Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 31;66(Pt 8):o2169. doi: 10.1107/S1600536810029508

3-Chloro­benzohydrazide

Uzma Ashiq a,*, Rifat Ara Jamal a, Muhammad Nadeem Arshad b, Islam Ullah Khan b
PMCID: PMC3007237  PMID: 21588450

Abstract

In the title compound, C7H7ClN2O, the hydrazide group is inclined at a dihedral angle of 32.30 (11)° with respect to the benzene ring. The amino H atoms form inter­molecular N—H⋯O hydrogen bonds with the O atoms of two adjacent mol­ecules, resulting in 10-membered rings of graph-set motif R 2 2(10). The imino H atom is also involved in an inter­molecular hydrogen bond with an amino N atom of a symmetry-related mol­ecule, resulting in a zigzag chain along the b axis. The structure is further consolidated by an intra­molecular N—H⋯O inter­action, which results in a five-membered ring.

Related literature

For the biological activity of hydrazides, see: Ashiq, Ara et al. (2008); Ara et al. (2007); Maqsood et al. (2006); For related structures, see: Ashiq, Jamal et al. (2008); Jamal et al. (2008, 2009); Kallel et al. (1992); Ratajczak et al. (2001); Saraogi et al. (2002). For graph-set notation of hydrogen-bond motifs, see: (Bernstein et al. 1995).graphic file with name e-66-o2169-scheme1.jpg

Experimental

Crystal data

  • C7H7ClN2O

  • M r = 170.60

  • Monoclinic, Inline graphic

  • a = 16.2005 (15) Å

  • b = 3.8165 (4) Å

  • c = 12.7646 (13) Å

  • β = 108.030 (5)°

  • V = 750.47 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.43 × 0.21 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.832, T max = 0.928

  • 8144 measured reflections

  • 1881 independent reflections

  • 1101 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.121

  • S = 1.01

  • 1880 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029508/pv2308sup1.cif

e-66-o2169-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029508/pv2308Isup2.hkl

e-66-o2169-Isup2.hkl (90.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.90 (3) 2.45 (3) 2.766 (3) 101 (2)
N1—H1N⋯N2i 0.87 (3) 2.11 (3) 2.955 (3) 162 (2)
N2—H3N⋯O1ii 0.86 (3) 2.24 (3) 3.091 (3) 171 (2)
N2—H2N⋯O1iii 0.90 (3) 2.25 (3) 2.935 (3) 133 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and BANA Inter­national for the data collection.

supplementary crystallographic information

Comment

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 3-chlorobenzohydrazide, we undertook the synthesis of the title compound and report its crystal structure in this paper. The title compound was found to be antifungal (Maqsood et al., 2006). The structures of benzhydrazide (Kallel et al., 1992), and its p-chloro (Saraogi et al., 2002), m-methoxy (Jamal et al., 2009), m-nitro (Ratajczak et al. 2001), p-bromo (Ashiq, Jamal et al., 2008) and p-iodo (Jamal et al., 2008) analogues have been reported.

The bond lengths and bond angles in the title compound (Fig. 1) are comparable with the corresponding distances and angles reported in its analogues quoted above. The hydrazide moiety, C7/O1/N1/N2, is oriented at a dihedral angle of 32.30 (11)° with respect to the plane of benzene ring C1–C6. The H atoms bonded to N2 form intermolecular hydrogen bonds of the type N–H···O with O atoms of two adjacent molecules, resulting in 10-membered rings which may be assigned to R22(10) motif in graph set notation (Bernstein et al., 1995). The H-atom bonded to N1 is also involved in an intermolecular hydrogen bond with N2, linking the molecules into a zigzag chain along the b axis (Tab. 1 and Fig. 2). The structure is further stabilized by an intramolecular interaction, N2–H2···O1, resulting in a five membered ring in S(5) motif (Bernstein et al., 1995).

