from our previous studies20–22 and 

integrated at a single site in the C2C12 genome, is visualized by expression and binding of 
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ECFP-LacI at the LacO array. Upon doxycycline (DOX) induction, a minimal CMV 

promoter drives expression of Men ε/β ncRNAs tagged with 24 MS2 RNA stem loop 

repeats23,24. Nascent Men ε/β transcripts are visualized by accumulation of EYFP-tagged 

MS2 viral coat protein, which binds the MS2 repeats within the transcripts. Using this 

system the Men ε/β ncRNAs transcription site, nascent Men ε/β ncRNAs transcripts, and 

protein recruitment can be simultaneously visualized in single living cells.

DOX-induced transcription in cells transfected with Tet-On led to a strong local 

accumulation of nascent transcripts (EYFP-MS2), whereas little to no transcript was 

detected in cells without DOX induction (Fig. 2b). Consistently, quantitative RT-PCR (qRT-

PCR) analysis revealed that Men ε/β ncRNAs were expressed at approximately one fold 

over the endogenous level and Men ε ncRNA was expressed at approximately 8-fold over 

Men β ncRNA, which is similar to their endogenous ratio without induction (Supplementary 

Information, Fig. S1). These data suggest that the reporter generates physiological levels of 

Men ε/β ncRNAs after DOX induction.

We next tested the hypothesis that transcription of Men ε/β ncRNAs directly initiates the de 

novo assembly of paraspeckles by monitoring paraspeckle protein dynamics using live-cell 

imaging. We found that upon DOX induction, transcription of Men ε/β ncRNAs was 

sufficient to trigger the recruitment of mCherry-PSP1 to the newly formed paraspeckles 

(Fig. 2b and Supplementary Information, Movies 1–3). Quantification showed that more 

than 95% of the newly formed bodies recruited all four paraspeckle proteins examined, 

including transiently expressed or endogenous PSP1, p54nrb, PSF, and PSP2 (Fig. 2d and 

Supplementary Information, Figs. S2, S3 and Movies 4, 5), but not SC35 and SF2/ASF, two 

major RNA binding proteins enriched in nuclear speckles and not found in endogenous 

paraspeckles (Fig. 2d and Supplementary Information, Fig. S4). Thus, Men ε/β ncRNAs are 

the initial nucleating factor providing a seed to recruit other building blocks during 

paraspeckle assembly.

To ascertain whether de novo formed paraspeckles were functional, we cotransfected cells 

with constructs encoding mRNAs containing SINE repeats to test if the induced 

paraspeckles could retain these mRNAs as has been shown for endogenous paraspckles9. 

The 3′UTR of mouse cationic amino acid transporter 2 (mCat2) transcribed nuclear RNA 

(Ctn RNA) contains repeat elements essential for adenosine-to-inosine editing and has been 

shown to be retained in nuclear paraspeckles10,11. Indeed, by RNA FISH we found that 

newly formed paraspeckles (Fig. 2c, upper row arrow) efficiently retained Ctn RNA as did 

endogenous paraspeckles (Fig. 2c, upper row arrowhead). In contrast, the structures induced 

by tethering individual paraspeckle proteins did not retain Ctn RNA (Supplementary 

Information, Fig. S5). We also tested constructs encoding reporter mRNAs containing 

inverted repeats of human Alu (IRAlus) sequences9,16 and found that the newly assembled 

paraspeckles were capable of retaining these RNAs as well (Fig. 2c, lower row). 

Quantification revealed that all hyperedited mRNAs tested, but not mCat2 mRNA, which 

does not contain repeats and is not enriched in nuclei10, were harbored in de novo 

assembled paraspeckles, confirming that these induced paraspeckles were functional (Fig. 

2d). This functional study and subsequent kinetic studies strongly indicate that bona fide 
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paraspeckles can be de novo assembled in living cells upon Men ε/β ncRNAs transcription 

using our inducible system.

All new paraspeckles were assembled co-transcriptionally at the Men ε/β ncRNAs 

transcription sites and rarely left the sites after they were formed (Fig. 2b and 

Supplementary Information, Movies 1–5). We then examined endogenous paraspeckles to 

see if they were also localized close to the endogenous Men ε/β gene loci by DNA FISH. 

We found that paraspeckles were generally localized near the endogenous Men ε/β gene loci 

as shown previously17 and sometimes a cluster of paraspeckles could be found around one 

Men ε/β gene locus (Fig. 3a). Quantification indicated that the average distance between 

paraspeckles and the closest adjacent Men ε/β gene loci is 0.19 μm, while the distance to Ctn 

RNA gene loci, which serve as a negative control, is 1.35 μm (n=100 paraspeckles) (Fig. 

3a). Similar results were also obtained in NIH 3T3 cells (Supplementary Information, Fig. 

S6). Together, these data support a model whose central premise is the requirement of 

transcription of Men ε/β ncRNAs to initiate paraspeckle formation.

To test this possibility, we monitored the dynamics of paraspeckles after treating cells with 

5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a reversible RNA Pol II 

inhibitor. Consistent with previous findings15,17–19, paraspeckle protein PSP1 began to 

relocate to the perinucleolar caps (Fig. 3b, arrowhead) from paraspeckles at 5 minutes after 

DRB treatment and paraspeckles were completely disassembled within 40 minutes. 

Remarkably, after washing away DRB to allow cells to recover from transcription inhibition 

paraspeckles were usually reformed at the sites where they were disassembled (Fig. 3b, 

arrow and Supplementary Information, Movie 6). DRB-induced paraspeckle disassembly 

was previously explained to result from the decreased RNA level of Men ε/β transcripts by 

transcription inhibition15,25. By qRT-PCR analysis, we found this was not the case because 

within 60 minutes of DRB treatment, there was no change in transcript level of Men ε/β 

RNAs (Fig. 3b, right). Therefore, we speculate that the transcription of Men ε/β RNAs per 

se instead of Men ε/β transcripts is required for paraspeckle maintenance.

Our live-cell system provides a means to control the transcription of Men ε/β reporter RNAs 

without affecting other important transcriptional events in the cells, and thereby allowing us 

to characterize the transcription requirement of paraspeckle organization. When we 

withdrew DOX to shut down the transcription of Men ε/β reporter RNAs, we found that 

Men ε/β RNAs were no longer concentrated at the transcription sites and newly formed 

paraspeckles were disassembled accordingly, while endogenous paraspeckles were not 

affected (Fig. 3c and Supplementary Information, Movie 7). This clearly demonstrated that 

paraspeckle maintenance is coupled with Men ε/β transcription.

We then tested if the arrest of Men ε/β reporter gene transcription during mitosis would also 

result in the disassembly of paraspeckles. Indeed, we found that the reporter paraspeckles 

disassembled during mitosis and reassembled in the next G1 phase (Fig. 4a, arrow) like the 

endogenous paraspeckles (Fig. 4a, arrowhead and Supplementary Information, Movie 8). 

Imaging of the essential processes of paraspeckle dynamics, including their initiation, 

disassembly, and reassembly, by three different approaches (± DRB, ± DOX, and entry and 

exit from mitosis), demonstrated that paraspeckle formation/maintenance is dependent on 
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the active transcription of Men ε/β ncRNAs. Interestingly, the nucleolus does form in the 

absence of RNA Pol I transcription. However, its structural organization is altered26.

We further characterized the dynamic behavior of paraspeckles during interphase and we 

were able to capture the budding or splitting of paraspeckles during interphase in about 15% 

of the cells. We found that when the transcription of Men ε/β RNAs continues, more Men 

ε/β transcripts were generated and de novo assembled paraspeckles increased in size 

accordingly and eventually bud or split into a cluster of paraspeckles around the 

transcription sites (Fig. 4b and Supplementary Information, Movies 9–11). The average 

distance between these paraspeckles in the cluster to the Men ε/β reporter loci (0.22 μm, 

n=50 paraspeckles) is consistent to that of endogenous paraspeckles. This explains why cells 

sometimes have more paraspeckles in number than Men ε/β gene loci and why they are often 

found in clusters17–19.

To determine the kinetics of paraspeckle components, we performed fluorescence recovery 

after photobleaching (FRAP) analyses on newly formed and endogenous paraspeckles. All 

three core proteins in de novo formed and in endogenous paraspeckles exhibited similar 

recovery profiles (Fig. 5a and Supplementary Information, Table S1). Approximately 30–

40% of paraspeckle proteins are immobile in de novo formed and endogenous paraspeckles. 

The t1/2 of PSP1 measured here (t1/2 = 6.42 s) is smaller than that shown by photoactivated 

GFP-PSP1 in HeLa cells (t1/2 = 31 s)15. The methodological differences may contribute to 

this discrepancy. The rapid exchange rate detected here was corroborated by a FRAP 

analysis of CFIm (t1/2 ≈ 5–10 s), another paraspeckle component27. Nevertheless, the 

similar dissociation kinetics of paraspeckle proteins in de novo formed as in endogenous 

paraspeckles further confirmed that the newly induced structures in our system exhibit the 

same protein kinetics as endogenous paraspeckles.

Conversely, the recovery of Men ε/β ncRNAs was significantly delayed compared to those 

of paraspeckle proteins (Fig. 5a). Their t1/2 could not be accurately measured because Men 

ε/β ncRNAs recovery never reached a plateau, but a reasonable estimation suggests a t1/2 > 

60–90 s. The markedly long residence time of Men ε/β ncRNAs in paraspeckles is consistent 

with mechanistic insights of Men ε/β ncRNAs being the structural seeding molecules to 

nucleate and coordinate protein recruitment to accomplish paraspeckle assembly and 

maintenance.

The rapid exchange of paraspeckle proteins with the nucleoplasmic pool is consistent with 

the model that proteins are able to diffuse freely through the nuclear space allowing them to 

scan the nucleus for specific binding sites. Indeed, all three paraspeckle core proteins in the 

nucleoplasm showed very fast recovery and a small immobile fraction (Fig. 5a and 

Supplementary Information, Table S1). When they encounter Men ε/β ncRNAs at the 

transcription sites, proteins associate and assemble paraspeckles. This process could be 

accomplished by either stochastic interactions of single subunits or small preformed 

subcomplexes6–8. Previous studies and our data revealed that some paraspeckles proteins 

associate with each other in a RNA-independent manner15,28. In fact, all three paraspeckle 

proteins examined (PSP1, p54nrb, and PSF) showed similar kinetics during de novo 

paraspeckle assembly upon DOX induction (Fig. 5b). Although individual cells transcribe 
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Men ε/β ncRNAs with different kinetics due to different transcription initiation rates21,29, 

protein recruitment always closely followed Men ε/β transcription (Fig. 5b, top row). More 

importantly, at least within our temporal resolution (5 min interval of image acquisition), 

paraspeckle proteins were immediately recruited to the Men ε/β transcription sites once the 

nascent transcripts were synthesized (Fig. 5b, bottom row). Thus, neither a solely stochastic 

nor hierarchical model could explain paraspeckle formation. Rather, our results are 

consistent with a seeding model in which Men ε/β ncRNAs serve as seeding molecules to 

provide platforms to recruit proteins, which self-organize randomly and stochastically 

around the Men ε/β ncRNAs, to assemble paraspeckles at the Men ε/β gene loci.

In conclusion, we developed a live-cell imaging system to allow direct visualization of the 

de novo assembly of a nuclear body via the transcription of ncRNAs. We provided evidence 

to demonstrate that de novo assembled paraspeckles are bona fide functional nuclear bodies 

that harbor nuclear-retained mRNAs. Using this system, we demonstrated that paraspeckle 

formation and maintenance are coupled to Men ε/β transcription. Our study has provided 

mechanistic insights into paraspeckle assembly via the transcription of Men ε/β ncRNAs and 

how proteins are kinetically coordinated in this process. These data established a seeding 

model for nuclear body formation in which Men ε/β ncRNAs were identified as pivotal 

nucleating molecules, driven by transcription, to recruit proteins to assemble paraspeckles.

Methods

Cell culture and drug treatments

C2C12 myoblasts were grown at 37 °C, 5% CO2 in DMEM supplemented with 10% fetal 

bovine serum and 1% penicillin/streptomycin. C2C12 cells were transfected with 

pCC1BAC-LacO-MS2-Men ε/β and selected under 600 ng/ml Hygromycin B and colonies 

were picked, selected, and expanded. RNA Pol II was inhibited by DRB (33 μg/ml; Sigma). 

DOX (1 μg/ml; Clonetech) was used to induce the transcription of Men ε/β reporter 

ncRNAs.

Immunofluorescence labeling, RNA and DNA FISH, and qRT-PCR

Immunofluorescence staining, RNA and DNA-FISH, and qRT-PCR were performed as 

previously described10,19. Primary antibodies used were anti-PSF (FC23), anti-PSP1 (Ab2), 

and anti-p54nrb (9-99)19. BAC RP23-20N24 and RP24-164P20 served as Men ε/β gene 

locus probes and RP23-406L11 served as a Ctn RNA gene locus probe for DNA FISH.

Co-Immunoprecipitation

C2C12 cell lysate was prepared in RIPA buffer with or without RNase A (100 μg/ml, 

Sigma). Following lysate centrifugation, the supernatant was incubated with antibody and 

protein A beads. IP was subsequently analyzed by SDS-PAGE and immunoblotting.

Image acquisition and data analysis

Images were obtained using a DeltaVision system (Applied Precision) with a 100×/1.35 NA 

objective (Olympus) as stacks of 12 images taken with a Z step size of 1 μm. For intensity 

analyses, cells were randomly chosen and the average intensity of region of interest on 
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unprocessed images was measured. For each cell, a separate region within the nucleus was 

measured for background subtraction. For distance measurement in 3D, ImageJ software 

was used.

Fluorescent recovery after photobleaching

Photobleaching and subsequent image acquisition (4 precleached images, and a sequence of 

post-bleach images at 30 images every 2 seconds and 36 images every 5 seconds) were 

performed on a spinning disk confocal microscope UltraViewVox (Perkin Elmer). Data 

were fitted in a one phase exponential association curve and t1/2 was measured by Volocity 

software (Perkin Elmer).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Immobilization of protein components fails to assemble paraspeckles
a, Tethering PSP1 protein to a specific locus (arrow) in the C2C12 nucleus recruited p54nrb, 

but not Men ε/β ncRNAs, PSP1, PSF, or PSP2 protein therefore failing to form 

paraspeckles. Scale bar, 5 μm. b, Quantification of protein tethering experiments shows that 

none of the immobilized paraspeckle proteins can initiate the formation of paraspeckles 

(n>50 cells in each condition). c, Co-IP experiments show that paraspeckle proteins can 

interact with each other in the absence of RNA.
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Figure 2. Men ε/β transcription induces de novo formation of functional paraspeckles
a, Schematic representation of an inducible system to visualize expression of the Men ε/β 

reporter ncRNAs and recruitment of paraspeckle proteins. A LacO array, a tetracycline 

response element (TRE) array, and 24 MS2 stem loop repeats are placed upstream of the 

Men ε/β gene allowing visualization of the locus by expression of ECFP-LacI. Transcription 

is initiated by the addition of DOX and nascent transcripts are visualized through binding of 

EYFP-MS2 to the MS2 stem loops. Not drawn to scale. b, Live-cell imaging shows that 

transcriptional induction of Men ε/β ncRNAs initiated de novo formation of paraspeckles 

labeled by PSP1 (arrow). Scale bars, 5 μm. c, De novo formed paraspeckles (arrow) can 

retain inverted repeat-containing mRNAs, similar to the endogenous paraspeckles 
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(arrowhead), confirming that they are bona fide functional paraspeckles. d, Quantification 

shows that Men ε/β transcription initiated the recruitment of different paraspeckle proteins, 

but not SC35 and SF2/ASF, nuclear speckle RNA binding proteins; and resulted in the 

retention of different inverted repeat containing mRNAs, but not mCat2 mRNA (n>50 cells 

in each condition).
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Figure 3. Maintenance of paraspeckles depends on active Men ε/β transcription
a, Left, paraspeckles, labeled by PSP1 antibody, were often found localized adjacent to Men 

ε/β gene loci, but not to Ctn RNA gene loci, in interphase nuclei of C2C12 cells. Scale bars, 

5 μm. Right, quantification of the distance between paraspeckles and Men ε/β gene and Ctn 

RNA gene loci (n=100 paraspeckles in 20 cells each, mean±s.e.m.). b, Left, paraspeckle 

protein PSP1 redistributed to perinucleolar caps (arrowhead) upon transcriptional inhibition 

by DRB treatment and paraspeckles reassembled at the same location (arrow) after DRB 

wash-out. Right, qRT-PCR analysis shows Men ε/β transcript level upon DRB treatment 

(n=4, mean±s.e.m.). Note that 60-min DRB treatment did not affect the Men ε/β transcript 

level, but paraspeckles already disassembled at this time point. c, Withdrawing DOX to 

switch off Men ε/β transcription disassembled de novo formed paraspeckle (arrow) but had 

no effect on endogenous paraspeckles (arrowhead) demonstrating that the maintenance of 

paraspeckles is coupled with Men ε/β transcription.
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Figure 4. Dynamic behavior of paraspeckles by live-cell imaging
a, Dynamics of paraspeckles through the cell cycle: both endogenous (arrowhead) and de 

novo formed paraspeckles (arrow) disassembled during mitosis, and re-assembled at the 

Men ε/β loci in the daughter nuclei during next G1 phase. Scale bars, 5 μm. b, Budding and 

splitting of paraspeckles during interphase: a paraspeckle assembled upon DOX induction at 

the Men ε/β locus, increased in size and formed clusters of paraspeckles.
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Figure 5. Differential kinetics of Men ε/β ncRNAs and paraspeckle proteins
a, FRAP analyses of paraspeckles. Paraspeckle proteins exhibit a rapid exchange rate, while 

Men ε/β ncRNAs exhibit a much slower exchange. Top, cells expressing mCherry-PSP1 and 

EYFP-MS2 labeling Men ε/β ncRNAs were imaged before and after bleaching of 

endogenous (arrowhead) or de novo formed (arrow) paraspeckles. Scale bar, 5 μm. Bottom, 

kinetics of recovery of paraspeckle proteins after bleaching in nucleoplasm (blue cross), 

endogenous (open red circle) or de novo formed paraspeckles (solid black circle), and of 

Men ε/β ncRNAs (square) (n=8 for PSP1 and p54nrb, n=5 for PSF, and n=12 for Men ε/β 

ncRNAs, mean±s.e.m.). Intensity was normalized as such that the first time point pre-bleach 

was set as 1 and the first time point post-bleach was set as 0. Note that the scale of the X-

axis of Men ε/β ncRNAs recovery profile is different from those of paraspeckle proteins. b, 

Protein dynamics during paraspeckle formation. Top, the intensity of EYFP-MS2 and 

mCherry-fused paraspeckle proteins at the transcription site was quantified and normalized 

over time. Bottom, kinetics of first 40 minutes after DOX induction is shown. Within the 

temporal resolution (5 min), all paraspeckle proteins examined were found to be recruited to 

newly formed paraspeckles instantly upon the detection of Men ε/β transcription.

Mao et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


