Skip to main content
. 2010 Dec 13;121(1):265–276. doi: 10.1172/JCI42596

Figure 2. Functional and phenotypic assessment of B6 and Bcl3-deficient granulocytes.

Figure 2

(A) Assessment of granulocyte recruitment into lung grafts. CFSE-labeled B6 or Bcl3–/– granulocytes (5 × 106) were assessed by FACS analysis in B6 → B6 lung grafts 3 hours following adoptive transfer. Numbers denote percent abundance of CFSE-labeled granulocytes within grafts. Results are representative of 3 independent experiments. (B) Nuclear morphology (original magnification, ×400) of B6 or Bcl3–/– granulocytes following Wright Giemsa stain. (C) Evaluation of granulocyte activation measured by CD11b and CD62L expression on granulocytes before (left) or 18 hours after (right) B6 → B6 (B6) or B6 → B6 (Bcl3–/–) lung engraftment. Results are representative of 5 independent experiments. (D) Measurement of f-MLP– or PMA-mediated ROS generation from bone marrow–derived or BAL-derived B6 or Bcl3–/– granulocytes 24 hours after engraftment. Data are representative of 3 independent experiments. (E) Survival in vivo of BAL granulocytes from B6 → B6 (Bcl3–/–) or B6 → B6 (B6) lung recipients 24 hours following transplantation depicted as a representative FACS plot (n = 6) (left) or as a scatter plot (right) showing percent abundance of Annexin V+ granulocytes. Data are representative of 7 independent experiments. (F) Survival ex vivo of B6 or Bcl3–/– granulocytes in the absence or presence of G-CSF (10 ng/ml) shown normalized to the number of Annexin V cells at the initiation of culture. Data are representative of 2 independent experiments. Data represent mean ± SD. *P < 0.05.