Experimental

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-3-chlorobenzoate (3.69 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford the title compound (yield 75%). The crystals of the title compound suitable for crystallographic study were grown from a solution of methanol by slow evaporation at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and constrained to ride on their parent atoms. The H-atoms attached to N1 and N2 were taken from Fourier maps and their coordinates were refined. The thermal parameters, Uiso, of H-atoms were allowed at 1.2 times of the Ueq of their parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound; hydrogen bonds are shown by dashed lines.

Crystal data

C7H7ClN2O F(000) = 352
Mr = 170.60 Dx = 1.510 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1323 reflections
a = 16.2005 (15) Å θ = 3.2–23.3°
b = 3.8165 (4) Å µ = 0.45 mm1
c = 12.7646 (13) Å T = 296 K
β = 108.030 (5)° Needle, colorless
V = 750.47 (13) Å3 0.43 × 0.21 × 0.17 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1881 independent reflections
Radiation source: fine-focus sealed tube 1101 reflections with I > 2σ(I)
graphite Rint = 0.053
ω scans θmax = 28.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −21→21
Tmin = 0.832, Tmax = 0.928 k = −5→5
8144 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.4337P] where P = (Fo2 + 2Fc2)/3
1880 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. the reflection 1 0 0 has been obscured by the beam stop so it was omitted in the final refinement
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.43417 (4) 1.3067 (2) 0.63671 (7) 0.0544 (3)
O1 0.11735 (11) 0.7193 (5) 0.53677 (14) 0.0392 (5)
N1 0.05596 (12) 0.8834 (6) 0.36054 (17) 0.0336 (5)
H1N 0.0600 (15) 0.987 (8) 0.301 (2) 0.040*
N2 −0.02733 (13) 0.7486 (7) 0.35190 (18) 0.0352 (6)
H3N −0.0560 (16) 0.902 (8) 0.376 (2) 0.042*
H2N −0.0219 (16) 0.571 (8) 0.399 (2) 0.042*
C1 0.20977 (14) 0.9403 (7) 0.43785 (19) 0.0295 (6)
C2 0.27380 (15) 1.0618 (7) 0.5299 (2) 0.0331 (6)
H2 0.2629 1.0822 0.5971 0.040*
C3 0.35388 (15) 1.1523 (7) 0.5212 (2) 0.0365 (6)
C4 0.37114 (17) 1.1191 (8) 0.4231 (2) 0.0445 (7)
H4 0.4252 1.1827 0.4180 0.053*
C5 0.30846 (17) 0.9917 (9) 0.3325 (2) 0.0472 (8)
H5 0.3205 0.9645 0.2663 0.057*
C6 0.22744 (16) 0.9033 (8) 0.3388 (2) 0.0380 (7)
H6 0.1849 0.8194 0.2768 0.046*
C7 0.12403 (15) 0.8398 (7) 0.45054 (19) 0.0286 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0334 (3) 0.0599 (5) 0.0633 (5) −0.0054 (3) 0.0055 (3) −0.0109 (4)
O1 0.0392 (9) 0.0492 (13) 0.0309 (9) −0.0036 (9) 0.0133 (7) 0.0086 (9)
N1 0.0321 (11) 0.0414 (15) 0.0281 (11) −0.0062 (10) 0.0106 (9) 0.0069 (10)
N2 0.0312 (11) 0.0440 (17) 0.0331 (12) −0.0057 (10) 0.0138 (9) −0.0015 (11)
C1 0.0310 (12) 0.0254 (14) 0.0336 (13) 0.0014 (10) 0.0120 (10) 0.0031 (11)
C2 0.0338 (12) 0.0323 (16) 0.0351 (14) −0.0003 (11) 0.0131 (11) 0.0021 (12)
C3 0.0305 (12) 0.0293 (16) 0.0469 (16) 0.0012 (11) 0.0081 (11) 0.0013 (13)
C4 0.0319 (13) 0.0456 (19) 0.0609 (19) 0.0030 (13) 0.0216 (13) 0.0055 (15)
C5 0.0458 (16) 0.058 (2) 0.0472 (17) 0.0028 (15) 0.0282 (13) 0.0043 (16)
C6 0.0369 (13) 0.0451 (19) 0.0340 (14) −0.0006 (13) 0.0138 (11) −0.0019 (13)
C7 0.0342 (12) 0.0253 (14) 0.0288 (12) −0.0008 (11) 0.0132 (10) −0.0018 (11)

