Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 21;66(Pt 9):o2381. doi: 10.1107/S1600536810032101

rac-(3aR,6aR)-(E)-Methyl 2-(3a-methyl­perhydro­furo[3,2-b]furan-2-yl­idene)acetate

Lenka Bellovičová a, Jozef Kožíšek a,*, Jana Doháňošová b, Angelika Lásiková b, Tibor Gracza b
PMCID: PMC3007948  PMID: 21588718

Abstract

The constitution and relative configuration at the stereogenic centres and stereochemistry of the C—C double bond formed during PdII-catalysed domino reaction was established by X-ray analysis of the title compound, C10H14O4. The asymmetric unit contains two mol­ecules.

Related literature

The title compound was prepared from 4-methyl­pent-4-en-1,3-diol (Breit & Zahn, 2001) by a modified procedure for carbonyl­ation of alkene-3-ol (Semmelhack & Epa, 1993).graphic file with name e-66-o2381-scheme1.jpg

Experimental

Crystal data

  • C10H14O4

  • M r = 198.21

  • Monoclinic, Inline graphic

  • a = 12.159 (1) Å

  • b = 5.8100 (3) Å

  • c = 28.509 (1) Å

  • β = 101.51 (1)°

  • V = 1973.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.84 × 0.36 × 0.12 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] T min = 0.941, T max = 0.988

  • 59312 measured reflections

  • 4033 independent reflections

  • 3571 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.091

  • S = 1.05

  • 4025 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032101/bv2142sup1.cif

e-66-o2381-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032101/bv2142Isup2.hkl

e-66-o2381-Isup2.hkl (197.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of Slovak Republic, Grant Nos. VEGA 1/0817/08 and VEGA 1/0115/10, and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As a part of our long term program directed towards the application of palladium(II)-catalysed oxycarbonylation of unsaturated polyols in the natural product synthesis we studied the domino Pd(II)-promoted reactions. The title compound, [(I): alternative name: (±)-(1'R, 5'R)-(E)-methyl 2-(5'-methyl-2',6'-dioxabicyclo[3.3.0]octa-3'-ylidene) acetate] represents a product of the first diastereoselective domino intramolecular Wacker-type cyclization - Heck reaction - cyclization of 4-methylpent-4-en-1,3-diol with methyl acrylate. The asymmetric unit contains two molecules of the same chirality (Z' = 2), but as the space group is centrosymmetric, both enantiomers are present in the unit cell.

Experimental

The title compound was prepared from 4-methylpent-4-en-1,3-diol (Breit and Zahn, 2001) by a modified procedure for carbonylation of alkene-3-ol (Semmelhack and Epa, 1993). A mixture of 4-methylpent-4-en-1,3-diol (200 mg, 1.70 mmol, 1 equivalent) and CuCl freshly recrystallized (170 mg, 1.70 mmol, 1 equivalent) in dry DMF (7 ml) was stirred at r.t for 10 min. under oxygen atmosphere (balloon). The methyl acrylate (0.8 ml, 8.60 mmol, 5 equivalents) and palladium acetate (39 mg, 0.17 mmol, 0.1 equivalent) were then added. The mixture was stirred for 56 h, then diluted by ethyl acetate (100 ml). The organic solution was washed three times with sat. aq. ammonium chloride solution, driedover anhydrous magnesium sulfate, and concentrated in vacuo. The residue was purified by flash chromatography (SiO2, ethyl acetate-hexane-3:1, Rf 0.73). The title compound was slowly crystallized from hexane to give white crystals [m.p. 65–67 °C].1H NMR (300 MHz, Varian, CDCl3): δ(p.p.m.) = 1.43 (s, 3H, CH3); 2.17 (m, 2H, H-8'); 2.96 3.64 (2xd, 2H, J=19.7, H-4'); 3.69–4.04 (m, 6H, H-1', H-7', OCH3); 4.66 (d, 1H, J= 6.3 Hz, H-2). 13C NMR (75 MHz, CDCl3): δ(p.p.m.) = 22.7 (q, CH3), 32.7 (t, C-8'), 44.2 (t, C-4'), 50.8 (q, OCH3), 66.9 (t, C-7'), 87.7 (s, C-5'), 89.9 (d, C-1'), 91.3 (d, C-2), 168.7 (s, C-1), 175.7 (d, C-3'). IČ, film: ν(cm-1) = 3479 (w), 2975 (m), 2951 (m), 2874 (w), 1789 (w), 1705 (s), 1645 (s), 1437 (s), 1410 (w), 1364 (s), 1317 (m), 1274 (m), 1193 (s), 1148 (s), 1106 (s), 1093 (s), 1039 (s), 1010 (m), 978 (m), 950 (w), 933 (w), 900 (w), 871 (w), 822 (m), 734 (w), 592 (w) [cm-1]

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93, 0.96 and 0.97 Å) and Uiso(H) values were taken to be equal to 1.2 Ueq(C) all H atoms.

Figures

Fig. 1.

Fig. 1.

The numbering scheme of title compound. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Synthesis of rac-(3aR, 6aR)-(E)-methyl 2-(3a-methyl-tetrahydrofuro [3,2-b]furan-2-ylidene)acetate.

Crystal data

C10H14O4 F(000) = 848
Mr = 198.21 Dx = 1.334 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 35551 reflections
a = 12.159 (1) Å θ = 3.6–29.5°
b = 5.8100 (3) Å µ = 0.10 mm1
c = 28.509 (1) Å T = 293 K
β = 101.51 (1)° Block, colorless
V = 1973.5 (2) Å3 0.84 × 0.36 × 0.12 mm
Z = 8

Data collection

Oxford Diffraction Gemini R CCD diffractometer 4033 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3571 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 10.4340 pixels mm-1 θmax = 26.4°, θmin = 3.6°
Rotation method data acquisition using ω and φ scans h = −15→15
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] k = −7→7
Tmin = 0.941, Tmax = 0.988 l = −35→35
59312 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.2579P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4025 reflections Δρmax = 0.32 e Å3
254 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0031 (7)

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.62 (release 16-03-2010 CrysAlis171 .NET) (compiled Mar 16 2010,16:26:05) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.independent reflections were 4033, 7 inconsistent equivalents, 4025 were used in the refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.35925 (10) 0.2368 (2) 0.34753 (4) 0.0173 (3)
C3 0.35197 (10) 0.4998 (2) 0.34359 (4) 0.0174 (3)
H3A 0.4074 0.5638 0.3265 0.021*
C4 0.36899 (10) 0.5847 (2) 0.39470 (4) 0.0195 (3)
H4B 0.3319 0.7311 0.3967 0.023*
H4A 0.4481 0.5997 0.4089 0.023*
C5 0.31418 (11) 0.3932 (2) 0.41825 (4) 0.0212 (3)
H5B 0.3475 0.3829 0.4521 0.025*
H5A 0.2344 0.4214 0.4149 0.025*
C7 0.18323 (10) 0.3541 (2) 0.30141 (4) 0.0177 (3)
C8 0.26323 (10) 0.1555 (2) 0.30792 (4) 0.0192 (3)
H8B 0.2897 0.1237 0.2786 0.023*
H8A 0.2282 0.0180 0.3175 0.023*
C9 0.47359 (10) 0.1376 (2) 0.34558 (5) 0.0212 (3)
H9C 0.4713 −0.0270 0.3484 0.025*
H9B 0.5286 0.1989 0.3715 0.025*
H9A 0.4933 0.1779 0.3157 0.025*
C10 0.07393 (10) 0.3673 (2) 0.28094 (4) 0.0197 (3)
H10A 0.0379 0.5089 0.2799 0.024*
C11 0.01014 (10) 0.1674 (2) 0.26033 (4) 0.0189 (3)
C14 −0.16945 (12) 0.0392 (3) 0.22261 (6) 0.0306 (3)
H14C −0.2446 0.0946 0.2118 0.037*
H14B −0.1693 −0.0791 0.2461 0.037*
H14A −0.1416 −0.0225 0.1960 0.037*
C16 0.86595 (10) 0.9608 (2) 0.38508 (4) 0.0190 (3)
C17 0.96259 (11) 1.0068 (2) 0.42723 (4) 0.0200 (3)
H17A 0.9589 1.1601 0.4412 0.024*
C18 1.06680 (11) 0.9721 (2) 0.40691 (5) 0.0247 (3)
H18B 1.1303 0.9277 0.4316 0.030*
H18A 1.0857 1.1098 0.3910 0.030*
C19 1.03089 (11) 0.7781 (3) 0.37159 (5) 0.0255 (3)
H19B 1.0714 0.7855 0.3456 0.031*
H19A 1.0452 0.6299 0.3873 0.031*
C21 0.85362 (10) 0.7177 (2) 0.45081 (4) 0.0177 (3)
C22 0.78158 (10) 0.8268 (2) 0.40773 (4) 0.0206 (3)
H22B 0.7264 0.9290 0.4169 0.025*
H22A 0.7431 0.7111 0.3859 0.025*
C23 0.81782 (12) 1.1718 (2) 0.35705 (5) 0.0270 (3)
H23C 0.7581 1.1263 0.3314 0.032*
H23B 0.8756 1.2467 0.3442 0.032*
H23A 0.7893 1.2760 0.3779 0.032*
C24 0.83161 (10) 0.5412 (2) 0.47796 (4) 0.0190 (3)
H24A 0.8872 0.4903 0.5031 0.023*
C25 0.72309 (11) 0.4285 (2) 0.46889 (4) 0.0201 (3)
C28 0.61577 (12) 0.1322 (3) 0.49483 (5) 0.0279 (3)
H28C 0.6234 0.0062 0.5170 0.033*
H28B 0.5913 0.0751 0.4628 0.033*
H28A 0.5615 0.2395 0.5021 0.033*
O1 0.33343 (8) 0.18484 (15) 0.39400 (3) 0.0210 (2)
O6 0.23724 (7) 0.54910 (15) 0.31945 (3) 0.0197 (2)
O12 0.04472 (8) −0.02687 (16) 0.25726 (3) 0.0231 (2)
O13 −0.09856 (7) 0.22621 (17) 0.24354 (3) 0.0248 (2)
O15 0.91270 (7) 0.81006 (17) 0.35392 (3) 0.0232 (2)
O20 0.95504 (7) 0.82156 (16) 0.46110 (3) 0.0205 (2)
O26 0.64051 (8) 0.48260 (19) 0.43955 (4) 0.0318 (3)
O27 0.72256 (7) 0.24603 (16) 0.49859 (3) 0.0239 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0185 (6) 0.0160 (6) 0.0180 (6) −0.0016 (5) 0.0051 (5) −0.0007 (5)
C3 0.0155 (6) 0.0168 (6) 0.0198 (6) −0.0014 (5) 0.0032 (4) 0.0003 (5)
C4 0.0191 (6) 0.0178 (6) 0.0204 (6) 0.0004 (5) 0.0012 (5) −0.0026 (5)
C5 0.0257 (6) 0.0192 (6) 0.0193 (6) 0.0023 (5) 0.0059 (5) −0.0015 (5)
C7 0.0227 (6) 0.0163 (6) 0.0147 (5) −0.0028 (5) 0.0050 (5) −0.0003 (5)
C8 0.0192 (6) 0.0168 (6) 0.0217 (6) −0.0007 (5) 0.0041 (5) −0.0019 (5)
C9 0.0190 (6) 0.0199 (6) 0.0246 (6) 0.0001 (5) 0.0044 (5) −0.0008 (5)
C10 0.0214 (6) 0.0181 (6) 0.0189 (6) 0.0016 (5) 0.0024 (5) −0.0004 (5)
C11 0.0195 (6) 0.0226 (6) 0.0150 (5) −0.0006 (5) 0.0041 (5) 0.0002 (5)
C14 0.0212 (7) 0.0321 (8) 0.0356 (8) −0.0056 (6) −0.0011 (6) −0.0088 (6)
C16 0.0199 (6) 0.0196 (6) 0.0176 (6) 0.0025 (5) 0.0041 (5) −0.0012 (5)
C17 0.0246 (6) 0.0179 (6) 0.0168 (6) −0.0026 (5) 0.0022 (5) 0.0013 (5)
C18 0.0198 (6) 0.0295 (7) 0.0242 (6) −0.0041 (5) 0.0029 (5) 0.0051 (6)
C19 0.0200 (6) 0.0307 (7) 0.0265 (7) 0.0047 (5) 0.0062 (5) 0.0011 (6)
C21 0.0163 (6) 0.0210 (6) 0.0160 (6) 0.0008 (5) 0.0032 (4) −0.0031 (5)
C22 0.0178 (6) 0.0242 (6) 0.0195 (6) 0.0029 (5) 0.0029 (5) 0.0025 (5)
C23 0.0314 (7) 0.0261 (7) 0.0234 (6) 0.0069 (6) 0.0052 (5) 0.0065 (6)
C24 0.0166 (6) 0.0231 (6) 0.0165 (6) 0.0007 (5) 0.0012 (4) 0.0012 (5)
C25 0.0206 (6) 0.0233 (6) 0.0171 (6) −0.0001 (5) 0.0055 (5) −0.0002 (5)
C28 0.0256 (7) 0.0306 (7) 0.0281 (7) −0.0105 (6) 0.0070 (5) 0.0010 (6)
O1 0.0282 (5) 0.0169 (4) 0.0198 (4) −0.0007 (4) 0.0090 (4) 0.0002 (3)
O6 0.0196 (4) 0.0157 (4) 0.0214 (4) −0.0003 (3) −0.0013 (3) −0.0007 (3)
O12 0.0236 (5) 0.0209 (5) 0.0239 (5) −0.0012 (4) 0.0029 (4) −0.0036 (4)
O13 0.0181 (4) 0.0262 (5) 0.0274 (5) −0.0016 (4) −0.0014 (4) −0.0060 (4)
O15 0.0203 (5) 0.0283 (5) 0.0209 (4) 0.0026 (4) 0.0038 (4) −0.0062 (4)
O20 0.0195 (4) 0.0232 (5) 0.0175 (4) −0.0042 (4) 0.0003 (3) 0.0037 (4)
O26 0.0184 (5) 0.0438 (6) 0.0305 (5) −0.0051 (4) −0.0022 (4) 0.0121 (5)
O27 0.0211 (5) 0.0237 (5) 0.0264 (5) −0.0046 (4) 0.0033 (4) 0.0048 (4)

Geometric parameters (Å, °)

C2—O1 1.4529 (14) C16—O15 1.4424 (15)
C2—C9 1.5164 (17) C16—C23 1.5157 (18)
C2—C8 1.5283 (17) C16—C17 1.5274 (17)
C2—C3 1.5333 (17) C16—C22 1.5297 (17)
C3—O6 1.4555 (14) C17—O20 1.4610 (15)
C3—C4 1.5131 (17) C17—C18 1.5082 (18)
C3—H3A 0.9800 C17—H17A 0.9800
C4—C5 1.5203 (18) C18—C19 1.517 (2)
C4—H4B 0.9700 C18—H18B 0.9700
C4—H4A 0.9700 C18—H18A 0.9700
C5—O1 1.4359 (15) C19—O15 1.4369 (15)
C5—H5B 0.9700 C19—H19B 0.9700
C5—H5A 0.9700 C19—H19A 0.9700
C7—C10 1.3428 (18) C21—C24 1.3433 (18)
C7—O6 1.3581 (15) C21—O20 1.3516 (15)
C7—C8 1.4967 (17) C21—C22 1.4994 (17)
C8—H8B 0.9700 C22—H22B 0.9700
C8—H8A 0.9700 C22—H22A 0.9700
C9—H9C 0.9600 C23—H23C 0.9600
C9—H9B 0.9600 C23—H23B 0.9600
C9—H9A 0.9600 C23—H23A 0.9600
C10—C11 1.4537 (17) C24—C25 1.4494 (17)
C10—H10A 0.9300 C24—H24A 0.9300
C11—O12 1.2139 (16) C25—O26 1.2131 (16)
C11—O13 1.3565 (15) C25—O27 1.3576 (16)
C14—O13 1.4403 (16) C28—O27 1.4420 (15)
C14—H14C 0.9600 C28—H28C 0.9600
C14—H14B 0.9600 C28—H28B 0.9600
C14—H14A 0.9600 C28—H28A 0.9600
O1—C2—C9 108.71 (10) O15—C16—C22 109.33 (10)
O1—C2—C8 109.72 (10) C23—C16—C22 114.41 (11)
C9—C2—C8 115.22 (10) C17—C16—C22 103.44 (10)
O1—C2—C3 104.73 (10) O20—C17—C18 108.89 (10)
C9—C2—C3 114.60 (10) O20—C17—C16 104.54 (10)
C8—C2—C3 103.27 (10) C18—C17—C16 104.34 (10)
O6—C3—C4 108.98 (10) O20—C17—H17A 112.8
O6—C3—C2 105.46 (9) C18—C17—H17A 112.8
C4—C3—C2 105.03 (10) C16—C17—H17A 112.8
O6—C3—H3A 112.3 C17—C18—C19 101.64 (10)
C4—C3—H3A 112.3 C17—C18—H18B 111.4
C2—C3—H3A 112.3 C19—C18—H18B 111.4
C3—C4—C5 101.48 (10) C17—C18—H18A 111.4
C3—C4—H4B 111.5 C19—C18—H18A 111.4
C5—C4—H4B 111.5 H18B—C18—H18A 109.3
C3—C4—H4A 111.5 O15—C19—C18 105.78 (11)
C5—C4—H4A 111.5 O15—C19—H19B 110.6
H4B—C4—H4A 109.3 C18—C19—H19B 110.6
O1—C5—C4 106.05 (10) O15—C19—H19A 110.6
O1—C5—H5B 110.5 C18—C19—H19A 110.6
C4—C5—H5B 110.5 H19B—C19—H19A 108.7
O1—C5—H5A 110.5 C24—C21—O20 119.59 (11)
C4—C5—H5A 110.5 C24—C21—C22 130.07 (11)
H5B—C5—H5A 108.7 O20—C21—C22 110.34 (11)
C10—C7—O6 118.61 (11) C21—C22—C16 103.27 (10)
C10—C7—C8 131.31 (12) C21—C22—H22B 111.1
O6—C7—C8 110.06 (10) C16—C22—H22B 111.1
C7—C8—C2 103.59 (10) C21—C22—H22A 111.1
C7—C8—H8B 111.0 C16—C22—H22A 111.1
C2—C8—H8B 111.0 H22B—C22—H22A 109.1
C7—C8—H8A 111.0 C16—C23—H23C 109.5
C2—C8—H8A 111.0 C16—C23—H23B 109.5
H8B—C8—H8A 109.0 H23C—C23—H23B 109.5
C2—C9—H9C 109.5 C16—C23—H23A 109.5
C2—C9—H9B 109.5 H23C—C23—H23A 109.5
H9C—C9—H9B 109.5 H23B—C23—H23A 109.5
C2—C9—H9A 109.5 C21—C24—C25 121.40 (11)
H9C—C9—H9A 109.5 C21—C24—H24A 119.3
H9B—C9—H9A 109.5 C25—C24—H24A 119.3
C7—C10—C11 122.15 (12) O26—C25—O27 121.75 (12)
C7—C10—H10A 118.9 O26—C25—C24 127.21 (12)
C11—C10—H10A 118.9 O27—C25—C24 111.04 (11)
O12—C11—O13 122.40 (12) O27—C28—H28C 109.5
O12—C11—C10 127.40 (12) O27—C28—H28B 109.5
O13—C11—C10 110.20 (11) H28C—C28—H28B 109.5
O13—C14—H14C 109.5 O27—C28—H28A 109.5
O13—C14—H14B 109.5 H28C—C28—H28A 109.5
H14C—C14—H14B 109.5 H28B—C28—H28A 109.5
O13—C14—H14A 109.5 C5—O1—C2 110.45 (9)
H14C—C14—H14A 109.5 C7—O6—C3 111.12 (9)
H14B—C14—H14A 109.5 C11—O13—C14 114.63 (11)
O15—C16—C23 108.93 (10) C19—O15—C16 110.61 (9)
O15—C16—C17 104.78 (10) C21—O20—C17 111.13 (9)
C23—C16—C17 115.38 (11) C25—O27—C28 115.34 (10)
O1—C2—C3—O6 −92.66 (10) O20—C21—C22—C16 16.47 (13)
C9—C2—C3—O6 148.3 (1) O15—C16—C22—C21 85.89 (11)
C8—C2—C3—O6 22.21 (12) C23—C16—C22—C21 −151.64 (11)
O1—C2—C3—C4 22.4 (1) C17—C16—C22—C21 −25.31 (12)
C9—C2—C3—C4 −96.62 (12) O20—C21—C24—C25 178.52 (11)
C8—C2—C3—C4 137.27 (10) C22—C21—C24—C25 −2.3 (2)
O6—C3—C4—C5 79.11 (11) C21—C24—C25—O26 −4.7 (2)
C2—C3—C4—C5 −33.49 (12) C21—C24—C25—O27 175.91 (11)
C3—C4—C5—O1 33.07 (12) C4—C5—O1—C2 −20.25 (13)
C10—C7—C8—C2 −161.49 (13) C9—C2—O1—C5 121.59 (11)
O6—C7—C8—C2 19.87 (13) C8—C2—O1—C5 −111.59 (11)
O1—C2—C8—C7 86.28 (11) C3—C2—O1—C5 −1.33 (13)
C9—C2—C8—C7 −150.66 (10) C10—C7—O6—C3 175.36 (11)
C3—C2—C8—C7 −24.94 (12) C8—C7—O6—C3 −5.81 (13)
O6—C7—C10—C11 179.36 (11) C4—C3—O6—C7 −123.13 (11)
C8—C7—C10—C11 0.8 (2) C2—C3—O6—C7 −10.82 (13)
C7—C10—C11—O12 −2.6 (2) O12—C11—O13—C14 0.98 (17)
C7—C10—C11—O13 177.98 (11) C10—C11—O13—C14 −179.57 (11)
O15—C16—C17—O20 −88.79 (11) C18—C19—O15—C16 −17.45 (14)
C23—C16—C17—O20 151.4 (1) C23—C16—O15—C19 119.00 (12)
C22—C16—C17—O20 25.73 (12) C17—C16—O15—C19 −4.99 (13)
O15—C16—C17—C18 25.5 (1) C22—C16—O15—C19 −115.31 (11)
C23—C16—C17—C18 −94.26 (13) C24—C21—O20—C17 179.38 (11)
C22—C16—C17—C18 140.03 (11) C22—C21—O20—C17 0.07 (14)
O20—C17—C18—C19 76.14 (12) C18—C17—O20—C21 −127.75 (11)
C16—C17—C18—C19 −35.04 (13) C16—C17—O20—C21 −16.70 (13)
C17—C18—C19—O15 32.43 (13) O26—C25—O27—C28 −3.84 (18)
C24—C21—C22—C16 −162.75 (13) C24—C25—O27—C28 175.63 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2142).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Breit, B. & Zahn, S. K. (2001). J. Org. Chem.66, 4870–4877. [DOI] [PubMed]
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Semmelhack, M. F. & Epa, W. R. (1993). Tetrahedron Lett.34, 7205–7208.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032101/bv2142sup1.cif

e-66-o2381-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032101/bv2142Isup2.hkl

e-66-o2381-Isup2.hkl (197.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES