Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 7;66(Pt 8):m887. doi: 10.1107/S1600536810025687

Diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)copper(II) dihepta­noate dihydrate

Nur Syamimi Ahmad Tajidi a, Norbani Abdullah a, Zainudin Arifin a, Kong Wai Tan a, Seik Weng Ng a,*
PMCID: PMC3007509  PMID: 21588132

Abstract

The CuII atom in the title salt, [Cu(C10H24N4)(H2O)2][CH3(CH2)5CO2]2·2H2O, is chelated by the four N atoms of the 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and is coordinated by two water mol­ecules in a tetra­gonally Jahn–Teller-distorted octa­hedral geometry. The CuII atom lies on a center of inversion. The cations, anions and uncoordinated water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a layer structure parallel to (100). The alkyl chain of the anion is disordered over two positions in a 0.82 (1):0.18 (1) ratio.

Related literature

For related diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper carboxyl­ates, see: Lindoy et al. (2003); Hunter et al. (2005).graphic file with name e-66-0m887-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H24N4)(H2O)2](C7H13O2)2·2H2O

  • M r = 594.28

  • Monoclinic, Inline graphic

  • a = 11.7257 (6) Å

  • b = 9.9426 (5) Å

  • c = 13.4573 (7) Å

  • β = 103.1363 (7)°

  • V = 1527.85 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.776, T max = 0.894

  • 14358 measured reflections

  • 3506 independent reflections

  • 3140 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.079

  • S = 1.06

  • 3506 reflections

  • 212 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025687/bt5285sup1.cif

e-66-0m887-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025687/bt5285Isup2.hkl

e-66-0m887-Isup2.hkl (171.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 2.026 (1)
Cu1—N2 2.025 (1)
Cu1—O1w 2.499 (1)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.30 (1) 2.983 (2) 137 (2)
N2—H2⋯O2 0.86 (1) 2.12 (1) 2.924 (2) 156 (2)
O1w—H11⋯O2 0.83 (1) 1.93 (1) 2.730 (2) 162 (2)
O1w—H12⋯O2w 0.83 (1) 1.95 (1) 2.777 (2) 174 (2)
O2w—H21⋯O1ii 0.83 (1) 2.02 (1) 2.833 (2) 166 (2)
O2w—H22⋯O1i 0.84 (1) 1.91 (1) 2.743 (2) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya (RG039/09SUS) and the Ministry of Higher Education (FP017/2009) for supporting this study.

supplementary crystallographic information

Comment

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly with the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)5CO2]-.2H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry. The copper atom lies on a center of inversion (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

Experimental

1,4,8,11-Tetraazacyclotetradecane (0.50 g, 2.50 mmol) dissolved in ethanol (25 ml) was mixed with a suspension of copper heptanoate (0.80 g, 2.5 mmol) in ethanol (50 ml) to give a purple solution. The solution was heated for an hour and then filtered. Prismatic crystals separated from the solution when it was left to cool slowly.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H···O 0.86±0.01, O–H 0.84±0.01 Å; their isotropic displacement parameters were freely refined.

The alkyl chain of the carboxylate ion is disordered over two positions; the disorder refined to an 82 (1):18 (1) ratio. Bond distances for each pair of bonds were restrained to within 0.01Å of each other. The displacement parameters of the primed atoms were constrained to be equal of those of the unprimed ones.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)5CO2]-.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the alkyl chain is not shown.

Crystal data

[Cu(C10H24N4)(H2O)2](C7H13O2)2·2H2O F(000) = 646
Mr = 594.28 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8003 reflections
a = 11.7257 (6) Å θ = 2.6–28.3°
b = 9.9426 (5) Å µ = 0.76 mm1
c = 13.4573 (7) Å T = 100 K
β = 103.1363 (7)° Block, purple
V = 1527.85 (14) Å3 0.35 × 0.25 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 3506 independent reflections
Radiation source: fine-focus sealed tube 3140 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.776, Tmax = 0.894 k = −12→12
14358 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.7328P] where P = (Fo2 + 2Fc2)/3
3506 reflections (Δ/σ)max = 0.001
212 parameters Δρmax = 0.81 e Å3
12 restraints Δρmin = −0.31 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.5000 0.5000 0.5000 0.01672 (8)
O1 0.37230 (9) 0.57029 (10) 0.88828 (7) 0.0254 (2)
O2 0.35970 (10) 0.48007 (10) 0.73553 (8) 0.0260 (2)
O1W 0.35364 (10) 0.35174 (11) 0.55509 (8) 0.0262 (2)
H11 0.3445 (19) 0.378 (2) 0.6109 (10) 0.047 (6)*
H12 0.3586 (17) 0.2684 (10) 0.5589 (15) 0.035 (5)*
O2W 0.38768 (10) 0.07550 (11) 0.57173 (8) 0.0272 (2)
H21 0.372 (2) 0.031 (2) 0.5184 (11) 0.045 (6)*
H22 0.4606 (9) 0.070 (2) 0.5895 (16) 0.046 (6)*
N1 0.62254 (10) 0.35391 (11) 0.53855 (9) 0.0196 (2)
H1 0.5925 (14) 0.2927 (14) 0.5699 (12) 0.025 (4)*
N2 0.54008 (11) 0.58808 (11) 0.63930 (8) 0.0196 (2)
H2 0.5052 (14) 0.5435 (16) 0.6783 (11) 0.022 (4)*
C1 0.73634 (13) 0.39280 (15) 0.60465 (11) 0.0246 (3)
H1A 0.7760 0.4571 0.5676 0.030*
H1B 0.7866 0.3120 0.6205 0.030*
C2 0.72217 (14) 0.45693 (16) 0.70380 (11) 0.0267 (3)
H2A 0.8003 0.4645 0.7507 0.032*
H2B 0.6740 0.3967 0.7363 0.032*
C3 0.66565 (13) 0.59536 (15) 0.69082 (10) 0.0242 (3)
H3A 0.6738 0.6376 0.7587 0.029*
H3B 0.7070 0.6528 0.6502 0.029*
C4 0.48410 (14) 0.72262 (14) 0.62714 (11) 0.0244 (3)
H4A 0.5314 0.7860 0.5964 0.029*
H4B 0.4781 0.7584 0.6944 0.029*
C5 0.36356 (13) 0.70700 (14) 0.55851 (10) 0.0231 (3)
H5A 0.3146 0.6484 0.5914 0.028*
H5B 0.3249 0.7958 0.5453 0.028*
C6 0.31775 (13) 0.50923 (13) 0.80991 (11) 0.0203 (3)
C7 0.18993 (17) 0.4746 (2) 0.81018 (17) 0.0289 (5) 0.822 (3)
H7A 0.1856 0.3788 0.8288 0.035* 0.822 (3)
H7B 0.1655 0.5291 0.8634 0.035* 0.822 (3)
C8 0.10391 (17) 0.49936 (19) 0.70811 (18) 0.0318 (5) 0.822 (3)
H8A 0.1308 0.4489 0.6542 0.038* 0.822 (3)
H8B 0.0263 0.4633 0.7119 0.038* 0.822 (3)
C9 0.09044 (18) 0.6455 (2) 0.67784 (15) 0.0299 (5) 0.822 (3)
H9A 0.1691 0.6840 0.6812 0.036* 0.822 (3)
H9B 0.0556 0.6942 0.7279 0.036* 0.822 (3)
C10 0.01464 (18) 0.6690 (2) 0.57143 (18) 0.0357 (5) 0.822 (3)
H10A 0.0433 0.6106 0.5227 0.043* 0.822 (3)
H10B −0.0665 0.6411 0.5709 0.043* 0.822 (3)
C11 0.01253 (18) 0.8120 (3) 0.53458 (18) 0.0402 (6) 0.822 (3)
H11A 0.0928 0.8384 0.5306 0.048* 0.822 (3)
H11B −0.0118 0.8714 0.5851 0.048* 0.822 (3)
C12 −0.0696 (3) 0.8339 (5) 0.4308 (2) 0.0541 (9) 0.822 (3)
H12A −0.0671 0.9286 0.4112 0.081* 0.822 (3)
H12B −0.1497 0.8101 0.4344 0.081* 0.822 (3)
H12C −0.0450 0.7771 0.3799 0.081* 0.822 (3)
C7' 0.2043 (7) 0.4295 (9) 0.7967 (10) 0.0289 (5) 0.18
H7'1 0.1981 0.3868 0.8617 0.035* 0.178 (3)
H7'2 0.1995 0.3589 0.7441 0.035* 0.178 (3)
C8' 0.1079 (7) 0.5358 (9) 0.7631 (8) 0.0318 (5) 0.18
H8'1 0.0302 0.4928 0.7548 0.038* 0.178 (3)
H8'2 0.1152 0.6057 0.8165 0.038* 0.178 (3)
C9' 0.1167 (9) 0.6010 (11) 0.6632 (7) 0.0299 (5) 0.18
H9'1 0.1238 0.5297 0.6137 0.036* 0.178 (3)
H9'2 0.1889 0.6561 0.6750 0.036* 0.178 (3)
C10' 0.0116 (8) 0.6905 (12) 0.6166 (8) 0.0357 (5) 0.18
H10C −0.0619 0.6384 0.6088 0.043* 0.178 (3)
H10D 0.0080 0.7676 0.6624 0.043* 0.178 (3)
C11' 0.0239 (9) 0.7419 (15) 0.5123 (8) 0.0402 (6) 0.18
H11C 0.0363 0.6646 0.4696 0.048* 0.178 (3)
H11D 0.0934 0.8010 0.5215 0.048* 0.178 (3)
C12' −0.0852 (14) 0.820 (3) 0.4572 (14) 0.0541 (9) 0.18
H12D −0.0733 0.8539 0.3918 0.081* 0.178 (3)
H12E −0.0983 0.8964 0.4996 0.081* 0.178 (3)
H12F −0.1536 0.7608 0.4450 0.081* 0.178 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02403 (13) 0.01387 (12) 0.01321 (12) −0.00126 (8) 0.00619 (9) −0.00200 (7)
O1 0.0350 (6) 0.0224 (5) 0.0193 (5) 0.0001 (4) 0.0071 (4) −0.0030 (4)
O2 0.0375 (6) 0.0262 (5) 0.0170 (5) −0.0036 (4) 0.0114 (4) −0.0006 (4)
O1W 0.0414 (6) 0.0197 (5) 0.0214 (5) −0.0041 (4) 0.0155 (5) −0.0017 (4)
O2W 0.0334 (6) 0.0254 (5) 0.0243 (5) 0.0020 (4) 0.0098 (5) −0.0037 (4)
N1 0.0278 (6) 0.0160 (5) 0.0168 (5) −0.0017 (4) 0.0087 (5) 0.0008 (4)
N2 0.0286 (6) 0.0164 (5) 0.0154 (5) −0.0036 (4) 0.0086 (5) −0.0012 (4)
C1 0.0262 (7) 0.0244 (7) 0.0236 (7) 0.0000 (6) 0.0062 (6) 0.0026 (5)
C2 0.0281 (7) 0.0309 (7) 0.0195 (7) −0.0030 (6) 0.0023 (6) 0.0020 (6)
C3 0.0296 (7) 0.0261 (7) 0.0167 (6) −0.0071 (6) 0.0048 (5) −0.0043 (5)
C4 0.0397 (8) 0.0157 (6) 0.0200 (7) −0.0013 (6) 0.0114 (6) −0.0040 (5)
C5 0.0348 (8) 0.0175 (6) 0.0201 (7) 0.0028 (5) 0.0129 (6) 0.0003 (5)
C6 0.0256 (7) 0.0181 (6) 0.0180 (6) −0.0008 (5) 0.0067 (5) 0.0044 (5)
C7 0.0285 (9) 0.0325 (12) 0.0286 (11) −0.0059 (9) 0.0126 (7) 0.0039 (9)
C8 0.0227 (9) 0.0334 (11) 0.0399 (13) −0.0077 (7) 0.0084 (9) −0.0050 (8)
C9 0.0235 (10) 0.0395 (13) 0.0263 (10) −0.0052 (8) 0.0048 (7) −0.0021 (8)
C10 0.0227 (8) 0.0492 (12) 0.0325 (12) −0.0052 (8) 0.0008 (9) −0.0009 (10)
C11 0.0225 (9) 0.0668 (17) 0.0313 (11) 0.0054 (11) 0.0064 (8) 0.0068 (11)
C12 0.0371 (14) 0.0795 (19) 0.039 (2) 0.0062 (13) −0.0047 (11) 0.0093 (15)
C7' 0.0285 (9) 0.0325 (12) 0.0286 (11) −0.0059 (9) 0.0126 (7) 0.0039 (9)
C8' 0.0227 (9) 0.0334 (11) 0.0399 (13) −0.0077 (7) 0.0084 (9) −0.0050 (8)
C9' 0.0235 (10) 0.0395 (13) 0.0263 (10) −0.0052 (8) 0.0048 (7) −0.0021 (8)
C10' 0.0227 (8) 0.0492 (12) 0.0325 (12) −0.0052 (8) 0.0008 (9) −0.0009 (10)
C11' 0.0225 (9) 0.0668 (17) 0.0313 (11) 0.0054 (11) 0.0064 (8) 0.0068 (11)
C12' 0.0371 (14) 0.0795 (19) 0.039 (2) 0.0062 (13) −0.0047 (11) 0.0093 (15)

Geometric parameters (Å, °)

Cu1—N1 2.026 (1) C7—H7B 0.9900
Cu1—N2 2.025 (1) C8—C9 1.507 (3)
Cu1—N2i 2.025 (1) C8—H8A 0.9900
Cu1—N1i 2.026 (1) C8—H8B 0.9900
Cu1—O1w 2.499 (1) C9—C10 1.522 (3)
O1—C6 1.2584 (18) C9—H9A 0.9900
O2—C6 1.2456 (18) C9—H9B 0.9900
O1W—H11 0.826 (10) C10—C11 1.504 (3)
O1W—H12 0.831 (9) C10—H10A 0.9900
O2W—H21 0.829 (10) C10—H10B 0.9900
O2W—H22 0.836 (10) C11—C12 1.521 (3)
N1—C1 1.4771 (19) C11—H11A 0.9900
N1—C5i 1.4818 (17) C11—H11B 0.9900
N1—H1 0.860 (9) C12—H12A 0.9800
N2—C3 1.4798 (18) C12—H12B 0.9800
N2—C4 1.4827 (18) C12—H12C 0.9800
N2—H2 0.858 (9) C7'—C8' 1.539 (9)
C1—C2 1.521 (2) C7'—H7'1 0.9900
C1—H1A 0.9900 C7'—H7'2 0.9900
C1—H1B 0.9900 C8'—C9' 1.516 (8)
C2—C3 1.520 (2) C8'—H8'1 0.9900
C2—H2A 0.9900 C8'—H8'2 0.9900
C2—H2B 0.9900 C9'—C10' 1.535 (9)
C3—H3A 0.9900 C9'—H9'1 0.9900
C3—H3B 0.9900 C9'—H9'2 0.9900
C4—C5 1.511 (2) C10'—C11' 1.531 (9)
C4—H4A 0.9900 C10'—H10C 0.9900
C4—H4B 0.9900 C10'—H10D 0.9900
C5—N1i 1.4818 (17) C11'—C12' 1.538 (9)
C5—H5A 0.9900 C11'—H11C 0.9900
C5—H5B 0.9900 C11'—H11D 0.9900
C6—C7' 1.524 (8) C12'—H12D 0.9800
C6—C7 1.539 (2) C12'—H12E 0.9800
C7—C8 1.528 (3) C12'—H12F 0.9800
C7—H7A 0.9900
N2—Cu1—N2i 180.0 H7A—C7—H7B 107.7
N2—Cu1—N1i 85.92 (5) C9—C8—C7 113.91 (17)
N2i—Cu1—N1i 94.08 (5) C9—C8—H8A 108.8
N2—Cu1—N1 94.08 (5) C7—C8—H8A 108.8
N2i—Cu1—N1 85.92 (5) C9—C8—H8B 108.8
N1i—Cu1—N1 180.0 C7—C8—H8B 108.8
N2—Cu1—O1W 90.63 (4) H8A—C8—H8B 107.7
N2i—Cu1—O1W 89.37 (4) C8—C9—C10 113.94 (18)
N1i—Cu1—O1W 90.23 (4) C8—C9—H9A 108.8
N1—Cu1—O1W 89.77 (4) C10—C9—H9A 108.8
Cu1—O1W—H11 108.7 (16) C8—C9—H9B 108.8
Cu1—O1W—H12 124.3 (14) C10—C9—H9B 108.8
H11—O1W—H12 106 (2) H9A—C9—H9B 107.7
H21—O2W—H22 103 (2) C11—C10—C9 114.72 (19)
C1—N1—C5i 111.88 (11) C11—C10—H10A 108.6
C1—N1—Cu1 117.23 (9) C9—C10—H10A 108.6
C5i—N1—Cu1 106.32 (8) C11—C10—H10B 108.6
C1—N1—H1 107.7 (12) C9—C10—H10B 108.6
C5i—N1—H1 106.4 (12) H10A—C10—H10B 107.6
Cu1—N1—H1 106.7 (12) C10—C11—C12 113.4 (3)
C3—N2—C4 112.08 (11) C10—C11—H11A 108.9
C3—N2—Cu1 116.85 (9) C12—C11—H11A 108.9
C4—N2—Cu1 106.51 (8) C10—C11—H11B 108.9
C3—N2—H2 107.5 (12) C12—C11—H11B 108.9
C4—N2—H2 105.9 (12) H11A—C11—H11B 107.7
Cu1—N2—H2 107.4 (12) C11—C12—H12A 109.5
N1—C1—C2 111.97 (12) C11—C12—H12B 109.5
N1—C1—H1A 109.2 H12A—C12—H12B 109.5
C2—C1—H1A 109.2 C11—C12—H12C 109.5
N1—C1—H1B 109.2 H12A—C12—H12C 109.5
C2—C1—H1B 109.2 H12B—C12—H12C 109.5
H1A—C1—H1B 107.9 C6—C7'—C8' 103.9 (6)
C1—C2—C3 114.22 (12) C6—C7'—H7'1 111.0
C1—C2—H2A 108.7 C8'—C7'—H7'1 111.0
C3—C2—H2A 108.7 C6—C7'—H7'2 111.0
C1—C2—H2B 108.7 C8'—C7'—H7'2 111.0
C3—C2—H2B 108.7 H7'1—C7'—H7'2 109.0
H2A—C2—H2B 107.6 C9'—C8'—C7' 111.2 (8)
N2—C3—C2 111.77 (11) C9'—C8'—H8'1 109.4
N2—C3—H3A 109.3 C7'—C8'—H8'1 109.4
C2—C3—H3A 109.3 C9'—C8'—H8'2 109.4
N2—C3—H3B 109.3 C7'—C8'—H8'2 109.4
C2—C3—H3B 109.3 H8'1—C8'—H8'2 108.0
H3A—C3—H3B 107.9 C8'—C9'—C10' 113.6 (8)
N2—C4—C5 107.69 (11) C8'—C9'—H9'1 108.9
N2—C4—H4A 110.2 C10'—C9'—H9'1 108.9
C5—C4—H4A 110.2 C8'—C9'—H9'2 108.9
N2—C4—H4B 110.2 C10'—C9'—H9'2 108.9
C5—C4—H4B 110.2 H9'1—C9'—H9'2 107.7
H4A—C4—H4B 108.5 C11'—C10'—C9' 109.5 (8)
N1i—C5—C4 107.82 (11) C11'—C10'—H10C 109.8
N1i—C5—H5A 110.1 C9'—C10'—H10C 109.8
C4—C5—H5A 110.1 C11'—C10'—H10D 109.8
N1i—C5—H5B 110.1 C9'—C10'—H10D 109.8
C4—C5—H5B 110.1 H10C—C10'—H10D 108.2
H5A—C5—H5B 108.5 C10'—C11'—C12' 111.7 (10)
O2—C6—O1 124.58 (14) C10'—C11'—H11C 109.3
O2—C6—C7' 106.2 (5) C12'—C11'—H11C 109.3
O1—C6—C7' 127.8 (5) C10'—C11'—H11D 109.3
O2—C6—C7 120.84 (14) C12'—C11'—H11D 109.3
O1—C6—C7 114.56 (14) H11C—C11'—H11D 107.9
C7'—C6—C7 19.8 (4) C11'—C12'—H12D 109.5
C8—C7—C6 113.97 (16) C11'—C12'—H12E 109.5
C8—C7—H7A 108.8 H12D—C12'—H12E 109.5
C6—C7—H7A 108.8 C11'—C12'—H12F 109.5
C8—C7—H7B 108.8 H12D—C12'—H12F 109.5
C6—C7—H7B 108.8 H12E—C12'—H12F 109.5
N2—Cu1—N1—C1 −38.82 (10) C3—N2—C4—C5 170.38 (11)
N2i—Cu1—N1—C1 141.18 (10) Cu1—N2—C4—C5 41.42 (12)
O1W—Cu1—N1—C1 −129.43 (9) N2—C4—C5—N1i −56.62 (14)
N2—Cu1—N1—C5i −164.78 (9) O2—C6—C7—C8 −40.9 (2)
N2i—Cu1—N1—C5i 15.22 (9) O1—C6—C7—C8 137.52 (16)
O1W—Cu1—N1—C5i 104.60 (9) C7'—C6—C7—C8 −86.5 (15)
N1i—Cu1—N2—C3 −140.76 (10) C6—C7—C8—C9 −66.1 (2)
N1—Cu1—N2—C3 39.24 (10) C7—C8—C9—C10 174.03 (18)
O1W—Cu1—N2—C3 129.05 (9) C8—C9—C10—C11 −172.59 (19)
N1i—Cu1—N2—C4 −14.63 (9) C9—C10—C11—C12 −176.5 (2)
N1—Cu1—N2—C4 165.37 (9) O2—C6—C7'—C8' −105.8 (7)
O1W—Cu1—N2—C4 −104.81 (9) O1—C6—C7'—C8' 87.6 (8)
C5i—N1—C1—C2 179.31 (11) C7—C6—C7'—C8' 34.5 (10)
Cu1—N1—C1—C2 56.13 (14) C6—C7'—C8'—C9' 60.9 (11)
N1—C1—C2—C3 −69.50 (16) C7'—C8'—C9'—C10' 170.4 (9)
C4—N2—C3—C2 179.52 (11) C8'—C9'—C10'—C11' −175.3 (10)
Cu1—N2—C3—C2 −57.16 (13) C9'—C10'—C11'—C12' 174.2 (15)
C1—C2—C3—N2 70.11 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.86 (1) 2.30 (1) 2.983 (2) 137 (2)
N2—H2···O2 0.86 (1) 2.12 (1) 2.924 (2) 156 (2)
O1w—H11···O2 0.83 (1) 1.93 (1) 2.730 (2) 162 (2)
O1w—H12···O2w 0.83 (1) 1.95 (1) 2.777 (2) 174 (2)
O2w—H21···O1iii 0.83 (1) 2.02 (1) 2.833 (2) 166 (2)
O2w—H22···O1ii 0.84 (1) 1.91 (1) 2.743 (2) 171 (2)

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5285).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288–2292. [DOI] [PMC free article] [PubMed]
  4. Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem.56, 1203–1213.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025687/bt5285sup1.cif

e-66-0m887-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025687/bt5285Isup2.hkl

e-66-0m887-Isup2.hkl (171.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES