Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 11;66(Pt 9):o2255–o2256. doi: 10.1107/S1600536810030928

2-Amino-5-methyl­pyridinium 2-hy­droxy­benzoate

Ching Kheng Quah a,, Madhukar Hemamalini a, Hoong-Kun Fun a,*,§
PMCID: PMC3008107  PMID: 21588618

Abstract

In the title compound, C6H9N2 +·C7H5O3 , the protonated 2-amino-5-methyl­pyridinium cation and the 2-hy­droxy­benzoate anion are both essentially planar, with maximum deviations of 0.026 (2) and 0.034 (1) Å, respectively. The anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which forms an S(6) ring motif. In the solid state, the anions are linked to the cations via pairs of inter­molecular N—H⋯O hydrogen bonds forming R 2 2(8) ring motifs. The crystal structure is further stabilized by N—H⋯O and C—H⋯O inter­actions which link the mol­ecules into chains along [010]. A π–π stacking inter­action [centroid–centroid-distance = 3.740 (2) Å] is also observed.

Related literature

For background to and the applications of carb­oxy­lic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971); Desiraju (1989); MacDonald & Whitesides (1994). For applications of salicylic acid, see: Singh & Vijayan (1974); Patel et al. (1988). For related structures, see: Quah et al. (2008; 2010a ,b ). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o2255-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O3

  • M r = 246.26

  • Monoclinic, Inline graphic

  • a = 13.211 (7) Å

  • b = 7.170 (4) Å

  • c = 14.324 (7) Å

  • β = 104.668 (11)°

  • V = 1312.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.42 × 0.19 × 0.10 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.963, T max = 0.991

  • 14312 measured reflections

  • 3797 independent reflections

  • 2233 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.134

  • S = 1.01

  • 3797 reflections

  • 219 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030928/bt5314sup1.cif

e-66-o2255-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030928/bt5314Isup2.hkl

e-66-o2255-Isup2.hkl (186.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 1.03 (2) 1.65 (2) 2.678 (2) 174.6 (13)
N2—H1N2⋯O2i 0.884 (18) 1.987 (17) 2.852 (2) 165.4 (14)
N2—H2N2⋯O2 0.97 (2) 1.90 (2) 2.872 (2) 179 (2)
O1—H1O1⋯O3 1.03 (2) 1.55 (2) 2.515 (2) 155 (2)
C5—H5A⋯O1ii 0.961 (14) 2.598 (14) 3.518 (3) 160.2 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM fellowship and HM also thanks USM for the award of post doctoral fellowship.

supplementary crystallographic information

Comment

Hydrogen bonding has been established as the most effective tool for constructing sophisticated assemblies because of its strength and directionality. Carboxylic acids are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971) and they exhibit characteristic intermolecular interactions and aggregation patterns. Also carboxyl groups have been used as primary building blocks in the design of crystal structures (Desiraju, 1989; MacDonald & Whitesides, 1994). Salicylic acid, a well known analgesic, and its complexes with a few drug molecules such as antipyrine (Singh & Vijayan, 1974) and sulfadimidine (Patel et al., 1988) were already reported in the literature. The present study is aimed at investigating the supramolecular interactions of the title compound, (I).

The asymmetric unit of title compound (Fig. 1), contains a protonated 2-amino-5-methylpyridinium cation and a 2-hydroxybenzoate anion. In the 2-amino-5-methylpyridinium cation, a wide angle [122.26 (13)°] is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation and 2-hydroxybenzoate anion are essentially planar, with a maximum deviation of 0.026 (2) Å for atom C6 and 0.034 (1) Å for atom O3, respectively. The diheral angle between these two planes is 4.78 (5)°, indicating they are nearly parallel to each other. The anion is stabilized by an intramolecular O1–H1O1···O3 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), the anions are linked to the cations via intermolecular N1–H1N1···O3 and N2–H2N2..O2 hydrogen bonds forming R22(8) ring motifs. The crystal structure is further stabilized by N2–H1N2···O2 and C5–H5A···O1 interactions. The molecules are linked by these interactions into chains along [010]. π–π stacking interactions with short intermolecular distance [3.740 (2) Å] between symmetry-related N1/C1—C5 (centroid Cg1) and C7—C12 (centroid Cg2) [symmetry code: x, 1 + y, z] are also observed.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and salicylic acid (34.5 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interactions are shown in dashed lines.