Geometric parameters (Å, °)

Cl1—C3 1.740 (3) C1—C7 1.497 (3)
O1—C7 1.228 (3) C2—C3 1.380 (3)
N1—C7 1.334 (3) C2—H2 0.9300
N1—N2 1.416 (3) C3—C4 1.371 (4)
N1—H1N 0.87 (3) C4—C5 1.370 (4)
N2—H3N 0.86 (3) C4—H4 0.9300
N2—H2N 0.90 (3) C5—C6 1.381 (3)
C1—C2 1.385 (3) C5—H5 0.9300
C1—C6 1.387 (3) C6—H6 0.9300
C7—N1—N2 122.4 (2) C2—C3—Cl1 119.4 (2)
C7—N1—H1N 122.6 (16) C3—C4—C5 119.7 (2)
N2—N1—H1N 114.9 (16) C3—C4—H4 120.1
N1—N2—H3N 109.4 (19) C5—C4—H4 120.1
N1—N2—H2N 109.3 (16) C4—C5—C6 120.5 (3)
H3N—N2—H2N 103 (3) C4—C5—H5 119.8
C2—C1—C6 119.7 (2) C6—C5—H5 119.8
C2—C1—C7 118.0 (2) C5—C6—C1 119.7 (2)
C6—C1—C7 122.2 (2) C5—C6—H6 120.1
C3—C2—C1 119.4 (2) C1—C6—H6 120.1
C3—C2—H2 120.3 O1—C7—N1 122.7 (2)
C1—C2—H2 120.3 O1—C7—C1 122.3 (2)
C4—C3—C2 120.9 (2) N1—C7—C1 115.0 (2)
C4—C3—Cl1 119.7 (2)
C6—C1—C2—C3 1.5 (4) C2—C1—C6—C5 −0.7 (4)
C7—C1—C2—C3 179.2 (2) C7—C1—C6—C5 −178.3 (3)
C1—C2—C3—C4 −0.9 (4) N2—N1—C7—O1 −9.3 (4)
C1—C2—C3—Cl1 179.7 (2) N2—N1—C7—C1 169.2 (2)
C2—C3—C4—C5 −0.5 (4) C2—C1—C7—O1 −31.5 (4)
Cl1—C3—C4—C5 178.9 (2) C6—C1—C7—O1 146.2 (3)
C3—C4—C5—C6 1.3 (5) C2—C1—C7—N1 150.0 (2)
C4—C5—C6—C1 −0.7 (5) C6—C1—C7—N1 −32.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1 0.90 (3) 2.45 (3) 2.766 (3) 101 (2)
N1—H1N···N2i 0.87 (3) 2.11 (3) 2.955 (3) 162 (2)
N2—H3N···O1ii 0.86 (3) 2.24 (3) 3.091 (3) 171 (2)
N2—H2N···O1iii 0.90 (3) 2.25 (3) 2.935 (3) 133 (2)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+2, −z+1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2308).

References

  1. Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers.4, 58–71. [DOI] [PubMed]
  2. Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers.5, 82–92. [DOI] [PubMed]
  3. Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X, 24, 103–104.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188. [DOI] [PMC free article] [PubMed]
  9. Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o2473. [DOI] [PMC free article] [PubMed]
  10. Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr.198, 137–140.
  11. Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem.21, 37–42. [DOI] [PubMed]
  12. Ratajczak, H., Baran, J., Barnes, A. J., Barycki, J., Debrus, S., Latajka, Z., May, M. & Pietraszko, A. (2001). J. Mol. Struct.596, 17–23.
  13. Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029508/pv2308sup1.cif

e-66-o2169-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029508/pv2308Isup2.hkl

e-66-o2169-Isup2.hkl (90.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES