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In a previous study it was found that the therapeutic
effects of QLT0267, a small molecule inhibitor of
integrin-linked kinase (ILK), were influenced by Her2/
neu expression. To understand how inhibition or silencing
of ILK influences Her2/neu expression, Her2/neu signal-
ing was evaluated in six Her2/neu-positive breast cancer
cell lines (LCC6Her2, MCF7Her2, SKBR3, BT474, JIMT-1
and KPL-4). Treatment with QLT0267 engendered
suppression (32–87%) of total Her2/neu protein in these
cells. Suppression of Her2/neu was also observed follow-
ing small interfering RNA-mediated silencing of ILK
expression. Time course studies suggest that ILK inhibi-
tion or silencing caused transient decreases in P-AKTser473,
which were not temporally related to Her2/neu down-
regulation. Attenuation of ILK activity or expression was,
however, associated with decreases in YB-1 (Y-box
binding protein-1) protein and transcript levels. YB-1 is
a known transcriptional regulator of Her2/neu expression,
and in this study it is demonstrated that inhibition of ILK
activity using QLT0267 decreased YB-1 promoter activity
by 50.6%. ILK inhibition was associated with changes in
YB-1 localization, as reflected by localization of cyto-
plasmic YB-1 into stress granules. ILK inhibition also
suppressed TWIST (a regulator of YB-1 expression)
protein expression. To confirm the role of ILK on YB-1
and TWIST, cells were engineered to overexpress ILK.
This was associated with a fourfold increase in the level of
YB-1 in the nucleus, and a 2- and 1.5-fold increase in
TWIST and Her2/neu protein levels, respectively. Taken
together, these data indicate that ILK regulates the
expression of Her2/neu through TWIST and YB-1,
lending support to the use of ILK inhibitors in the
treatment of aggressive Her2/neu-positive tumors.
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Introduction

Increased integrin-linked kinase (ILK) expression and/
or activity (Graff et al., 2001; Bravou et al., 2003; Obara
et al., 2004; Takanami, 2005; Sawai et al., 2006) has
been documented in many cancers types, including lung
(Takanami, 2005), brain (Obara et al., 2004), prostate
(Graff et al., 2001), pancreatic (Sawai et al., 2006), colon
(Bravou et al., 2003, 2006), gastric (Ito et al., 2003) and
ovarian (Ahmed et al., 2003) cancers and malignant
melanomas (Dai et al., 2003). Overexpression of ILK in
epithelial cells has been shown to induce epithelial–
mesenchymal transition (Li et al., 2003, 2007; Oloumi
et al., 2004, 2006) and deregulated growth, whereas
targeted inhibition of ILK induces apoptosis and cell
cycle arrest (Persad et al., 2000; Persad and Dedhar,
2003; Duxbury et al., 2005; McDonald et al., 2008a). In
normal mammary cells, overexpression of ILK stimu-
lates anchorage-independent cell growth (Hannigan
et al., 1997; Radeva et al., 1997; Kumar et al., 2004),
and causes constitutive upregulation of cyclin D and A
expression while promoting cell cycle progression
(Radeva et al., 1997), hyperplasia and tumor formation
in vivo (White et al., 2001). Given the importance of ILK
in cancer development and progression, it is anticipated
that ILK inhibition and/or silencing may be an effective
way of treating cancer. Preclinical studies completed
to date support this idea (Edwards et al., 2008; Kalra
et al., 2009).

A recent study from our lab using preclinical breast
cancer models highlighted the therapeutic benefits
associated with targeting ILK (Kalra et al., 2009).
However, the results clearly indicated that Her2/neu-
positive breast cancer cell lines responded uniquely
when compared with cell lines that expressed low levels
of Her2/neu. For example, Her2/neu-positive tumors
were more sensitive to treatment with QLT0267. The
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studies summarized here investigated Her2/neu expres-
sion in six cell lines where Her2/neu overexpression was
a result of gene amplification (SKBR3, BT474, JIMT-1
and KPL-4) or gene transfection (LCC6Her2 MCF7Her2).
The results presented demonstrate that ILK inhibi-
tion (with a small molecule ILK inhibitor, QLT0267)
or silencing (using small interfering RNA (siRNA))
suppressed Her2/neu protein expression. Evidence is
provided to suggest that ILK-mediated regulation of
Her2/neu appears to act through signaling pathways
involving the transcription factors Y-box binding
protein-1 (YB-1) and TWIST.

Results

QLT0267 or ILK-targeted siRNA suppress total Her2/
neu expression in multiple breast cancer cell lines
In an effort to better understand the effects of QLT0267
on Her2/neu-positive breast cancer cells, the expression
of total Her2/neu was examined in cell lines that were
treated with QLT0267 at various doses for a 24 h time
point that was selected based on Alamar Blue assay
(Medicorp Inc., Montreal, QC, Canada) that demon-
strate no decreases in cell viability at this time (Figure 1).
All six breast cancer cell lines examined, including
LCC6Her2 (Figure 1a), MCF7Her2 (Figure 1b), BT474
(Figure 1c), KPL4 (Figure 1d), SKBR3 (Figure 1e)
and JIMT-1 (Figure 1f), showed a reduction in total
Her2/neu protein levels in response to exposure to
QLT0267. Her2/neu levels in cells treated with QLT0267
were qualitatively assessed by densitometry (average of
three independent experiments) and the results indi-
cated that in all cell lines 42 mm QLT0267 resulted in
suppression of total Her2/neu. Levels were decreased
by 69, 86.5, 49, 47, 63 and 32% in LCC6Her2 MCF7Her2,
BT474, KPL4, SKBR3 and JIMT-1 cells, respectively.
To understand why LCC6Her cells showed significant
downregulation of Her2/neu at a concentration up to
fourfold lower than the other cell lines tested, we
performed reverse transcriptase–PCR to compare the
level of Her2/neu mRNA in SKBR3 cells relative to
LCC6Her2 cells. The analysis showed that SKBR3 cells
have 48-fold more Her2/neu transcript than the LCC6Her

cell line.
To determine if the suppression of Her2/neu was

a direct or indirect effect of QLT0267, SKBR3 were
transiently nucleofected with 2mg ILK siRNA or
a universal siRNA control (Neg) and ILK, AKT
P-AKTser473 and Her-2/neu levels were determined at
24, 48, 72 and 96 h (see representative blots in Figure 2).
ILK expression was decreased by an average of 49, 66,
66 and 79% at 24, 48, 72 and 96 h, respectively. Total
Her2/neu expression was decreased by 71% at 96 h
(Figure 2a).

An analysis of phosphorylation of AKT at serine 473
was done to elucidate whether the mechanism through
which ILK modulates the expression of Her2/neu
involves its downstream target, AKT. The results demon-
strate that ILK silencing is associated with significant
decreases in P-AKTser473 levels, but the effect is transient.

Within 24 h of treatment using ILK-targeted siRNA,
there was 79% suppression of P-AKTser473. These
values returned to control levels by 72 h (Figure 2a).
P-AKTser473 levels in SKBR3 cells were also determined
following treatment with QLT0267 (Figure 2b).
Significant decreases in P-AKTser473 were observed at 6
and 18 h; however, P-AKTser473 levels began to increase
by 24 h (Figure 2b). Similar results were seen in the
LCC6Her2 cell line. Transient decreases in P-AKTser473

levels following inhibition or silencing of ILK is
consistent with the initiation of compensation mechan-
isms as reported by others (Troussard et al., 2006;
McDonald et al., 2008a). Interestingly, although JIMT-
1 cells experience a decrease in Her2/neu levels after

Figure 1 Her2/neu expression following treatment of various
breast cancer cell lines with QLT0267. Expression of total Her2/neu
in (a) LCC6Her2, (b) MCF7Her2, (c) BT474, (d) KPL4, (e) SKBR3
and (f) JIMT-1 cells treated with QLT0267 was determined using
western blot analysis. Cells were treated for 24 h with 10, 21 or
42 mM QLT0267. Subsequently, cells were lysed, proteins were
isolated and 50mg whole-cell lysates were separated on 10% SDS–
PAGE gels as described in the Materials and methods. Membranes
were probed for Her2/neu and b-actin. In all six cell lines,
increasing concentrations of QLT0267 inhibited the expression of
total Her2/neu. At 42 mM, total Her2/neu is decreased by 69, 86.5,
49, 47, 63, and 32% (n¼ 3) in LCC6Her2, MCF7Her2, BT474, KPL4,
SKBR3 and JIMT-1 cells, respectively.
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treatment with 42 mM of QLT0267, these cells do not
show decreased P-AKT at any of the time points tested
(data not shown).

In order to determine whether ILK silencing by
siRNA or inhibition by QLT0267 affected Her2/neu
transcription, RNA was isolated from SKBR3 cells
treated with QLT0267 or transfected with ILK siRNA.
Her2/neu mRNA was measured using PCR and the
results, based on three independent experiments, in-
dicated that inhibition (QLT0267) or silencing (siRNA)
of ILK was associated with 9.8- and 2.5-fold decreases
in Her2/neu transcript levels, respectively (Figure 2c).

Influence of ILK inhibition or silencing on YB-1
expression and intracellular localization
ILK silencing/suppression decreased Her2/neu expres-
sion in both SKBR3 cells, where overexpression is
because of c-erbB2 gene amplification, and in LCC6Her2

cells, where Her2/neu expression is the result of c-erbB2
gene transfection driven by the RSV-LTR (long
terminal repeat of Rous sarcoma virus) promoter; thus,
in our minds, the potential mechanisms through which
ILK modulates Her2/neu were not limited to transcrip-
tional control. Rather, mechanisms that could influence

Her2/neu expression in these different cell types might
therefore involve transcription factors such as activator
protein-2 and Pseudomonas exotoxin A, stabilization
factors such as heat shock proteins 70 and 90 and
translational mechanisms such as YB-1. There was a
strong rationale for examining whether ILK regulates
YB-1 expression and/or cellular localization, as both
could trigger changes in Her2/neu expression (Kohno
et al., 2003; Bergmann et al., 2005; Berquin et al., 2005;
Kedersha and Anderson, 2007; Lo et al., 2007;
Takemoto et al., 2009; Chernov et al., 2008a, b, 2009;
Evdokimova et al., 2006a, b; Pontier et al., 2010).
SKBR3 cells were transiently nucleofected with ILK
siRNA. Subsequently, ILK, Her2/neu, total YB-1 and
b-actin levels were determined by western blot analysis.
The results, summarized in Figure 3a, indicate that ILK
levels were 64 and 84% suppressed at the 24 and 48 h
time points, respectively. Consistent with the results
summarized in Figure 2a, ILK silencing was associated
with significant decreases in total Her2/neu levels. These
studies also demonstrated that ILK silencing was
associated with decreases in YB-1 expression, where
48 h after ILK siRNA addition, YB-1 protein levels
were reduced by 74%. Similar results were seen in
LCC6Her2 cell lines (Supplementary Figure 2A). Further-

Figure 2 (a) Pathway analysis of SKBR3 cells transiently nucleofected with 2 mg of ILK siRNA using the Amaxa Nucleofector.
Whole-cell lysates (50mg) harvested from cells at 24, 48, 72 and 96 h post transfection were separated on 10% SDS–PAGE gels.
Resulting western blots were probed for ILK, Her2/neu, AKT, PAKTser473 and b-actin to verify loading. ILK expression was decreased
by 49, 66, 66 and 79% at 24, 48, 72 and 96 h, respectively. PAKTser473 was suppressed by 79% at 24 h where ILK silencing was at 49%.
At 48 h of treatment with ILK siRNA, SKBR3 cells exhibit a 66% suppression of ILK. At this and later time points, PAKTser473

expression is similar to control cells. Total Her2/neu expression was reduced by 71% at 96 h of treatment with ILK siRNA when
compared with the Neg siRNA (n¼ 3). (b) SKBR3 cells were treated with 42mM QLT0267 for 6, 18 or 24 h. Subsequently, cells were
lysed, 50 mg of protein was isolated and then separated on 10% SDS–PAGE gels. Resulting western blots were probed for Her2/neu,
PAKTser473 and b-actin to verify loading. Treatment with QLT0267 suppressed PAKTser473 in all cell lines at a time point earlier than
that observed to suppress Her2/neu. PAKTser473 was decreased at 6 h, whereas Her2/neu levels decreased substantially at 24 h, where
PAKTser473 begins to increase. (c) SKBR3 cells were treated with 42 mM QLT0267 for 24 h or transfected with ILK siRNA.
Subsequently, RNA was isolated from cells and reverse transcribed. Her2/neu was amplified from complementary DNA (cDNA) using
quantitative reverse transcriptase–PCR (RT–qPCR) and PCR. A 9.8- and 2.5-fold decrease of Her2/neu transcript was observed when
cells were treated using QLT0267 or ILK siRNA.
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more, ILK silencing (siRNA) and inhibition (QLT0267)
engendered a 9.9- and 6.8-fold decrease in YB-1 tran-
script levels, respectively (Figure 3b). Similar results were
seen in LCC6Her2 cell lines (Supplementary Figure 2B).

To determine whether ILK inhibition can influence
transcription of YB-1, the activity of the YB-1 promoter
region was evaluated using dual luciferase reporter assay
(Stratford et al., 2007, 2008). SKBR3 cells were trans-
fected with a YB-1/luciferase construct and a thymidine
kinase promoter/Renilla construct (control). Cells were
treated with QLT0267 or vehicle control and changes
in luciferase activity were determined (Figure 3c). The
results demonstrate that QLT0267-treated cells exhi-
bited a 50% decrease (Po0.05) in YB-1 promoter acti-
vity when compared with untreated controls and
normalized to results found using the control thymidine
kinase/Renilla construct. It is not clear why, but the
vehicle-treated cells exhibited an increase in promoter
activity (Figure 3c).

To confirm the western blot data summarized in
Figure 3a, immunofluorescence imaging of YB-1 was
examined in SKBR3 cells treated with QLT0267.

Representative images of untreated SKBR3 cells
compared with cells treated with QLT0267 are shown
in Figure 3d. QLT0267-treated cells exhibited lower
levels of immunofluorescence, consistent with the
western blot data. In addition, the fluorescence imaging
clearly demonstrated localization of YB-1 into well-
defined puncta (Figure 3d, white arrows). Similar results
were seen in other cell lines including LCC6Her2 cells
(Supplementary Figure 2C).

Influence of ILK overexpression on YB-1 and Her2/neu
levels
To assess how ILK influences the expression of
YB-1 and Her2/neu, SKBR3 cells were stably trans-
fected with the wild-type ILK (ILKWT) gene as
described in the Materials and methods. Exogenous
expression of ILK in SKBR3ILKWT cells (Figure 4a)
caused a small, but reproducible, decrease in native ILK
expression. In order to assess whether there were
changes in YB-1 levels or distribution, the ILKWT-
transfected cells were plated on coverslips fixed and

Figure 3 Inhibition of ILK activity or expression influences YB-1 transcription and subcellular localization. (a) SKBR3 cells were
transiently nucleofected with 4mg ILK siRNA. Subsequently, cells were lysed and 50mg of protein was isolated from samples at 24 and
48 h, separated on a 10% SDS–PAGE gel and probed for ILK, Her2/neu, YB-1 and b-actin to verify loading. ILK expression was
substantially silenced when SKBR3 cells were treated with 4 mg of ILK siRNA for both 24 and 48 h. Cells exhibit a 96% decrease in
total Her2/neu expression after 48 h, at which time YB-1 expression is reduced by 74%. (b) YB-1 transcript levels were analyzed in
SKBR3 cells treated with QLT0267 or nucleofected with 4mg ILK siRNA for 48 h using PCR. A 9.9-fold and 6.5-fold decrease in YB-1
transcript was observed in QLT0267-treated and ILK-silenced cells, respectively, when compared with control. (c) SKBR3 cells were
transfected with a YB-1 promoter/luciferase construct and treated with QLT0267 or vehicle control (PTE) for 24 h. A significant
reduction in YB-1 promoter activity of 50% is achieved when cells are treated with QLT0267 when compared with untreated controls
(Po0.05) (d) SKBR3 cells grown on coverslips were treated with 42 mM QLT0267 for 24 h, fixed with 4% paraformaldehyde (PFA) and
then stained for YB-1. Immunofluorescent images show that treatment of SKBR3 cells trigger a decrease in YB-1 protein (red) as well
as a change in localization to granular structures in the cytoplasm (white arrows). Hoechst staining was used to counter stain nuclei
(blue). Bar, 5mm.
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stained for YB-1 (red) and nuclei (blue) (Figure 4b).
When comparing SKBR3ILK cells with SKBR3vector cells,
SKBR3ILK cells exhibited increased levels of YB-1
(Figure 4b). To confirm immunofluorescence results,
and to determine whether the subcellular distribution of
YB-1 was changed, cytoplasmic and nuclear protein
fractions (see Materials and methods) prepared from the
SKBR3vector and SKBR3ILK cells were used in western
blot analysis. As shown in Figure 4c, representative
western blot analysis of YB-1 in SKBR3 cells trans-
fected with ILK showed a 254% increase (compared
with vector-transfected cells) in YB-1 when considering
protein levels in the nucleus and cytoplasmic fractions.
CREB (marker for the nuclear fraction) and Vinculin
(marker for the cytoplasmic fraction) were used to verify
the purity of the fractions (Figure 4c). The amount of
YB-1 in the nucleus increased fourfold when comparing
cells transfected with ILK with cells transfected with the
vector. It should be noted that similar studies were
completed in MCF7 cells. Forced overexpression of ILK
in MCF7 cells, which express basal levels of Her2/neu,
did not influence total YB-1 or Her2/neu protein levels.

However, increases in YB-1 and Her2/neu transcript
were observed (Supplementary Figure 3).

The role of TWIST and STAT-3 in regulating YB-1 and
Her2/neu expression
Changes in YB-1 levels and localization following ILK
inhibition/silencing or forced overexpression provide an
explanation for how ILK expression may influence
Her2/neu expression in cell lines that overexpress Her2/
neu because of gene amplification or transfection. The
results suggest that if ILK is inhibited or suppressed,
there will be a decrease in YB-1 mRNA and protein
levels. It is not clear, however, how ILK would regulate
the expression of YB-1, and for this reason studies were
initiated to assess how ILK expression/inhibition
influenced expression of the transcription factor
TWIST. This protein is known to bind to the E-box
regions within the YB-1 promoter and thus regulate YB-
1 expression (Shiota et al., 2008a, b, 2009). SKBR3 cells
were treated with QLT0267 or transfected with ILK
siRNA and the resulting cell lysates were blotted and

Figure 4 Overexpression of ILK in SKBR3 cells increases YB-1 expression and nuclear localization. (a) SKBR3 cells were stably
nucleofected with an empty pIRES-hrGFP II vector or one containing a FLAG-tagged ILK gene. Cells overexpressing ILKWT or the
empty vector were analyzed for ILK, FLAG and b-actin protein expression in whole-cell lysates using western blot analysis. Cells
transfected with ILK exhibited double bands when blots were probed for ILK indicating the endogenous protein (lower band) and the
FLAG-tagged exogenous protein (upper band). FLAG protein was readily detected in ILK-transfected cells. (b) SKBR3vector and
SKBR3ILKWT cells were grown on coverslips, fixed, and then stained for YB-1 (red) and the nucleus (blue). SKBR3vector cells exhibit a
diffuse and mainly punctuate cytoplasmic pattern of YB-1 staining whereas SKBR3ILKWT cells exhibit a mainly nuclear or peri-nuclear
localization of YB-1. (c) A total of 50 mg of cytoplasmic and nuclear protein lysate fractions harvested from SKBR3vector and
SKBR3ILKWT cells were separated on SDS–PAGE gels, transferred to nitrocellulose membranes and probed with anti-YB-1, and anti-
vinculin and CREB to verify purity of cytoplasmic and nuclear fractions, respectively. The resulting western analysis showed that YB-1
increased by fourfold in the nuclear fraction and by 254% when considering cytoplasmic and nuclear fractions together in cells
transfected with ILK when compared with vector-transfected cells.
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probed for ILK, TWIST and b-actin. The results have
been summarized in Figure 5. Treatment with QLT0267
or transfection with ILK-targeted siRNA both abro-
gated the expression of TWIST by 98% (Figure 5a).
Similar results were seen in the LCC6Her2 cell line
(Supplementary Figure 2A). To elucidate whether a
direct relationship exists between TWIST, YB-1 and
Her2/neu expression in SKBR3 cells, the cells were
nucleofected with siRNA targeting TWIST. Subseq-
uently, the levels of TWIST, Her2/neu, YB-1 and b-actin
were determined. Silencing TWIST proved to be quite
troublesome in that several siRNA species, both custom
and commercial, exhibited only minimal silencing
effects. However, the results, represented by the western
blot provided in Figure 5b, indicated that a 40% silen-
cing of TWIST decreased YB-1 expression by 47% and
Her2/neu expression by 70%. Under conditions where
the SKBR3 cells were forced to overexpress ILK,
TWIST expression increased by 1.9-fold (Figure 6a).
Immunofluorescence analysis of TWIST in SKBR3
and SKBR3ILKWT was completed (Figure 6b) and these
immunofluorescence studies indicated that ILK over-
expression was associated with an increase in TWIST
expression in the SKBR3 cells.

A key regulator of TWIST transcription is signal
transducer and activator of transcription 3 (STAT-3;
Ling and Arlinghaus, 2005; Lo et al., 2007; Cheng et al.,
2008b). STAT-3 is activated by phosphorylation and
thereafter translocates to the nucleus (Takemoto et al.,
2009). To determine if increases in TWIST expression
were the result of increased phosphorylation of STAT-3
in the ILK overexpressing SKBR3 cells, the expression
of P-STATser705 in the nuclear fraction of these cells was
examined, and the results have been summarized in
Figure 6c. Western blots probed for P-STATser705,

STAT-3, CREB (nuclear marker) and vinculin (cyto-
plasmic marker) indicated that SKBR3 cells transfected
with ILK exhibited a 225% increase (relative to the
vector-transfected cells) in STAT-3 levels when con-
sidering the nuclear and cytoplasmic fractions together.
Furthermore, a twofold increase in P-STATser705 is
observed in the nuclear fraction of SKBR3ILKWT cells
(Figure 6c).

Discussion

It has recently been shown that the activity of QLT0267,
whether used alone or in combination, was dependent
on whether the breast cancer cell lines used expressed
Her2/neu (Kalra et al., 2009). It was therefore important
to gain a better understanding of how ILK inhibition
influenced Her2/neu signaling and the studies described
here were undertaken to address this issue. Our results
demonstrate for the first time that ILK inhibition causes
significant decreases in Her2/neu expression and that
this is regulated through a previously unrecognized
mechanism involving the transcription factors YB-1 and
TWIST-1. To date, no direct relationship between ILK
expression and Her2/neu signaling has been documen-
ted; however, very recently, Pontier et al. (2010) showed
that decreased tumor induction was observed with
disruption of ILK in Her2/neu-positive mammary
epithelial tissue. Furthermore, silencing of ILK in
Her2/neu-positive cells in vitro was able to block
invasion and induce apoptosis (Pontier et al., 2010),
indicating that ILK can at the very least modulate the
effects of Her2/neu signaling.

It is clear from the results in this report that ILK-
targeted siRNA or inhibition with QLT0267 engenders
significant decreases in total Her2/neu protein levels
(Figures 1 and 2). Initially, a clue to the mechanism
governing this effect was identified because suppression
of Her2/neu (because of ILK silencing/inhibition) was
observed in cell lines transfected with the c-erbB2 gene
as well as in cells that overexpress Her2/neu because of
c-erbB2 gene amplification. Thus, it was first thought
that the regulation of Her2/neu via ILK would involve a
factor that would act at a translational level. YB-1 was
previously identified as an important transcription/
translation factor that participates in the formation of
messenger ribonucleoprotein complexes (mRNPs; Ke-
dersha and Anderson, 2007; Chernov et al., 2008a, b,
2009) and in the regulation of mRNA translation and
degradation (Kohno et al., 2003; Evdokimova et al.,
2006a, b). YB-1 is an oncogene that is overexpressed in a
variety of cancers and its forced expression induces the
development of breast cancers (Bergmann et al., 2005;
Berquin et al., 2005). Previous studies indicate that
normally about 90% of YB-1 protein is localized in the
cytoplasm and when YB-1 is phosphorylated on serine
102, by AKT or RSK, the protein translocates to the
nucleus (Sutherland et al., 2005; Basaki et al., 2007;
Stratford et al., 2008). Nuclear localization of YB-1 is
associated with increased expression of Her2/neu and
epidermal growth factor receptor (EGFR; Wu et al.,