Fig. 2.

Fig. 2.

The crystal structure of the title compound viewed along the c axis.

Crystal data

C6H9N2+·C7H5O3 F(000) = 520
Mr = 246.26 Dx = 1.246 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3026 reflections
a = 13.211 (7) Å θ = 3.2–26.8°
b = 7.170 (4) Å µ = 0.09 mm1
c = 14.324 (7) Å T = 297 K
β = 104.668 (11)° Block, yellow
V = 1312.6 (12) Å3 0.42 × 0.19 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3797 independent reflections
Radiation source: fine-focus sealed tube 2233 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.963, Tmax = 0.991 k = −10→10
14312 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0959P] where P = (Fo2 + 2Fc2)/3
3797 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.25056 (7) 0.79968 (17) 0.30963 (8) 0.0491 (3)
N2 0.07534 (9) 0.7373 (2) 0.28908 (10) 0.0664 (4)
C1 0.15649 (8) 0.84904 (19) 0.32288 (9) 0.0485 (3)
C2 0.15072 (10) 1.0168 (2) 0.37198 (9) 0.0542 (3)
C3 0.23752 (10) 1.1242 (2) 0.40264 (10) 0.0561 (3)
C4 0.33511 (10) 1.0709 (2) 0.38749 (9) 0.0544 (3)
C5 0.33759 (9) 0.9075 (2) 0.34103 (9) 0.0523 (3)
C6 0.43050 (14) 1.1912 (3) 0.41915 (16) 0.0791 (5)
O1 0.40974 (7) 0.27586 (19) 0.17167 (9) 0.0806 (4)
O2 0.10956 (7) 0.41138 (14) 0.18462 (8) 0.0703 (3)
O3 0.27788 (7) 0.48394 (15) 0.21915 (9) 0.0710 (3)
C7 0.32912 (10) 0.1574 (2) 0.13606 (10) 0.0581 (4)
C8 0.35051 (15) −0.0109 (3) 0.09641 (12) 0.0760 (5)
C9 0.27204 (17) −0.1348 (3) 0.05976 (13) 0.0830 (5)
C10 0.17009 (17) −0.0959 (3) 0.06012 (13) 0.0799 (5)
C11 0.14807 (12) 0.0712 (2) 0.09921 (11) 0.0635 (4)
C12 0.22624 (9) 0.19952 (19) 0.13827 (9) 0.0494 (3)
C13 0.20156 (9) 0.37630 (19) 0.18311 (10) 0.0529 (3)
H2A 0.0850 (11) 1.050 (2) 0.3827 (10) 0.067 (4)*
H3A 0.2348 (12) 1.246 (3) 0.4373 (11) 0.074 (5)*
H5A 0.3970 (10) 0.854 (2) 0.3237 (9) 0.053 (3)*
H6A 0.4887 (16) 1.146 (3) 0.3935 (14) 0.107 (7)*
H6B 0.4150 (17) 1.318 (4) 0.3879 (17) 0.131 (9)*
H6C 0.4491 (16) 1.208 (3) 0.4862 (19) 0.123 (8)*
H8A 0.4216 (15) −0.033 (3) 0.1009 (13) 0.097 (6)*
H9A 0.2895 (14) −0.256 (3) 0.0343 (13) 0.098 (6)*
H10A 0.1156 (15) −0.181 (3) 0.0375 (14) 0.102 (6)*
H11A 0.0773 (12) 0.101 (2) 0.1003 (10) 0.068 (4)*
H1N1 0.2564 (11) 0.678 (3) 0.2733 (11) 0.073 (4)*
H1N2 0.0141 (13) 0.771 (2) 0.2980 (12) 0.078 (5)*
H2N2 0.0862 (13) 0.626 (3) 0.2540 (13) 0.087 (5)*
H1O1 0.3730 (16) 0.382 (3) 0.1984 (15) 0.116 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0397 (5) 0.0494 (7) 0.0589 (6) 0.0009 (5) 0.0137 (4) −0.0009 (5)
N2 0.0401 (5) 0.0620 (9) 0.0988 (9) −0.0039 (5) 0.0209 (6) −0.0157 (7)
C1 0.0396 (5) 0.0504 (8) 0.0560 (7) 0.0017 (5) 0.0131 (5) 0.0018 (6)
C2 0.0480 (6) 0.0565 (9) 0.0592 (7) 0.0039 (6) 0.0158 (6) −0.0028 (6)
C3 0.0614 (7) 0.0537 (9) 0.0520 (7) −0.0011 (7) 0.0121 (6) −0.0041 (7)
C4 0.0524 (7) 0.0579 (9) 0.0508 (7) −0.0090 (6) 0.0092 (5) 0.0044 (6)
C5 0.0401 (6) 0.0607 (9) 0.0574 (7) −0.0017 (6) 0.0143 (5) 0.0045 (7)
C6 0.0653 (9) 0.0833 (14) 0.0848 (12) −0.0264 (10) 0.0118 (9) −0.0071 (11)
O1 0.0495 (5) 0.0882 (9) 0.1105 (9) 0.0064 (5) 0.0323 (5) −0.0146 (7)
O2 0.0473 (5) 0.0544 (7) 0.1169 (8) 0.0028 (4) 0.0349 (5) −0.0095 (6)
O3 0.0502 (5) 0.0530 (6) 0.1159 (8) −0.0031 (5) 0.0324 (5) −0.0166 (6)
C7 0.0549 (7) 0.0635 (10) 0.0597 (7) 0.0154 (7) 0.0216 (6) 0.0049 (7)
C8 0.0784 (10) 0.0775 (13) 0.0775 (10) 0.0292 (10) 0.0297 (8) −0.0028 (9)
C9 0.1128 (15) 0.0655 (12) 0.0739 (10) 0.0248 (11) 0.0296 (10) −0.0121 (9)
C10 0.0967 (13) 0.0645 (12) 0.0772 (11) −0.0022 (10) 0.0198 (9) −0.0197 (9)
C11 0.0634 (8) 0.0604 (10) 0.0672 (9) 0.0032 (7) 0.0177 (7) −0.0063 (7)
C12 0.0505 (6) 0.0480 (8) 0.0521 (6) 0.0086 (6) 0.0176 (5) 0.0059 (6)
C13 0.0471 (6) 0.0451 (8) 0.0719 (8) 0.0040 (6) 0.0252 (6) 0.0047 (7)

Geometric parameters (Å, °)

N1—C1 1.3510 (15) C6—H6C 0.94 (3)
N1—C5 1.3638 (17) O1—C7 1.3567 (19)
N1—H1N1 1.030 (18) O1—H1O1 1.03 (2)
N2—C1 1.3279 (18) O2—C13 1.2467 (15)
N2—H1N2 0.884 (18) O3—C13 1.2710 (16)
N2—H2N2 0.97 (2) C7—C8 1.393 (2)
C1—C2 1.405 (2) C7—C12 1.4006 (18)
C2—C3 1.359 (2) C8—C9 1.365 (3)
C2—H2A 0.950 (15) C8—H8A 0.938 (19)
C3—C4 1.413 (2) C9—C10 1.377 (3)
C3—H3A 1.011 (18) C9—H9A 0.99 (2)
C4—C5 1.352 (2) C10—C11 1.384 (2)
C4—C6 1.500 (2) C10—H10A 0.94 (2)
C5—H5A 0.960 (13) C11—C12 1.391 (2)
C6—H6A 0.99 (2) C11—H11A 0.962 (15)
C6—H6B 1.01 (3) C12—C13 1.494 (2)
C1—N1—C5 122.26 (13) H6A—C6—H6C 113.4 (17)
C1—N1—H1N1 118.8 (8) H6B—C6—H6C 108 (2)
C5—N1—H1N1 118.9 (8) C7—O1—H1O1 101.7 (11)
C1—N2—H1N2 117.6 (11) O1—C7—C8 118.34 (13)
C1—N2—H2N2 118.2 (10) O1—C7—C12 122.04 (13)
H1N2—N2—H2N2 124.1 (15) C8—C7—C12 119.62 (15)
N2—C1—N1 118.50 (13) C9—C8—C7 120.52 (16)
N2—C1—C2 123.91 (12) C9—C8—H8A 124.5 (13)
N1—C1—C2 117.58 (11) C7—C8—H8A 114.8 (13)
C3—C2—C1 119.91 (12) C8—C9—C10 121.02 (18)
C3—C2—H2A 122.5 (9) C8—C9—H9A 119.2 (11)
C1—C2—H2A 117.6 (9) C10—C9—H9A 119.8 (11)
C2—C3—C4 121.70 (14) C9—C10—C11 118.87 (18)
C2—C3—H3A 121.2 (9) C9—C10—H10A 122.2 (13)
C4—C3—H3A 117.1 (9) C11—C10—H10A 118.9 (13)
C5—C4—C3 116.52 (12) C10—C11—C12 121.65 (15)
C5—C4—C6 121.61 (14) C10—C11—H11A 120.0 (10)
C3—C4—C6 121.86 (16) C12—C11—H11A 118.3 (9)
C4—C5—N1 122.02 (12) C11—C12—C7 118.32 (13)
C4—C5—H5A 126.5 (8) C11—C12—C13 120.92 (12)
N1—C5—H5A 111.4 (8) C7—C12—C13 120.75 (12)
C4—C6—H6A 111.8 (13) O2—C13—O3 123.17 (13)
C4—C6—H6B 108.9 (13) O2—C13—C12 119.90 (12)
H6A—C6—H6B 102.8 (18) O3—C13—C12 116.93 (11)
C4—C6—H6C 111.5 (14)
C5—N1—C1—N2 179.21 (12) C8—C9—C10—C11 −0.5 (3)
C5—N1—C1—C2 −0.82 (18) C9—C10—C11—C12 −0.3 (3)
N2—C1—C2—C3 −178.87 (13) C10—C11—C12—C7 1.0 (2)
N1—C1—C2—C3 1.16 (19) C10—C11—C12—C13 −177.95 (14)
C1—C2—C3—C4 −0.7 (2) O1—C7—C12—C11 179.29 (13)
C2—C3—C4—C5 −0.1 (2) C8—C7—C12—C11 −0.8 (2)
C2—C3—C4—C6 178.54 (15) O1—C7—C12—C13 −1.8 (2)
C3—C4—C5—N1 0.46 (19) C8—C7—C12—C13 178.09 (13)
C6—C4—C5—N1 −178.17 (14) C11—C12—C13—O2 −1.0 (2)
C1—N1—C5—C4 0.00 (19) C7—C12—C13—O2 −179.86 (12)
O1—C7—C8—C9 179.92 (15) C11—C12—C13—O3 178.39 (13)
C12—C7—C8—C9 0.0 (2) C7—C12—C13—O3 −0.49 (19)
C7—C8—C9—C10 0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3 1.03 (2) 1.65 (2) 2.678 (2) 174.6 (13)
N2—H1N2···O2i 0.884 (18) 1.987 (17) 2.852 (2) 165.4 (14)
N2—H2N2···O2 0.97 (2) 1.90 (2) 2.872 (2) 179 (2)
O1—H1O1···O3 1.03 (2) 1.55 (2) 2.515 (2) 155 (2)
C5—H5A···O1ii 0.961 (14) 2.598 (14) 3.518 (3) 160.2 (10)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5314).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  5. Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490. [DOI] [PMC free article] [PubMed]
  6. MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev.94, 2383–2420.
  7. Miller, S. L. & Orgel, L. E. (1974). The Origins of Life on Earth New Jersey: Prentice Hall.
  8. Patel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264–1267.
  9. Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932. [DOI] [PMC free article] [PubMed]
  10. Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2164–o2165. [DOI] [PMC free article] [PubMed]
  11. Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557–562.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030928/bt5314sup1.cif

e-66-o2255-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030928/bt5314Isup2.hkl

e-66-o2255-Isup2.hkl (186.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES