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Abstract

Liver failure due to ischemia and reperfusion (IR) and subsequent acute kidney injury are 

significant clinical problems. We showed previously that liver IR selectively reduced plasma 

sphinganine-1-phosphate levels without affecting sphingosine 1-phosphate (S1P) levels. 

Furthermore, exogenous sphinganine 1-phosphate protected against both liver and kidney injury 

induced by liver IR. In this study, we elucidated the signaling mechanisms of sphinganine 1-

phosphate-mediated renal and hepatic protection. A selective S1P1 receptor antagonist blocked the 

hepatic and renal protective effects of sphinganine 1-phosphate whereas a selective S1P2 or S1P3 

receptor antagonist was without effect. Moreover, a selective S1P1 receptor agonist, SEW-2871, 

provided similar degree of liver and kidney protection compared with sphinganine-1-phosphate. 

Furthermore, in vivo gene knock-down of S1P1 receptors with small interfering RNA abolished 

the hepatic and renal protective effects of sphinganine 1-phosphate. In contrast to sphinganine 1-

phosphate, S1P’s hepatic protection was enhanced with an S1P3 receptor antagonist. Inhibition of 

extracellular signal-regulated kinase, Akt or pertussis toxin-sensitive G-proteins blocked 

sphinganine-1-phosphate-mediated liver and kidney protection in vivo. Taken together, our results 

show that sphinganine 1-phosphate provided renal and hepatic protection after liver IR injury in 

mice via selective activation of S1P1 receptors and pertussis toxin-sensitive G-proteins with 

subsequent activation of ERK and Akt.
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Introduction

Hepatic ischemia and reperfusion (IR) is a major clinical problem complicating liver 

transplantation and major hepatic resection (1,2). Hepatic IR frequently leads to remote 

organ injury including the kidney, lung and heart (3). In particular, acute kidney injury 

(AKI) after major liver IR is extremely common (40–85% incidence) and the development 

of AKI after liver injury greatly increases patient mortality and morbidity during the 

perioperative period (3). We recently characterized a mouse model of AKI induced by liver 

IR with prominent early renal endothelial cell apoptosis and dysfunction with subsequent 

proximal tubule inflammation and necrosis (4). We also unexpectedly discovered rapid and 

profound depletion of a physiologically uncharacterized sphingolipid molecule sphinganine 

1-phosphate (also called dihydrosphingosine 1-phosphate) in mouse plasma after hepatic IR 

(5). Moreover, we showed that exogenous repletion of sphinganine 1-phosphate provided a 

powerful protection against liver and kidney injury after liver IR in mice (5). We were able 

to demonstrate that mice treated with exogenous sphinganine 1-phosphate showed 

dramatically improved endothelial cell integrity and vascular dysfunction.

Unlike the better characterized cytoprotective effects of S1P, the cellular mechanism(s) of 

sphinganine 1-phosphate-mediated liver and kidney protection after liver IR has not been 

elucidated. For example, in our previous study, we implicated a sphingosine 1-phosphate 

(S1P) receptor utilizing an antagonist for S1P1/3 receptors (VPC23019); however the 

specific subtype of S1P receptor involved is still unclear (5). Activation of S1P1 receptors in 

vascular endothelial cells initiates several cytoprotective kinase signaling cascades including 

ERK mitogen activated protein kinase (MAPK) and Akt via a pertussis toxin-sensitive G-

protein (Gi/o) dependent pathway (6–8). Since ERK MAPK and Akt signaling pathways are 

known to protect against endothelial cell apoptosis (9,10) and since hepatic IR induced AKI 

directly causes renal endothelial cell apoptosis with subsequent vascular dysfunction and 

neutrophil infiltration (4), we hypothesized that sphinganine 1-phosphate via S1P1 receptor-

mediated activation of ERK MAPK and Akt signaling pathways protect against renal 

endothelial cell apoptosis and reduce AKI after liver IR. In addition, we have shown 

previously that enhanced phosphorylation as well as increased synthesis of heat shock 

protein 27 (HSP27) protected against endothelial cell apoptosis and vascular compromise 

after hepatic IR. Therefore, we postulated that sphinganine 1-phosphate may also increase 

HSP27 phosphorylation and upregulation. Finally, since endothelial nitric oxide synthase 

(iNOS) upregulation with subsequently enhanced release of NO protects against vascular 

endothelial cell injury, and since S1P receptor activation is known to activate eNOS to 

increase NO levels in the vasculature (11), we postulated that sphinganine 1-phosphate 

activation of S1P1 receptors may protect against liver and kidney injury via stimulating the 

eNOS pathway.

In this study, we tested the hypothesis that sphinganine 1-phosphate protects against liver IR 

induced hepatic and renal dysfunction via S1P1 receptor activation coupled to pertussis 

toxin-sensitive G-proteins (Gi/o) with subsequent activation of cytoprotective kinases 

including ERK MAPK and Akt and induction of HSP27 and eNOS in the kidney and liver. 

We also determined in this study the S1P receptor subtype(s) involved in S1P-mediated 
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hepatic and renal protection utilizing both pharmacologic as well as gene knock-down 

approaches.

Materials and Methods

Reagents

Sphinganine 1-phosphate and (R)-3-Amino-(3-hexylphenylamino)-4-oxobutylphosphonic 

acid (W146, a selective S1P1 receptor antagonist) were purchased from Avanti Polar Lipids, 

Inc (Alabaster, AL). 5-[4-Phenyl-5-(trifluoromethyl)thiophen-2-yl]-3-[3-

(trifluoromethyl)phenyl] 1,2,4-oxadiazole (SEW-2871, a selective S1P1 receptor agonist) 

and 1-[1,3-Dimethyl-4-(2-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-4-(3,5-dichloro-4-

pyridinyl)-semicarbazide (JTE-013, a selective S1P2 receptor antagonist) were purchased 

from Tocris Bioscience (Ellisville, MO). 2-undecyl-thiazolidine-4-carboxylic acid 

(BML-241, a selective S1P3 receptor antagonist) was purchased from Cayman Chemical 

(Ann Arbor, MI). Wortmannin (a selective PI3K inhibitor) and L-N5-(1-

Iminoethyl)ornithine (L-NIO, a selective eNOS inhibitor) were purchased from EMD 

Chemicals, Inc (Gibbstown, NJ). Unless otherwise specified, all other reagents including 

PD98059 (a selective MEK1 inhibitor) were purchased from Sigma (St. Louis, MO).

Murine model of hepatic IR

All protocols were approved by the Institutional Animal Care and Use Committee of 

Columbia University. Male C57BL/6 mice (20–25 g, Harlan, Indianapolis, IN) were 

subjected to liver IR injury as described previously (4). This method of partial hepatic 

ischemia for 60 min. results in a segmental (~70%) hepatic ischemia but spares the right 

lobe of the liver and prevents mesenteric venous congestion by allowing portal 

decompression through the right and caudate lobes of the liver. Sham operated mice were 

subjected to laparotomy and identical liver manipulations without the vascular occlusion. 

Plasma as well as liver and kidney tissues were collected 24 hrs after liver IR injury.

Sphinganine 1-phosphate administration

We have demonstrated previously that sphinganine 1-phosphate (0.01–0.1, mg/kg i.v. prior 

to reperfusion and 0.02–0.2 mg/kg s.c. 2 hrs after reperfusion) produced dose-dependent 

protection against liver and kidney injury after liver IR with the peak protection observed 

with the dose of 0.1 mg/kg i.v. before reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion 

(5). In this study, sphinganine 1-phosphate was dissolved in warm (50°C) methanol and the 

aliquots were stored at −20°C. The solution was evaporated under nitrogen immediately 

before use, and the powder redissolved in 4 mg/mL fatty acid-free bovine serum albumin 

solution as a carrier as described by Van Brocklyn et al. (12). The sphinganine-1-phosphate 

dose that produced the maximal liver and kidney protection was given to mice in this study 

(0.1 mg/kg i.v. immediately before reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion). 

Vehicle-treated mice received injections of 0.4% fatty acid free BSA. We also tested 

whether a single injection of sphinganine-1-phosphate also could provide liver and kidney 

protection after liver IR injury. In separate cohorts of mice, a single dose of sphinganine-1-

phosphate was given immediately before (0.1 mg/kg, i.v.) or 2 hrs after (0.2 mg/kg, s.c.) 

reperfusion of the liver.
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In another cohort of mice, we also gave a dose of S1P (0.1 mg/kg i.v. immediately prior to 

reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion dissolved in 4 mg/mL fatty acid-free 

bovine serum albumin solution) to test whether S1P also provided liver and kidney 

protection. Our preliminary data showed that sphinganine 1-phosphate, S1P or vehicle 

injection alone in sham-operated mice had no effect on any of the injury parameters tested in 

the liver or in the kidney.

Plasma ALT activity and creatinine level

The plasma ALT activities were measured using the Infinity™ ALT assay kit according to 

the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA). Plasma 

creatinine was measured by an enzymatic creatinine reagent kit according to the 

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA). This method of 

creatinine measurement largely eliminates the interferences from mouse plasma chromagens 

well known to the Jaffe method (13).

Determining S1P receptor subtype(s) involved in sphinganine 1-phosphate- and S1P-
mediated renal and hepatic protection after liver IR

To determine the S1P receptor subtype(s) involved in sphinganine 1-phosphate- and S1P-

mediated renal and hepatic protection after liver IR, mice were treated with a selective S1P1 

(W146, 0.05, 0.1 or 0.2 mg/kg i.p.), S1P2 (JTE013: 0.05, 0.1 or 0.2 mg/kg i.p.) or S1P3 

(BML-241, 0.05 or 0.1 mg/kg i.p.) receptor antagonist 20 min. before sphinganine 1-

phosphate or S1P treatment. In separate cohorts of mice, we also treated mice with the 

selective S1P1 receptor agonist SEW-2871 (1 mg/kg, i.p.) in lieu of sphinganine 1-

phosphate 30 min. prior to liver ischemia. The doses of S1P1 receptor antagonists and 

SEW-2871 were obtained from previous in vivo studies (14–17).

siRNA preparation and delivery to mice in vivo

A chemically synthesized 21 nucleotide siSTABLE™ (Stability enhanced siRNA) sequences 

specific for S1P1 receptors were custom made and purchased from Dharmacon Research 

(Lafayette, CO) in 2′-hydroxyl, annealed, desalted and dialyzed duplex form for in vivo use. 

The siSTABLE™ is a modified siRNA with improved resistance against nuclease 

degradation and enhanced silencing duration in vivo. The double stranded sequence for S1P1 

receptor siRNA was 5′-CCTGTGACATCCTGTACAA-3′. Mice were injected with 50 μg of 

siRNA (100 μl) i.v. 48 hrs prior to liver ischemia.

Potential signaling intermediates of sphinganine 1-phosphate-mediated renal and hepatic 
protection after liver IR

To test the hypothesis that ERK MAPK, Akt and/or eNOS activation participate in 

sphinganine 1-phosphate-mediated protection against liver IR induced AKI and liver injury, 

we pretreated the mice with PD98059 (an inhibitor of MEK1 to inhibit ERK 

phosphorylation, 1 mg/kg, i.p.), wortmannin (an inhibitor of PI3K to inhibit Akt 

phosphorylation, 1 mg/kg, i.p.) or L-NIO (an inhibitor of eNOS, 10 mg/kg i.p.) 20 min. 

before sphinganine 1-phosphate treatment. The doses of PD98059 and wortmannin were 

selected based on previous in vivo studies (6,18). In addition, we performed preliminary 
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experiments to demonstrate that the dosage and method of administration of PD98059 and 

wortmannin we used effectively blocked the phosphorylation of ERK and Akt in vivo, 

respectively (6). The dose of L-NIO has been demonstrated previously to selectively block 

the eNOS activation in vivo (19). For determination of the role of pertussis-toxin sensitive 

G-protein (Gi/o) in sphinganine 1-phosphate-mediated renal and hepatic protection, mice 

were pretreated with pertussis toxin (25 μg/kg i.p.) 48 hrs before sphinganine 1-phosphate 

injection as described previously (7,20).

Histological evaluations of hepatic and renal injury

For histological preparations, liver or kidney tissues were fixed in 10% formalin solution 

overnight. After automated dehydration through a graded alcohol series, transverse liver or 

kidney slices were embedded in paraffin, sectioned at 4 μm, and stained with hematoxylin-

eosin (H&E). To quantify the degree of hepatic necrosis, H&E stains were digitally 

photographed and the percent of necrotic area was quantified with NIH IMAGE (Image-J, 

1.37v) software by a person (SWC) who was blinded to the treatment each animal had 

received. Twenty random sections were investigated per slide to determine the percentage of 

necrotic area. Liver H&E sections were also graded for IR injury by a pathologist (VDD) 

blinded to the samples using the system devised by Suzuki et al. (21). In this classification, 3 

liver injury indices are graded: sinusoidal congestion (0–4), hepatocyte necrosis (0–4), and 

ballooning degeneration (0–4) are graded for a total score of 0–12. No necrosis, congestion, 

or centrilobular ballooning is given a score of 0 whereas severe congestion/ballooning and 

>60% lobular necrosis is given a value of 4. Renal H&E sections were evaluated for the 

severity (score: 0–3) of renal cortical vacuolization, peritubular/proximal tubule leukocyte 

infiltration, proximal tubule simplification and proximal tubule hypereosinophilia by an 

experienced pathologist (VDD) who was blinded to the treatment each animal had received.

Cell culture

Human renal glomerular endothelial cells (ScienCell Research Laboratories, Carlsbad, CA) 

were grown in endothelial cell medium (ECM consisting of 5% fetal bovine serum, 1% 

endothelial cell growth supplement plus 1% of penicillin/streptomycin solution, ScienCell 

Research Laboratories, Carlsbad, CA) at 37°C in a 100% humidified atmosphere of 5% 

CO2–95% air. These cells are not immortalized so they were plated and used when 

confluent. Human renal proximal tubule (HK-2, immortalized human proximal tubular cell 

line, American Type Culture Collection, Manassas, VA) cells were grown and passaged in 

culture medium (50:50 mixture of DMEM low glucose and F12 plus 5% serum) and 

antibiotics (100 U/ml of penicillin G, 100 μg/ml of streptomycin, and 0.25 μg/ml of 

amphotericin B) at 37°C in a 100% humidified atmosphere of 5% CO2–95% air. Human 

renal endothelial cells or HK-2 cells were treated with 1 μM sphinganine 1-phosphate for 5 

min. to 16 hrs. We also pretreated some cells with 1 μM W146 (a selective S1P1 receptor 

antagonist) 30 min. prior to sphinganine 1-phosphate treatment.

Kidney and liver tissue preparation and immunoblotting analyses

For determination of the signaling pathways after sphinganine-1-phosphate injection, livers 

and kidneys were isolated 15 min after 0.1 mg/kg sphinganine-1-phosphate injection. Liver 
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tissues or mouse kidney cortical tissues (including corticomedullary junction) were dissected 

on ice and immediately placed in ice-cold RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, 1 

mM EDTA, and 1% Triton-X [pH 7.4]) and homogenized for 10 s on ice. The samples were 

centrifuged for 30 min at 50,000 xg. The supernatant was collected and used for 

immunoblotting as described previously (6,18). We measured the phosphorylation of ERK 

MAPK, Akt and HSP27 and the same blots were stripped and reprobed for total ERK 

MAPK, Akt and HSP27.

Immunoblot analyses of human renal endothelial cells

Immunoblotting analyses of human renal endothelial cell and proximal tubule (HK-2) cell 

lysates were performed as described previously (8,22) after treating the cells with either 

sphinganine-1-phosphate or with vehicle (0.4% BSA) for 5 min. to 16 hrs. The primary 

antibodies for phospho-ERK1/2 and total ERK were from Santa Cruz Biotechnologies 

(Santa Cruz, CA). The primary antibody for phospho-Akt and total Akt1 were from Cell 

Signaling Technologies (Danvers, MA). The primary antibodies for pHSP27 and HSP27 

were obtained from Millipore (Billerica, MA). All of the phospho-ERK, phospho-Akt and 

phospho-HSP27 blots were stripped and reprobed for total ERK, Akt and HSP27, 

respectively. The secondary antibody (goat anti-rabbit or anti-mouse IgG conjugated to 

horseradish peroxidase at 1:5000 dilution) was detected with enhanced chemiluminescence 

immunoblotting detection reagents (Amersham), with subsequent exposure to a CCD 

camera coupled to a UVP Bio-imaging System (Upland, CA) and a personal computer. The 

band intensities of the immunoblots were within the linear range of exposure for all 

experiments.

Reverse transcription polymerase chain reaction (RT-PCR) analyses

We also performed a semi-quantitative RT-PCR assay for mouse HSP27 from total RNA 

extracted from renal cortices of mice injected either vehicle or with sphinganine-1-

phosphate 5 hrs prior as described previously (Table 1) (23). We also extracted total RNA 

from human renal endothelial cells or renal proximal tubule (HK-2) cells treated with either 

vehicle (4 hrs) or with sphinganine 1-phosphate (2 or 4 hrs) and performed RT-PCR for 

human HSP27 as described (Table 1) (23). To determine the specificity as well as the degree 

of reduction in S1P1 receptors after siRNA treatment in mice in vivo, we also performed 

semi-quantitative RT-PCR assay for mouse S1P1–5 receptor subtypes in the kidney and liver 

tissues extracted 48 hrs after siRNA injection i.v. For each experiment, we also performed 

semiquantitative RT-PCR under conditions that yielded linear results for glyceraldehyde-3-

phosphate dehydrogenase (Table 1) to confirm equal RNA input. RT-PCR products were 

analyzed on a 6% acrylamide gel stained with SYBR green (Invitrogen, Carlsbad, CA) for 

analysis with a UVP Bio-imaging System (Upland, CA). Semi-quantitative analysis of 

mRNA expression gene was accomplished by obtaining the ratio of the band density of the 

mRNA’s of interest to that of GAPDH (a housekeeping gene) from the same sample.

Statistical analysis

All data are reported as mean ± standard error. The overall significance of the results was 

examined using one-way analysis of variance and the significant differences between the 
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groups were considered at a P<0.05 with the appropriate Tukey’s post hoc test made for 

multiple comparisons. The ordinal values of the liver and kidney injury scores were 

analyzed by the Mann-Whitney nonparametric test.

Results

Sphinganine 1-phosphate protects against hepatic and renal injury after liver IR

The plasma level of ALT and creatinine (Cr) in the vehicle-treated sham-operated mice was 

72±9 U/L (N=6) and 0.43±0.03 mg/dL (N=6), respectively. The plasma level of ALT and Cr 

in the sphinganine 1-phosphate-treated sham-operated mice was 80±6 U/L (N=6) and 

0.46±0.05 mg/dL (N=6), respectively. The plasma level of ALT increased significantly 24 

hrs after 60 min. liver ischemia and reperfusion in mice treated with vehicle (15076±1174 

U/L, N=6, Fig. 1). The mice subjected to liver IR after vehicle treatment also developed AKI 

with rises in plasma Cr (1.08±0.07 mg/dL, N=6, P<0.01 vs. sham-operated mice) 24 hrs 

after reperfusion. In contrast, mice treated with sphinganine 1-phosphate (0.1 mg/kg i.v. 

before reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion), the increases in ALT 

(7474±557 U/L, N=6, P<0.001, Figure 1) and Cr (0.55±0.05 mg/dL, N=6, P<0.001, Figure 

1) were significantly suppressed at 24 hrs after reperfusion. In this study, we also tested 

whether a single dose of sphinganine 1-phosphate would provide hepatic and renal 

protection when given immediately before reperfusion (0.1 mg/kg, i.v.) or 2 hr after 

reperfusion (0.2 mg/kg, s.c.). We show that sphinganine 1-phosphate given before 

reperfusion was protective (ALT=7197±753 U/L, N=6 and Cr=0.58±0.06 mg/dL, N=6) 

whereas the dose given 2 hrs after reperfusion was not protective (ALT=14762±1732 U/L, 

N=6 and Cr=0.98±0.06 mg/dL, N=6).

We also tested whether exogenous S1P protected against liver IR induced hepatic and renal 

dysfunction. S1P (0.1 mg/kg i.v. prior to reperfusion and 0.2 mg/kg s.c. 2 hrs after 

reperfusion) also produced significant (but to a lesser degree than Sg1P) hepatic 

(ALT=9178±1822, N=9) and renal protection (Cr=0.72±0.13, N=9) 24 hrs after liver IR.

Sphinganine 1-phosphate provides protection against hepatic and renal injury after liver IR 
via S1P1 receptor activation

We also determined the S1P receptor subtype involved in sphinganine 1-phosphate-

mediated hepatic and renal protection by pretreating mice with a highly selective 

pharmacological antagonist for S1P1 (W146), S1P2 (JTE-013) or S1P3 (BML-241) 

receptors. We found that blockade of S1P1 receptors but not S1P2 or S1P3 receptors blocked 

the sphinganine 1-phosphate-mediated liver and kidney protection after liver IR. W146 

(0.05–0.2 mg/kg) caused complete inhibition of sphinganine 1-phosphate’s protective effects 

against liver and kidney injury. For example, W146 at 0.05 mg/kg i.p. 10 min. prior to liver 

ischemia completely abolished the sphinganine 1-phosphate induced hepatic and renal 

protection (Figure 2) 24 hrs after liver IR. SEW-2871, a selective S1P1 receptor agonist (1 

mg/kg i.p. 30 min. prior to liver ischemia and 5 min prior to reperfusion) also provided 

equivalent degree of liver (ALT=6502±552 U/L, N=6) and renal (Cr=0.63±0.08 mg/dL, 

N=6) protection when given in lieu of sphinganine 1-phosphate. Neither S1P2 nor S1P3 
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receptor antagonist prevented the sphinganine 1-phosphate-mediated hepatic and renal 

protection against injury after liver IR (Figure 2).

Similar to sphinganine 1-phopshate, S1P-mediated hepatic and renal protection was 

inhibited by W146 (a selective S1P1 receptor antagonist, Figure 2). Surprisingly, the S1P-

mediated hepatic protection was significantly enhanced by an S1P3 receptor antagonist 

(BML-241, Figure 2). S1P2 receptor selective antagonist (JTE-013) has no effect on S1P-

mediated hepatic and renal protection (Figure 2).

In vivo siRNA targeting of S1P1 receptor blocked sphinganine 1-phosphate-induced 
hepatic and renal protection after liver IR

Mice were injected with siSTABLE™ siRNA sequences specific for murine S1P1 receptors 

48 hrs before liver ischemia. We first demonstrate that siRNA injection selectively and 

significantly reduced S1P1 receptor mRNA expression in the liver and kidney (Figure 3). 

We also show that selective knock-down of S1P1 receptors with siRNA completely 

abolished the hepatic and renal protective effects of sphinganine 1-phosphate 

(ALT=15882±610 U/L, N=7 and Cr=1.36±0.08 mg/dL, N=7, p<0.001 vs. sphinganine 1-

phopshate injected mice subjected to liver IR). siSTABLE™ S1P1 siRNA injection had no 

effect on hepatic and renal function in vehicle injected mice subjected to liver IR 

(ALT=16680±560 U/L, N=7 and Cr=1.29±0.06 mg/dL, N=7).

Signaling pathways of sphinganine 1-phosphate-mediated renal protection: critical role for 
the pertussis toxin sensitive G-proteins (Gi/o), ERK and Akt

We probed the renal and hepatic protective signaling pathways activated by sphinganine 1-

phosphate treatment in mice subjected to liver IR. To determine whether Gi/o, ERK MAPK, 

Akt and/or eNOS signaling mediate the sphinganine 1-phosphate-mediated renal and hepatic 

protection after hepatic IR, mice were pretreated with pertussis toxin (an inhibitor of Gi/o 

signaling), PD98059 (a selective MEK1 inhibitor), wortmannin (a selective PI3K inhibitor) 

or L-NIO (a selective eNOS inhibitor) prior to sphinganine 1-phosphate treatment. We have 

demonstrated previously that the doses of pertussis toxin, PD98059 and wortmannin used 

effectively blocked phosphorylation of ERK and Akt, respectively, in mice in vivo (6,18). 

We found that the inhibition of Gi/o, MEK1 or PI3K prevented the renal and hepatic 

protection with sphinganine 1-phosphate treatment after hepatic IR (Figure 4). A selective 

eNOS inhibitor (L-NIO) had no effects on sphinganine 1-phosphate-mediated hepatic and 

renal protection after liver IR (Figure 4). Inhibitors alone had no effect on renal function 

after IR injury (Figure 4).

Sphinganine 1-phosphate-mediated reduction in hepatic necrosis and renal injury are 
blocked by a selective S1P1 receptor antagonist and inhibitors of ERK MAPK, Akt and Gi/o

Representative histological slides (magnification, 40X) from liver tissues from vehicle-

treated or sphinganine 1-phosphate-treated mice subjected to 60 min ischemia and 24 hrs 

reperfusion or to sham-operation are shown in Figure 5. Sixty min of partial hepatic IR in 

vehicle-treated mice produced large necrotic areas of livers after reperfusion (Figure 5). 

Correlating with significantly improved function, reduced necrosis was observed in mice 

treated with sphinganine 1-phosphate and subjected to hepatic IR (Figure 5). The average 
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percent necrotic areas for vehicle-treated mice were 92±2% (N=6) and sphinganine 1-

phosphate-treatment reduced this percent necrosis to 44±8% (N=7, P<0.05). We failed to 

detect necrosis in liver sections from sham-operated mice. Livers were also analyzed for the 

degree of hepatocellular damage using the Suzuki’s criteria (Figure 5B) (24). The ischemic 

lobes in the control group showed severe hepatocyte vacuolization, necrosis and sinusoidal 

congestion (Suzuki score=8.7±0.3, N=5). Mice treated with sphinganine 1-phosphate 

revealed significantly less necrosis/sinusoidal congestion and better preservation of lobular 

architecture (Suzuki score=5.2±0.8, N=5, P<0.01, Figure 5B). Pre-treating mice with W146 

(a selective S1P1 receptor antagonist), PD98059 (a selective MEK1 inhibitor), wortmannin 

(a selective PI3K inhibitor) or pertussis toxin (an inhibitor of Gi/o signaling) prior to 

sphinganine 1-phosphate treatment reduced the protective effects of sphinganine 1-

phosphate on liver histology. Necrotic areas in the liver after IR also increased significantly 

in mice treated with W146, PD98059, wortmannin or pertussis toxin (data not shown).

Representative kidney H&E slides from vehicle-treated and sphinganine 1-phosphate-treated 

mice subjected to 60 min ischemia and 24 hrs reperfusion are shown in Figure 6A 

(magnification, 400X). When we examined the kidneys from the mice injected with vehicle 

and subjected to liver IR, we observed multifocal acute tubular injury including S3 segment 

proximal tubule necrosis, cortical tubular simplification, cytoplasmic vacuolization and 

dilated lumina as well as focal granular bile/heme casts (Figure 6A). Correlating with 

significantly improved renal function, mice treated with sphinganine 1-phosphate showed 

less renal cortical vacuolization, peritubular/proximal tubule leukocyte infiltration, proximal 

tubule simplification and proximal tubule hypereosinophilia (Figure 6A). The summary of 

renal injury scores for percent renal tubular hypereosinophilia, percent peritubular leukocyte 

margination and percent cortical vacuolization are shown in Figure 6B. Blockade of S1P1 

receptors, MEK1, PI3K or Gi/o by pre-treating mice with W146, PD98059, wortmannin or 

pertussis toxin, respectively, prior to sphinganine 1-phosphate treatment reduced the 

protective effects of sphinganine 1-phosphate on renal histology (Figure 6B).

Sphinganine-1-phosphate treatment phosphorylates ERK MAPK, Akt and HSP27 and 
induces HSP27 mRNA and protein in mouse kidney and liver

Mice were injected with sphinganine 1-phophate i.v. and their kidney and liver tissues were 

extracted at 15 min. (for immunoblotting of phosphorylated proteins), at 5 hrs (for RTPCR) 

and at 24 hrs (for immunoblotting of total HSP27) after injection. Sphinganine 1-phosphate 

induced HSP27 mRNA of the liver and kidney in mice (Figure 7A). Sphinganine 1-

phosphate treatment also resulted in phosphorylation of ERK MAPK and Akt as well as 

phosphorylation of renal and hepatic HSP27 in mice (Figure 7B). Finally, we show that 

sphinganine 1-phosphate treatment increased total HSP27 protein in the liver and kidney in 

mice (Figure 7C).

Sphinganine-1-phosphate phosphorylates ERK MAPK, Akt and HSP27 and induces HSP27 
in human renal endothelial cells

The next series of experiments were performed in cultured human renal vascular endothelial 

cells to further elucidate the mechanistic aspect of sphinganine-1-phosphate mediated renal 

endothelial protection. Human renal endothelial cells were treated with sphinganine 1-
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phosphate and their mRNA and protein were extracted for analyses. Figure 8A shows that 

sphinganine-1-phosphate induces HSP27 mRNA in cultured human renal endothelial cells. 

Figure 8B shows that sphinganine-1-phosphate phosphorylates 2 well known anti-apoptotic 

kinases (ERK MAPK and AKT) in human renal endothelial cells in a time-dependent 

manner. Moreover, we also demonstrate that sphinganine-1-phosphate phosphorylates and 

induces HSP27 (Figure 8). Blockade of S1P1 receptors with W146 completely abolished the 

effects of sphinganine 1-phosphate in human renal endothelial cells (data not shown). In 

contrast to the effects on human endothelial cells, sphinganine 1-phosphate failed to 

phosphorylate ERK MAPK, Akt and HSP27 and induce HSP27 in HK-2 (human renal 

proximal tubule epithelial) cells (data not shown).

Discussion

The major findings of this study are that sphinganine 1-phosphate protects against liver IR 

induced hepatic and renal injury via activation of the S1P1 receptors with subsequent 

signaling through Gi/o, ERK and Akt-mediated mechanisms (Figure 9). Both 

pharmacological (W146) as well as gene deletion approaches (with siSTANLE™ siRNA) 

demonstrated essential roles for S1P1 receptors in sphinganine 1-phosphate-mediated 

hepatic and renal protection after liver IR. Sphinganine 1-phosphate phosphorylated 

cytoprotective kinase ERK MAPK, Akt and HSP27 in human glomerular renal endothelial 

cells in vitro as well as in mouse kidney and liver in vivo. However, sphinganine 1-

phosphate failed to activate the cytoprotective kinase phosphorylation and HSP27 induction 

in human proximal tubule cells in culture. We also determined sphinganine 1-phosphate-

mediated liver and kidney protection is independent of the eNOS pathway in vivo. In 

contrast, the mechanisms of S1P-mediated hepatic protection are more complex as a 

selective S1P1 receptor antagonist blocked whereas a selective S1P3 receptor antagonist 

potentiated S1P’s hepatic protective effects.

Development of AKI associated with liver injury is a devastating clinical complication with 

an extremely high mortality (3). Neither effective prevention nor therapy exists for hepatic 

IR induced liver and kidney injury and the current management remains largely supportive 

(2). We used a murine model of liver IR that not only produces severe liver dysfunction but 

also rapidly and reproducibly develops AKI with the degree of hepatic dysfunction directly 

correlating with the degree of AKI (4). Hepatic IR induced AKI in mice mimicked the 

histological (renal tubular injury and juxtaglomerular apparatus hyperplasia) as well as 

biochemical (plasma creatinine, inflammatory markers) changes observed with human AKI 

associated with liver failure (4). Importantly, we noted that AKI after liver IR in our model 

was associated with a rapid development of renal endothelial cell apoptosis with subsequent 

vascular impairment, neutrophil infiltration and renal proximal tubule cell necrosis (4). 

Therefore, we hypothesized and explored ways to improve endothelial integrity that will 

subsequently reduce renal and hepatic dysfunction after liver IR.

Sphingolipids including sphingosine and sphinganine (dihydrosphingosine) are ubiquitous 

but essential structural and functional components of the cell. In addition, sphingolipid 

metabolites including S1P have important biological roles in various physiological as well 

as pathophysiological events (25). Sphinganine 1-phosphate as well as S1P is produced by 
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the ATP-dependent phosphorylation of sphinganine by sphingosine kinases (26,27). 

Sphingosine kinase (SK) is a conserved lipid kinase with two mammalian isoforms (SK1 

and SK2) (26,27). The biological role of S1P has been extensively characterized including 

cell growth and survival and inflammation (28). Furthermore, S1P produces powerful anti-

apoptotic and pro-survival signaling in endothelial cells (29). In contrast to the well 

characterized biological and physiological roles of S1P (29,30), sphinganine 1-phosphate 

has not been widely studied and little is known about its function.

We unexpectedly discovered recently that plasma levels of sphinganine 1-phosphate (but not 

S1P) fell significantly after liver IR in mice (5). Moreover, in our present and previous 

studies, we demonstrated that exogenous sphinganine 1-phosphate treatment immediately 

before reperfusion significantly attenuated the elevation of plasma ALT and creatinine levels 

after hepatic IR. We propose that sphinganine 1-phosphate is biologically potent, is depleted 

after massive liver IR injury and may have important cytoprotective functions to defend 

against endothelial cell dysfunction after liver IR. Although sphinganine 1-phosphate is 

structurally similar to S1P, it differs from S1P by being cell impermeable (31) and lacks the 

trans double bond at the 4 position (32). Liver IR results in depletion of systemic as well as 

hepatic ATP (a necessary cofactor of the SK enzyme) levels which may decrease the 

activities and/or efficiencies of SK. However, it is unclear as to why a selective depletion of 

plasma sphinganine 1-phosphate and not S1P occurs after liver IR as both sphinganine 1-

phosphate and S1P synthesis depend on the same enzyme, SK. Preferential synthesis of 

sphinganine 1-phosphate over S1P has been demonstrated with SK1 overexpression (33). 

Berdyshev et al. have demonstrated that SK1 overexpression in several primary cells and 

cultured cell lines resulted in a predominant upregulation of sphinganine 1-phosphate 

synthesis relative to S1P (33). In their study, SK1 overexpression preferentially directed the 

metabolic flow of newly formed sphingoid bases from de novo ceramide formation toward 

the synthesis of sphinganine 1-phosphate. These studies suggest that SK1 preferentially 

synthesizes sphinganine 1-phoshate from simple de novo sphingolipids produced whereas 

formation of S1P is via separate and complex catabolic pathways.

Although S1P → S1P receptor signaling has been extensively studied, sphinganine 1-

phosphate-mediated cell signaling has not been studied in detail. Since the structures of 

sphinganine 1-phosphate and S1P are similar, we postulated that sphinganine 1-phosphate 

acting on the cell surface S1P receptors may mediate hepatic and renal protection after liver 

IR. Protective effects of S1P receptor signaling to protect against liver and kidney injury 

have been demonstrated previously in vivo. For example, FTY720 (2-amino-2-[2-(4-

octylphenyl)ethyl]propane-1,3-diol) protected against liver IR in rats presumably via 

activation of S1P receptor modulation (34,35). Moreover, several S1P receptor agonists, 

including S1P, FTY-720 and SEW-2871 (a selective ligand for S1P1 receptor), protected 

against renal IR injury in vivo via reducing renal proximal tubule influx of T-lymphocytes 

with subsequent reduction in necrosis and inflammation (17,36,37).

We show in this study that sphinganine 1-phosphate-mediated liver and kidney protection 

after liver IR is S1P1 receptor-mediated as a selective S1P1 receptor antagonist (W146) 

blocked the protective effects of sphinganine 1-phosphate. Selective S1P2 (JTE-013) and 

S1P3 (BML-241) antagonists had no effect on sphinganine 1-phosphate-mediated liver and 
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kidney protection after liver IR. All of these antagonists for S1P receptors provide extreme 

selectivity for their respective receptor subtypes (14–16). To further evaluate the role of 

S1P1 receptors in sphinganine 1-phosphate-mediated liver and kidney protection, we utilized 

siRNA targeting S1P1 receptors in mice in vivo to complement the data obtained with 

pharmacological inhibitor (W146) studies. We were able to selectively downregulate S1P1 

receptors in adult mice with siSTABLE™ constructs in vivo (Figure 3) which resulted in 

complete loss of sphinganine 1-phosphate-mediated hepatic and renal protection after liver 

IR.

We also show in this study that sphinganine 1-phosphate via S1P1 receptor activation leads 

to phosphorylation of ERK MAPK, Akt and HSP27 as well as induction of HSP27 in mouse 

kidney and liver (Figure 7) as well as cultured human renal endothelial cells (Figure 8). 

Endothelial selectivity is suggested as sphinganine 1-phosphate failed to phosphorylate ERK 

MAPK, Akt and HSP27 in human kidney proximal tubule epithelial cell (HK-2) line. The 

differential molecular mechanisms for these signaling differences between endothelial cells 

and proximal tubules cells remain to be elucidated. Activation of ERK MAPK is strongly 

associated with enhanced protection against several forms of injury including necrosis and 

apoptosis (9,38). The serine/threonine kinase Akt is an important component of cell survival 

pathways in many cell types (39,40). In particular, Akt has diverse functions to counteract 

apoptosis including inhibition of mitochondrial cytochrome c and phosphorylation of several 

pro-apoptotic factors (e.g., bad, caspase 9, glycogen synthase kinase 3) (10,41).

HSP27 is a member of family of chaperone proteins that are up-regulated in response to a 

wide range of cellular stresses including hypoxia, ischemia and exposure to toxic drugs (42–

45). Increased expression of HSP27 serves to defend a cell against injury or death by acting 

as chaperones facilitating proper polypeptide folding and aberrant protein removal (46–48). 

Furthermore, HSP27 is a potent anti-apoptotic protein and is a key stabilizer of the actin 

cytoskeleton; both of these cellular effects lead to increased resistance against cell death 

(49–51). Both phosphorylated and non-phosphorylated forms of HSP27 can reduce cellular 

injury against diverse forms of stress including renal injury. It remains to be determined 

whether a direct link exists between HSP27 phosphorylation/induction and sphinganine 1-

phosphate-mediated liver and kidney protection.

In this study, we were surprised to discover that the hepatic protection with S1P was not 

only attenuated by an S1P1 receptor antagonist but was also improved by an S1P3 selective 

antagonist. These findings suggest that exogenous S1P activation of S1P1 receptor provides 

protective signaling cascade in the liver, however S1P can also initiate potentially 

detrimental effects via S1P3 receptor activation as well. S1P3 receptor activation in 

pulmonary epithelial cells leads to disruption of tight junctions, possibly by activating Rho 

resulting in increased lung vascular permeability (52). Moreover, the S1P3 but not the S1P1 

receptor subtype has been implicated in non-selective S1P receptor agonist induced 

bradycardia (53). Indeed, FTY-720 (an immunomodulator analog of S1P) has been shown to 

not only produce expected lymphomenia but also produced undesirable dose-dependent 

bradycardia in clinical trials (53). Therefore, in contrast to the protective effects of S1P1 

receptor activation, S1P3 receptor activation may trigger detrimental effects against organ 

injury. We propose that S1P produces activation of multiple S1P receptor subtypes 
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(including S1P1 and S1P3) resulting in conflicting physiological effects. This is in contrast 

to the lack of S1P3 receptor-mediated effects observed with sphinganine 1-phosphate-

mediated hepatic protection (Figure 2).

A limitation of the study is that S1P4 and S1P5 receptor selective antagonists currently are 

not available, therefore, we cannot rule of the roles for these receptor subtypes in 

sphinganine 1-phosphate mediated liver and kidney protection. However, although S1P 

receptors are ubiquitously expressed in almost every cell type, in the vascular endothelial 

system S1P1, S1P2 and S1P3 receptor subtypes predominate in expression and function (54). 

Another limitation is that, although we implicate endothelial cells as the target of 

sphinganine 1-phosphate-mediated protection as this drug shows selective phosphorylation 

of renal endothelial but not renal epithelial cell line, with in vivo studies it is impossible to 

delineate for certain the target cell type(s) involved in sphinganine 1-phosphate-mediated 

protection. Future in vitro studies to complement our current in vivo studies are required to 

determine whether other parenchymal cell types of interest (e.g., hepatocyte) are also 

involved.

In conclusion, we determined the mechanisms of sphinganine 1-phosphate (a relatively 

unknown sphingolipid molecule)-mediated protection against liver IR induced renal and 

hepatic injury in mice. Our study demonstrates that activation of the S1P1 receptor via 

sphinganine 1-phosphate protects against liver IR induced AKI and hepatic injury via, Gi/o, 

ERK and Akt-mediated mechanisms and the protection is independent of the eNOS 

pathway. In contrast, activation of S1P3 receptors attenuated the hepatic protective effects of 

exogenous S1P after liver IR. We propose that sphinganine 1-phosphate via selective S1P1 

receptor activation without affecting the S1P3 receptors is superior to S1P in attenuating 

hepatic IR injury and may be a promising pharmacological agent for protecting both liver 

and kidney function after hepatic IR.
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Figure 1. 
Sphinganine 1-phosphate administered 0.1 mg/kg i.v. immediately prior to reperfusion and 

0.2 mg/kg s.c. 2 hrs after reperfusion (Sphinganine 1-P IR (iv+sc), N=6) or 0.1 mg/kg i.v. 

immediately prior to reperfusion (Sphinganine 1-P IR (iv), N=6) protects against hepatic (A, 

ALT) and renal (B, creatinine) injury in C57BL/6 mice subjected to 60 min. liver ischemia 

and 24 hrs reperfusion. Sphinganine 1-phoshate when only given 2 hrs after reperfusion s.c. 

(Sphinganine 1-P IR (sc), N=6) did not produce liver or kidney protection. Data are 

presented as mean ± SEM. *P<0.05 vs. vehicle-treated IR (Vehicle IR) group.
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Figure 2. 
Selective S1P1 receptor antagonist W146 prevents hepatic (A, ALT) and renal (B, 

creatinine) protection by sphinganine 1-phosphate and S1P in C57BL/6 mice subjected to 60 

min. liver ischemia and 24 hrs reperfusion. Mice were pretreated with vehicle (0.4% fatty 

acid free BSA, Veh, N=6), W146 (a selective S1P1 receptor antagonist, 0.05 mg/kg i.p., 

N=6), JTE-013 (JTE, a selective S1P2 receptor antagonist, 0.1 mg/kg i.p., N=6) or BML-241 

(BML, a selective S1P3 receptor antagonist, 0.1 mg/kg i.p., N=6) 20 min. prior to 

sphinganine 1-phosphate or S1P treatment. Sphinganine 1-phosphate or S1P was 

administered 0.1 mg/kg i.v. immediately prior to reperfusion and 0.2 mg/kg s.c. 2 hrs after 

reperfusion. Data are presented as means ± SEM. *P<0.05 vs. Vehicle-treated hepatic IR 

group. #P<0.05 vs. Vehicle-treated sphinganine 1-phosphate hepatic IR group. $P<0.05 vs. 

Vehicle-treated S1P hepatic IR group.
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Figure 3. 
Mice injected with siSTABLE™ targeting S1P1 receptors show selective reduction in S1P1 

receptor mRNA without affecting other S1P receptor subtypes (S1P2–5). Densitometric 

quantification of relative mRNA band intensities normalized to GAPDH from RT-PCR 

reactions are shown in the bottom panel (N=7). Data are presented as means ± SEM. 

*P<0.05 vs. Vehicle-injected mice.
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Figure 4. 
Inhibition of pertussis toxin-sensitive G-proteins, ERK MAPK or Akt but not eNOS 

prevents hepatic (A, ALT) and renal (B, creatinine) protection by sphinganine 1-phosphate 

in C57BL/6 mice subjected to 60 min. liver ischemia and 24 hrs reperfusion. Mice were 

pretreated with PD98059 (PD, an inhibitor of MEK1 to inhibit ERK phosphorylation, 1 

mg/kg, i.p., N=6), with wortmannin (Wort, an inhibitor of PI3K to inhibit Akt 

phosphorylation, 1 mg/kg, i.p., N=6) or with N-iminoethyl-L-ornithine (L-NIO, a selective 

inhibitor of eNOS, 10 mg/kg i.p. N=6) 20 min. before vehicle or sphinganine 1-phosphate 

treatment. Some mice were pretreated with pertussis toxin (PTX, 25 μg/kg, i.p.) 48 hrs prior 

to sphinganine 1-phosphate treatment. Sphinganine 1-phosphate was administered 0.1 mg/kg 

i.v. immediately prior to reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion. Data are 

presented as means ± SEM. *P<0.05 vs. Vehicle-treated IR group. #P<0.05 vs. Vehicle-

treated sphinganine 1-phosphate-treated hepatic IR group.
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Figure 5. 
A). Representative photomicrographs of hematoxylin and eosin staining of the liver sections 

(40X). C57BL/6 mice were subjected liver ischemia reperfusion after vehicle- or 

sphinganine 1-phosphate treatment (0.1 mg/kg i.v. immediately prior to reperfusion and 0.2 

mg/kg s.c. 2 hrs after reperfusion). Necrotic hepatic tissue appears as light pink (*) with 

inflammation/vascular congestion near the portal triad (arrow). Some mice were pretreated 

with PD98059 (PD, an inhibitor of MEK1 to inhibit ERK phosphorylation, 1 mg/kg, i.p., 

N=6) or with wortmannin (Wort, an inhibitor of PI3K to inhibit Akt phosphorylation, 1 

mg/kg, i.p., N=6) 20 min. before vehicle or sphinganine 1-phosphate treatment. Some mice 

were pretreated with pertussis toxin (PTX, 25 μg/kg, i.p.) 48 hrs prior to sphinganine 1-

phosphate treatment. Photographs are representative of 6 independent experiments. B). 

Summary of Suzuki liver injury scores (scale 0–12) from mice subjected to liver IR after 

vehicle or sphinganine 1-phosphate treatment. Mice pretreated with PD98059, wortmannin 

or pertussis toxin showed increased indices of hepatic injury. *P<0.05 vs. Vehicle-treated IR 

group. #P<0.05 vs. sphinganine 1-phosphate-treated hepatic IR group.
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Figure 6. 
A). Representative photomicrographs of 6 experiments (hematoxylin and eosin staining, 

magnification 400X) demonstrating vacuolization (*) and hypereosinophillia (arrows) in 

kidneys from C57BL/6 mice 24 hrs after being subjected sham-operation or to liver 

ischemia reperfusion after vehicle- or sphinganine 1-phosphate treatment (0.1 mg/kg i.v. 

immediately prior to reperfusion and 0.2 mg/kg s.c. 2 hrs after reperfusion). Photographs are 

representative of 6 independent experiments. B). Summary of renal injury scores (scale 0–3) 

for renal cortical vacuolization, peritubular leukocyte margination, proximal tubule 

simplification and renal tubular hypereosinophilia for kidneys from mice subjected to liver 

IR after vehicle or sphinganine 1-phosphate treatment. Some mice were pretreated with 

PD98059 (PD, an inhibitor of MEK1 to inhibit ERK phosphorylation, 1 mg/kg, i.p., N=6) or 

with wortmannin (Wort, an inhibitor of PI3K to inhibit Akt phosphorylation, 1 mg/kg, i.p., 

N=6) 20 min. before vehicle or sphinganine 1-phosphate treatment. Some mice were 

pretreated with pertussis toxin (PTX, 25 μg/kg, i.p.) 48 hrs prior to sphinganine 1-phosphate 

treatment. Mice pretreated with PD98059, wortmannin or pertussis toxin showed increased 

indices of renal injury. *P<0.05 vs. Vehicle-treated IR group. #P<0.05 vs. sphinganine 1-

phosphate-treated hepatic IR group.
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Figure 7. 
(A) Representative gel images of RT-PCR results GAPDH and mouse HSP27 mRNAs 

extracted after treatment with vehicle (0.4% fatty acid free BSA) or 0.1 mg/kg sphinganine 

1-phosphate i.v. 5 hrs prior. Densitometric quantification of relative mRNA band intensities 

normalized to GAPDH from RT-PCR reactions are shown in the bottom panel (N=6). Data 

are presented as means ± SEM. *P<0.05 vs. Vehicle group. (B) Representative immunoblots 

for phospho (p)- and total-ERK, phospho (p)-and total-Akt, phospho (p)- and total-HSP27 

from renal cortices and liver of mice (right panel) after injection with vehicle or 0.1 mg/kg 

sphinganine 1-phosphate i.v. 15 min. prior. C) Representative immunoblots for total-HSP27 

and actin (showing equal lane loading) from renal cortices and liver of mice after injection 

with vehicle or 0.1 mg/kg sphinganine 1-phosphate i.v. 24 hrs prior. Densitometric 

quantifications of relative band intensities are also shown (left panel, N=4). *P<0.05 vs 

vehicle. Error bars, 1 SEM.
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Figure 8. 
(A) Representative gel images of RT-PCR results GAPDH and human HSP27 mRNAs 

extracted from human renal endothelial cells in culture. Cells were treated with vehicle 

(0.4% fatty acid free BSA for 4 hrs) or with sphinganine 1-phosphate (Sphinganine 1-P, 1 

μM for 2 or 4 hrs). Densitometric quantification of relative mRNA band intensities 

normalized to GAPDH from RT-PCR reactions are shown in the bottom panel. Data are 

presented as means ± SEM. *P<0.05 vs. Vehicle 4 hrs group. (B) Human renal endothelial 

cells were treated with 1 μm sphinganine-1-phosphate for indicated periods and probed for 

phosphorylation of anti-apoptotic kinases ERK and Akt and phospho- and total HSP27 

(representative of 5 experiments).
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Figure 9. 
Proposed cellular mechanisms of sphinganine 1-phosphate-mediated renal and hepatic 

protection after liver IR. Based on the data generated from our studies, we propose that 

sphinganine 1-phosphate activates the S1P1 receptor subtype in endothelial cells which 

couples to pertussis toxin-sensitive G-proteins, resulting in the phosphorylation of ERK 

MAPK, Akt as well as HSP27. We also propose induction of HSP27 mRNA as well as 

protein after sphinganine 1-phosphate treatment.
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