Figure 5 Inhibition of ILK activity or expression regulates
TWIST expression. (a) SKBR3 cells were treated with 42mM
QLT0267, Neg siRNA or ILK siRNA. Subsequently, cells were
lysed, protein was isolated and then separated on a 10% SDS–
PAGE gel. Resulting western blots were probed for ILK, TWIST
and b-actin. TWIST protein is reduced by 98% in SKBR3 cells
treated with QLT0267 or nucleofected with ILK siRNA when
compared with controls (untreated or Neg siRNA, respectively).
(b) SKBR3 cells were transiently nucleofected with Control or 4 mg
TWIST siRNA for 96 h. Subsequently, cells were lysed, protein was
isolated from samples, separated on a 10% SDS–PAGE gel and
probed for Her2/neu, YB-1, TWIST and b-actin. Silencing of
TWIST is seen at 96 h. With a 40% silencing of TWIST, YB-1 is
decreased by 47% and Her2/neu total protein is reduced by 70%.
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2006; Fujii et al., 2008; Kashihara et al., 2009). Further-
more, it has been shown that knockdown of YB-1 with
siRNA reduces Her2/neu expression (Lo et al., 2007).
RNA interference strategies targeting ILK have been
shown to interfere with nuclear translocation of YB-1 in
human ovarian cancer cells (Basaki et al., 2007), and it
was postulated that this effect occurred through
decreased phosphorylation of AKT. Thus, inhibition
of ILK and associated suppression of phosphorylation
of AKT could act to maintain levels of YB-1 in the
cytoplasm. In the cytoplasm, YB-1 can act as a
translation factor binding to mRNA (Ozer et al., 1990;
Chernov et al., 2008a, b, 2009). Messenger RNA is
normally bound to proteins, forming polysomes and
mRNPs. Messenger RNA released from disassembled
polysomes and mRNPs are sorted and remodeled in
stress granules (SGs), from which selected transcripts
are delivered to processing bodies for degradation. SGs
are cytoplasmic aggregates of protein and RNA
approximately 100–200 nm in diameter and they are

thought to be sites of stalled translation (for example,
pre-initiation complexes; Yamasaki and Anderson,
2008; Balagopal and Parker, 2009; Anderson and
Kedersha, 2009a, b). Furthermore, Kedersha and An-
derson (2007) established that YB-1 is a useful marker of
SGs and processing bodies and YB-1 modulates the
formation of SGs and translation of mRNA.

In this study, using immunofluorescent localization of
YB-1 in SKBR3 cells, we demonstrated decreases in YB-
1 nuclear staining and cytosolic sequestration of YB-1
into intracellular puncta that could be SGs following
treatment with QLT0267 (see Figure 4c). This effect was
also observed in the other breast cancer cell lines that
were studied here. The formation of SGs may have a
role in the translational regulation of both Her2/neu
and YB-1. As suggested above, decreases in phosphory-
lation of AKT (serine 473) caused by ILK inhibition
or silencing could lead to accumulation of YB-1 in the
cytoplasm where it may form SGs and processing
bodies, leading to the degradation of Her2/neu and

Figure 6 Overexpression of ILK increases TWIST expression through activation of STAT-3. (a) SKBR3 cells were stably
nucleofected with an empty pIRES-hrGFP II vector or one containing a FLAG-tagged ILK gene. Cells overexpressing ILKWT or the
empty vector were analyzed for ILK, TWIST and b-actin protein expression in whole-cell lysates using western blot analysis. Cells
transfected with ILK exhibited double bands when blots were probed for ILK, indicating the endogenous protein (lower band) and the
FLAG-tagged exogenous protein (upper band). Overexpression of ILK was shown to increase TWIST by 1.9-fold at the protein level.
(b) SKBR3vector and SKBR3ILKWT cells were grown on coverslips, fixed with 4% paraformaldehyde (PFA) SKBR3ILKWT and then stained
for TWIST (red). Nuclei were counterstained with Hoechst (blue). Immunofluorescent analysis showed that SKBR3ILKWT cells have a
substantial increase in TWIST staining. (c) Protein lysates were collected from SKBR3vector and SKBR3ILKWT cells, cytoplasmic
fractions were separated from nuclear fractions and run out on SDS–PAGE gels. The resulting western analysis showed that P-STAT-
3se705 increased by twofold in the nuclear fraction of cells transfected with ILK. Interestingly ILK overexpressing cells exhibit a 225%
increase in total STAT when considering cytoplasmic and nuclear fractions together in cells transfected with ILK when compared with
vector-transfected cells.
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YB-1 transcript. The results presented in Figure 2
demonstrated decreases in P-AKTser473 following treat-
ment with QLT0267 or ILK silencing by siRNA.
Although this effect was transient, it remains a possible
mechanism through which ILK may regulate the
localization of YB-1 and thus impact Her2/neu expres-
sion. It is important to note that previous reports
suggest that the LTR-RSV promoter used to drive
c-erbB2 gene expression in the MCF7 and LCC6
cells has a binding site for YB-1 (Ozer et al., 1990),
which could also support a transcriptional regulatory
mechanism of Her2/neu via ILK and YB-1.

YB-1 is also associated with increased expression of
EGFR. Thus, as a follow-up to the studies evaluating
Her2/neu signaling, EGFR expression was analyzed
after treatment with QLT0267. Our data show that total
EGFR expression in SKBR3 cells is significantly dec-
reased by approximately 87% when using QLT0267
when compared with vehicle control (that is, PTE
(polyethylene glycol, Tween 80, 95% ethanol and citric
acid) see Supplementary Figure 4). These studies have
interesting implications, particularly with the use of ILK
inhibition or silencing in combination with EGFR and
Her2/neu inhibitors. Furthermore, cell viability experi-
ments were initiated to evaluate combinations of
QLT0267 with Lapatinib, a dual kinase small molecule
inhibitor targeting Her2/neu and EGFR. Our prelimin-
ary results indicate that at low effect levels the inter-
actions between QLT0267 and Lapatinib are synergistic,
but at the desirable high effect levels the QLT0267/
Lapatinib interactions are strongly antagonistic, per-
haps owing to the loss of EGFR and Her2/neu
expression with higher doses of QLT0267.

To elucidate a mechanism of transcriptional regula-
tion of YB-1 via ILK, the studies described here also
evaluated the transcription factor TWIST. TWIST is
known to bind to E-box regions within the YB-1
promoter and thus regulate its expression (Shiota
et al., 2008a, b, 2009). TWIST is considered oncogenic
and is overexpressed in breast cancer (Watanabe et al.,
2004; Martin et al., 2005). Entirely consistent with a role
for TWIST in ILK-mediated regulation of Her2/neu
expression, decreased ILK expression or activity led
to a near-complete inhibition of TWIST expression
(Figure 5a), suggesting that ILK may be able to regulate
TWIST expression. Moreover, silencing of TWIST was
associated with decreased expression of both YB-1 and
Her2/neu (see Figure 5b). Finally, overexpression of
ILK in SKBR3 cells resulted in increased TWIST
expression (see Figures 6a and b), suggesting for the
first time that TWIST is a downstream target of ILK.
Preliminary studies are already underway to determine
whether transfection of cells with a YB-1 construct is
able to rescue Her2/neu expression and in the same vein
it would be interesting to determine whether forced
overexpression of TWIST could potentially recover
YB-1 and Her2/neu expression after ILK inhibition.

Figure 7 details the possible pathways through which
ILK may modulate the expression and activity of
TWIST and therefore YB-1 and Her2/neu. TWIST
expression is known to be regulated by two transcription

factors that can be directly linked to the pathways
influenced, in part, by ILK. These include STAT-3 (Ling
and Arlinghaus, 2005; Lo et al., 2007; Cheng et al.,
2008b) and hypoxia-inducible factor-a (Gort et al.,
2008; Peinado and Cano, 2008; Yang and Wu, 2008;
Yang et al., 2008). In this paper we examine the role of
ILK in the activation of STAT-3. We show that ILK
overexpression is associated with increased levels of
phosphorylated and thus activated STAT-3 (Figure 6c).
Activation of STAT-3 allows for its nuclear transloca-
tion and thus induction of gene transcription. Where
ILK activity or expression is attenuated, this pathway is
shut down. Inactive STAT-3 is no longer able to pro-
mote transcription of TWIST, which thereafter is unable
to initiate transcription of YB-1. It is interesting to note
that phenotypic changes seen with TWIST overexpres-
sion mimic those seen with ILK overexpression and
include increased epithelial–mesenchymal transition
(Karreth and Tuveson, 2004; Ansieau et al., 2008; Cates
et al., 2009), increased VEGF secretion (Mironchik
et al., 2005; Niu et al., 2007), increased propensity for
invasion and migration (Karreth and Tuveson, 2004;
Elias et al., 2005; Luo et al., 2008; Cheng et al., 2008a;
Matsuo et al., 2009; Valdes-Mora et al., 2009), evasion
of apoptosis (Maestro et al., 1999; Dupont et al., 2001;
Zhang et al., 2007), drug resistance (Kajiyama et al.,
2007; Pham et al., 2007; Zhuo et al., 2008) and deregu-
lated growth (Maestro et al., 1999; Kwok et al., 2005;
Puisieux et al., 2006; Hu et al., 2008; Shiota et al., 2008a;
Hasselblatt et al., 2009). TWIST has been labeled as the
master regulator of epithelial–mesenchymal transition,
and thus the previously unrecognized role of ILK in
regulating TWIST expression is very relevant in the
context of managing cancer development and progres-
sion. Studies are now underway to further explore the
relationship between ILK and TWIST in vivo.

Conclusion
This study shows for the first time that ILK can regulate
the expression of Her2/neu through a pathway that
involves TWIST and YB-1. The broader implication of
this study is support for the use of ILK inhibitors in the
treatment of aggressive Her2/neu-positive tumors.

Materials and methods

Chemicals and reagents
QLT0267 (267) was a generous gift from QLT Inc. (Vancou-
ver, BC, Canada) and was diluted in PTE. QLT0267 is a
second-generation ILK inhibitor derived from KP-392.
Among 150 kinases tested, QLT0267 is highly specific,
showing 1000-fold selectivity over kinases including CK2,
CSK, DNA-PK, PIM-1, PKB/Akt and PKC, and 100-fold
selectivity over other kinases such as Erk-1, GSK-3b, LCK,
PKA, p70S6K and RSK1 (Troussard et al., 2006; Younes
et al., 2007). It has also been established that the effects of
QLT0267 are similar to those of dominant-negative ILK
mutants and to the effects seen using ILK-targeted siRNA
sequences. QLT0267 was evaluated as being more potent than
KP-392 and was found to inhibit ILK kinase activity in cell-
free systems at 26 nmol/l (QLT Inc., unpublished data). These
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studies were preformed using highly purified recombinant
ILK, and the lower concentrations of QLT0267 required to
inhibit ILK in these cell-free systems likely reflects the fact that
QLT0267 is not very membrane permeable. Moreover, the
in vitro activity of QLT0267 is dependent on the cell line being
used, its metabolism and growth, among other factors. This is
consistent with in vitro studies using other small molecule
inhibitors. Previous work done by our lab and others has
shown that optimal concentrations of QLT0267, which
inhibits activation of downstream effectors of ILK, occur in
cells between 1 and 50mM (Supplementary Figure 1).
Despite the specificity of the QLT0267 small molecule

inhibitor, we were concerned that the concentrations used may
elicit off target effects, and for this reason silencing of ILK
expression via siRNA was used to confirm results obtained
with QLT0267. Negative control siRNA (low guanine–
cytosine content; Neg), siRNA sequences against human
TWIST1 mRNA (Genbank accession no. NC:000007) and
ILK mRNA (Genbank accession no. GI:3150001) were
generated by Invitrogen (Burlington, ON, Canada).

The pIRES-hrGFP (Stratagene, La Jolla, CA, USA) vectors
containing a FLAG-tagged full-length human normal ILK
(ILKWT) gene were a generous gift from Dr Shoukat Dedhar.
All other chemicals, unless specified, were purchased from
Sigma Chemical Company (Oakville, ON, Canada).

Cells and cell culture
All cell lines were tested to ensure that they were mycoplasma
free. Cells used for studies were derived from original stocks
that had been expanded and frozen. They were maintained in
culture for no more than 20 passages and at that time were
replaced with frozen stock. MDA-MB-435/LCC6 (Leonessa
et al., 1996) breast cancer cells were a gift from Dr Robert
Clarke (Georgetown University, Washington, DC, USA) and
were derived from the parental cell line MDA-MB-435. The
origin of this cell line is controversial (Chambers, 2009) but we
believe it is justifiable to use these cells as a model breast cancer
cell line (Dragowska et al., 2004). LCC6 cells were transfected
via electroporation with the mammalian expression vector

Figure 7 Proposed working model of the ILK-centered regulation of Her2/neu through multiple mechanisms involving YB-1. ILK is
able to phosphorylate many downstream effectors that have the potential to regulate YB-1 transcription, translation and subcellular
localization. Known kinases that phosphorylate YB-1 inducing its nuclear translocation include GSK-3 (Coles et al., 2005), ERK
(Coles et al., 2005), RSK (Stratford et al., 2008) and AKT (Sutherland et al., 2005; Oda et al., 2007; To et al., 2007; Bader and Vogt,
2008). ILK activates AKT through phosphorylation of serine 473 (Delcommenne et al., 1998; Persad et al., 2000; McDonald et al.,
2008a, b). ILK inhibits GSK-3b through phosphorylation on serine 9 (Delcommenne et al., 1998; Troussard et al., 1999). When active,
GSK-3 ubiquinates hypoxia-inducible factor-1a (Hif1a), leading to its degradation (Mottet et al., 2003; Flugel et al., 2007). However,
when Hif1a is activated, which can occur through AKT/mTOR (Pore et al., 2006), it translocates to the nucleus and can bind to the
HRE segment on the TWIST promoter, leading to an increase in TWIST protein (Gort et al., 2008; Peinado and Cano, 2008; Yang and
Wu, 2008; Yang et al., 2008). Thus, ILK can regulate the expression of TWIST by phosphorylating AKT, leading to activation of
Hif1a. Alternatively, ILK can also phosphorylate STAT-3 on serine 705 (Yau et al., 2005; Fuchs et al., 2008). Activated STAT-3
translocates to the nucleus and induces the expression of TWIST (Ling and Arlinghaus, 2005; Lo et al., 2007; Cheng et al., 2008b).
TWIST binds to E-box regions in the promoter sequence of YB-1 initiating its transcription (Shiota et al., 2008a, b, 2009). YB-1
nuclear localization is associated with increased expression of Her2/neu (Wu et al., 2006; Fujii et al., 2008; Kashihara et al., 2009).
When ILK is inhibited, several of these pathways could potentially lead to decreased transcription of YB-1 and cytosolic sequestration
in stress granules. When YB-1 is depleted in the nucleus, transcription of Her2/neu is decreased (Wu et al., 2006; Fujii et al., 2008;
Kashihara et al., 2009). In the cytoplasm, YB-1 may bind to YB-1 and Her2/neu mRNA, inhibiting their translation (Skabkina et al.,
2003, 2004, 2005).
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pREP9 (Invitrogen, Grand Island, NY, USA) containing the
4.3 kb full-length human normal c-erbB2 complementary
DNA to yield LCC6Her2 as previously described (Dragowska
et al., 2004; Warburton et al., 2004). JIMT-1 cells were a gift
from Dr Jorma Isola (Tampere University and Tampere
University Hospital, Tampere, Finland). MCF7, KPL-4 and
SKBR3 cells were purchased from American Type Culture
Collection (Manassas, VA, USA). MCF7Her2 cells were a kind
gift from Dr Moulay Alaoui-Jamali (McGill University,
Montreal, Quebec, Canada). LCC6, JIMT-1, BT474, KPL-4,
MCF7Her2 and MCF7 cells were maintained in Dulbecco’s
modied Eagle’s medium/high glucose supplemented with
L-glutamine (Stem Cell Technologies, Vancouver, BC, Canada)
and 10% fetal bovine serum (Hyclone, Logan, UT, USA).
SKBR3 cells were maintained in McCoy’s 5a medium (Stem
Cell Technologies) supplemented with L-glutamine and 10%
fetal bovine serum. MCF7 cells were nucleofected (Amaxa
Biosystems, Lonza Cologne, Basel, Switzerland) with the
pIRES-hrGFP empty vector or the vector containing ILKWT
gene and selected with G418 and sorted for green fluorescent
protein (GFP) using fluorescence-activated cell sorting. All cells
were maintained at 37 1C and 5% CO2 in a humidified
atmosphere.

Nucleofection of siRNA or plasmid DNA
SKBR3, LCC6Her2 and JIMT-1 cells were transiently nucleo-
fected with ILK siRNA as previously described (Verreault and
Bally, 2009). MCF7 and SKBR3 cells were stably nucleofected
with a plasmid encoding ILKWT. The nucleofection protocols
for siRNA and plasmid DNA were similar. Briefly, the
Nucleofector technology (Amaxa Biosystems) was used
according to the manufacturer’s protocol. Optimal conditions
were first determined using a GFP plasmid or Cy5 siRNA and
analysis of cell labeling by FLOW cytometry. Once the
protocols were defined, 1� 106 cells were suspended in
nucleofection buffer containing 1–4 mg of either siRNA or
plasmid DNA and placed in the nucleofector for electro-
poration. Programs E09 (buffer C), D010 (buffer R), T020
(buffer R) and P020 (buffer R) were used in SKBR3, LCC6Her2

JIMT-1 and MCF7 cells, respectively. Cells were re-suspended
in Dulbecco’s modied Eagle’s medium and allowed to recover
at 37 1C and 5% CO2 in a humidified atmosphere. For plasmid
nucleofection, cells were selected for using G418 (Invitrogen,
Canada) and sorted based on the expression of GFP. Cells
were analyzed for GFP expression using FLOW cytometry
before each use. Cells that were 490% positive for GFP were
processed for subsequent analyses.

SDS–PAGE and western blot
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) followed by western blotting analysis was
used to semiquantitatively determine ILK, AKT, pAKT
TWIST, YB-1 and Her2/neu protein levels. Briefly, whole-cell
lysates were harvested by incubation in lysis buffer (50mM

Tris/HCl pH 8.5, 150mM NaCl, 0.02% sodium azide,
0.1% SDS, 1% NP-40 and 0.5% sodium deoxycholate) and
pelleted by centrifugation at 14 000 r.p.m. for 10min at 4 1C.
For subcellular localization studies, cells were incubated in
lysis buffer (10mM HEPES, 1.5mM MgCl2, 10mM KCL, 1mM

EDTA and 0.1% NP40) and then pelleted. The supernatant
was collected as the cytoplasmic fraction, and the pellet was
re-suspended in extraction buffer (0.42mM NaCl, 20mM

HEPES, 1.5mM MgCl2 and 20% glycerol). Cells were pelleted
and the supernatant was collected as the nuclear fraction.
Samples were separated on 10% SDS–PAGE gels. Protein
was transferred to Nitrocellulose membrane (Millipore,

Bedford, MA, USA) and blocked in Odyssey blocking buffer
(Licor Biosciences, Lincoln, NE, USA). The blots were labeled
with mouse polyclonal anti-ILK (Transduction Labora-
tories, BD Biosciences, Franklin Lakes, NJ, USA), rabbit
polyclonal anti-TWIST, anti-AKT, anti-pAKTser473 anti-
pSTATser705 anti-Her2/neu, mouse monoclonal anti-heat shock
protein 90 (Cell Signaling Technology, Beverly, MA, USA),
rabbit polyclonal anti-YB-1 (Abcam, Cambridge, MA, USA)
or rabbit polyclonal anti-CREB (Millipore (Upstate),
Etobicoke, ON, USA) antibodies. Primary antibody binding
was detected by further incubations with anti-rabbit IRDYE
(green; Rockland, Gilbertsville, PA, USA) or anti-mouse
Alexa 680 (red) (Invitrogen, Molecular Probes, Burlington,
ON, Canada) and signal was detected and quantified using
the Odyssey Infrared Detection System and associated soft-
ware (Odyssey v1.2; Licor). Protein loading was determined
by re-probing membranes for b-actin (Sigma-Aldrich, Oak-
ville, ON, Canada). The absorbance of specific protein bands
in a square region of interest surrounding each band, after
background subtraction, was normalized to actin bands
measured in the same way. Studies were conducted at least
three times. Where indicated, absorbance data were expressed
as mean absorbance values±s.d. and parametric analysis was
done using an unpaired Student’s t-test.

Immunofluorescent imaging
Cells grown on coverslips were fixed using a 2.5% para-
formaldehyde solution in phosphate-buffered saline (PBS),
permeabilized with Triton X-100 and blocked in a 2.5%
bovine serum albumin solution in PBS for 1 h at room
temperature before staining for YB-1 using a polyclonal
rabbit primary antibody (1:25) or TWIST, a polyclonal
rabbit primary antibody (1:50). All antibodies were diluted
in bovine serum albumin/PBS. Coverslips were washed three
times for 5min using PBS. Primary antibody binding
was detected by further incubations with anti-rabbit Alexa546
or Alexa488. To ensure that there was no nonspecific
antibody binding, a secondary antibody control coverslip
was used for each experiment where coverslips were stained
with either Alexa546 or Alexa488 alone (data not shown).
Hoechst (Molecular Probes, Eugene, OR, USA; 1:1000)
was used to identify nuclei. The coverslips were then mounted
to a microscope slide using a 9:1 solution of glycerol and 1�
PBS. Cells were viewed using a Leica fluorescent micro-
scope (Wetzlar, Germany) with a � 100 oil immersion
lens under the Z568RDCf filter set (Chroma, Rockingham,
VT, USA) to visualize Alexa 546 and ultraviolet lamp
to visualize Hoechst. Images were captured using DC100
digital camera and Open Lab software (Improvision,
Lexington, MA, USA).

Dual luciferase reporter assay
SKBR3 cells were plated in six-well plates (4� 105 cells/well)
and transfected with a luciferase construct (pGL3 basic vector;
Promega, Madison, WI, USA) containing the core promoter
and the partial first exon of the YB-1 gene (courtesy of Dr
Kimitoshi Kohno, Department of Molecular Biology, Uni-
versity of Occupational and Environmental Health, Kita-
kyushi, Japan). Cells were transfected with a total of 1.0 mg
DNA using FuGene (Roche, Toronto, ON, Canada). To
assess transfection efficiency, cells were co-transfected with a
Renilla-expressing plasmid (pRL-thymidine kinase, 10:1 luci-
ferase:Renilla; Promega). After 24 h, cells were treated with
vehicle (PTE) or QLT0267 (42 mM) for 24 h before harvesting in
1� passive lysis buffer (Promega). Luciferase activity was
measured using the Lumat LB 9507 Luminometer (Berthold
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Technologies, Oak Ridge, TN, USA) according to the
manufacturer’s instructions, and results were normalized to
the corresponding Renilla readings from the same sample. The
studies were done at least three times and luminescence data
were expressed as mean values±s.d. and parametric analysis
was done using an unpaired Student’s t-test.

RNA extraction and PCR
The extraction of total RNA from a minimum of 1� 106 cells
was completed using the RNeasy mini kit (Qiagen, Hilden,
Germany). RNAs were reverse transcribed using the Invitro-
gen Superscript III kit (Invitrogen, Canada) according to the
manufacturer’s instructions. The RNA concentration of each
sample was measured using the Nanodrop ND1000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA) and
sample purity was determined by assessing the A260/A280 ratio,
which always measured between 2.0 and 2.1. For PCR, 1–3 mg
of complementary DNA was added to PCR master mix
containing 10� PCR buffer, 3mM MgCl2, 1mM dNTP, Taq
polymerase and 0.5mM each of the appropriate forward and
reverse primers (Invitrogen, Canada) where GAPDH mRNA
was used as an internal standard. Primer sequences used were
as follows:
Her2/neu forward primer 50-TCCTGTGTGGACCTGGA
TGAC-30

Her2/neu reverse primer 50-CCAAAGACCACCCCCA
AGA-30

YB-1 forward primer 50-AAGTGATGGAGGGTGCTG
AC-30

YB-1 reverse primer 50-TTCTTCATTGCCGTCCTCTC-30

GAPDH forward primer 50-GAAGGTGAAGGTCGGA
GT-30

GAPDH reverse primer 50-GAAGATGGTGARGGGAT
TTC-30

Complementary DNA was amplified using the DNA engine
Peltier thermal cycler (Bio-Rad, Mississauga, ON, Canada).

PCR products were run out on a 1.5% agarose gel containing
0.004% ethidium bromide, and detected using the Eagle Eye II
Cabinet detection system (Stratagene).

Quantitative real-time PCR
Quantitative SYBR green PCR assays for YB-1 and Her2/neu
was performed in a ABI Prism 7700 Sequence detection system
(Applied Biosystems, Streetsville ON, Canada) using the
SYBR Green Kit supplied by Applied Biosystems. PCR
amplification were carried out in a 20 ml volume under the
following conditions: an enzyme activation step at 95 1C for
2min, followed by 45 cycles consisting of 30 s of denaturation
at 95 1C, 20 s of annealing at 60 1C and 20 s of elongation at
72 1C. The specificity of the amplified products was verified by
melting curve analysis and agarose gel electrophoresis. Ct
values were converted to fold change.
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