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Abstract
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial
movement in terms of component actions. This system is widely used in behavioral investigations
of emotion, cognitive processes, and social interaction. The coding is presently performed by
highly trained human experts. This paper explores and compares techniques for automatically
recognizing facial actions in sequences of images. These techniques include analysis of facial
motion through estimation of optical flow; holistic spatial analysis, such as principal component
analysis, independent component analysis, local feature analysis, and linear discriminant analysis;
and methods based on the outputs of local filters, such as Gabor wavelet representations and local
principal components. Performance of these systems is compared to naive and expert human
subjects. Best performances were obtained using the Gabor wavelet representation and the
independent component representation, both of which achieved 96 percent accuracy for classifying
12 facial actions of the upper and lower face. The results provide converging evidence for the
importance of using local filters, high spatial frequencies, and statistical independence for
classifying facial actions.
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1 Introduction
Facial expressions provide information not only about affective state, but also about
cognitive activity, temperament and personality, truthfulness, and psychopathology. The
Facial Action Coding System (FACS) [23] is the leading method for measuring facial
movement in behavioral science. FACS is currently performed manually by highly trained
human experts. Recent advances in image analysis open up the possibility of automatic
measurement of facial signals. An automated system would make facial expression
measurement more widely accessible as a tool for research and assessment in behavioral
science and medicine. Such a system would also have applications in human-computer
interaction.

This paper presents a survey and comparison of recent techniques for facial expression
recognition as applied to automated FACS encoding. Recent approaches include
measurement of facial motion through optic flow [44], [64], [54], [26], [15], [43] and
analysis of surface textures based on principal component analysis (PCA) [17], [48], [40]. In
addition, a number of methods that have been developed for representing faces for identity
recognition may also be powerful for expression analysis. These approaches are also
included in the present comparison. These include Gabor wavelets [20], [39], linear
discriminant analysis [8], local feature analysis [49], and independent component analysis
[5], [4]. The techniques are compared on a single image testbed. The analysis focuses on
methods for face image representation (generation of feature vectors) and the representations
are compared using a common similarity measure and classifier.

1.1 The Facial Action Coding System
FACS was developed by Ekman and Friesen [23] in 1978 to objectively measure facial
activity for behavioral science investigations of the face. It provides an objective description
of facial signals in terms of component motions, or “facial actions.” FACS was developed
by determining from palpation, knowledge of anatomy, and videotapes how the contraction
of each of the facial muscles changed the appearance of the face (see Fig. 1). Ekman and
Friesen defined 46 Action Units, or AUs, to correspond to each independent motion of the
face. A trained human FACS coder decomposes an observed expression into the specific
AUs that produced the expression. FACS is coded from video and the code provides precise
specification of the dynamics (duration, onset, and offset time) of facial movement in
addition to the morphology (the specific facial actions which occur).

FACS continues to be the leading method for measuring facial expressions in behavioral
science (see [25] for a review). This system has been used, for example, to demonstrate
differences between genuine and simulated pain [19], differences between when people are
telling the truth versus lying [22], and differences between the facial signals of suicidal and
nonsuicidally depressed patients [34]. Although FACS is a promising approach, a major
impediment to its widespread use is the time required to both train human experts and to
manually score the video tape. It takes over 100 hours of training to achieve minimal
competency on FACS and each minute of video tape takes approximately one hour to score.
Automating FACS would make it more widely accessible as a research tool. It would not
only increase the speed of coding, it would also improve the reliability, precision, and
temporal resolution of facial measurement.

Aspects of FACS have been incorporated into computer graphic systems for synthesizing
facial expressions (e.g., Toy Story [38]) and into facial muscle models for parameterizing
facial movement [55], [44]. It is important to distinguish FACS itself from facial muscle
models that employ aspects of FACS. In particular, there has been a tendency to confuse
FACS with CANDIDE [55]. FACS is performed by human observers using stop-motion
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video. Although there are clearly defined relationships between FACS and the underlying
facial muscles, FACS is an image-based method. Facial actions are defined by the image
changes they produce in video sequences of face images.

1.2 Automated Facial Expression Measurement
Recent advances have been made in computer vision for automatic recognition of facial
expressions in images. The approaches that have been explored include analysis of facial
motion [44], [64], [54], [26], measurements of the shapes of facial features and their spatial
arrangements [40], [66], holistic spatial pattern analysis using techniques based on principal
component analysis [17], [48], [40], graylevel pattern analysis using local spatial filters [48],
[66], and methods for relating face images to physical models of the facial skin and
musculature [44] [59], [42], [26]. The image analysis techniques in these systems are
relevant to the present goals, but the systems themselves are of limited use for behavioral
science investigations of the face (see [31] for a discussion). Many of these systems were
designed with an objective of classifying facial expressions into a few basic categories of
emotion, such as happy, sad, or surprised. For basic science investigations of facial behavior
itself, such as studying the difference between genuine and simulated pain, an objective and
detailed measure of facial activity such as FACS is needed. Several computer vision systems
explicitly parameterize facial movement [64] and relate facial movements to the underlying
facial musculature [44], [26], but it is not known whether these descriptions are sufficient
for describing the full range of facial behavior. For example, movement parameters that
were estimated from posed, prototypical expressions may not be appropriate descriptors for
spontaneous facial expressions, which differ from posed expressions in both their
morphology and their dynamics [31]. Furthermore, the relationship between these
movement parameters and internal state has not been investigated to the extent that FACS
has been. There is over 20 years of behavioral data on the relationships of facial action codes
to emotion and to state variables such as deceit, interest, depression, and psychopathology.

In addition to providing a tool for basic science research, a system that outputs facial action
codes would provide a strong basis for human-computer interaction systems. In natural
interaction, prototypic expressions of basic emotions occur relatively infrequently.
Annoyance, for example, may be indicated by just a lowering of the brows or tightening of
the mouth. FACS provides a description of the basic elements of any facial movement,
analogous to phonemes in speech. Facial action codes also provide more detailed
information about facial behavior, including information about variations within an
emotional category (e.g., vengeance vs. resentment), variations in intensity (e.g., annoyance
vs. fury), blends of two or more emotions (e.g., happiness + disgust → smug), facial signals
of deceit, signs of boredom or interest, and conversational signals that provide emphasis to
speech and information about syntax.

Explicit attempts to automate the facial action coding system involved tracking the positions
of dots attached to the face [35], [37]. A system that detects facial actions from image
sequences without requiring application of dots to the subjects face would have much
broader utility. Efforts have recently turned to measuring facial actions by image processing
of video sequences [6], [4], [15]. Cohn et al. [15] achieved some success for automated
facial action coding by feature point tracking of a set of manually located points in the face
image (fiducial points). Here, we explore image representations based on full field analysis
of the face image, not just displacements of selected feature points. Techniques employing
2D filters of image graylevels have proven to be more effective than feature-based
representations for identity recognition [13], [40] and expression recognition [66]. In our
previous work on automatic facial action coding [6], [3], [2], we found that full-field
representations of image textures and image motion provided more reliable indicators of
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facial actions than task-specific feature measurements such as the increase of facial wrinkles
in specific facial regions.

Several facial expression recognition systems have employed explicit physical models of the
face [44], [59], [42], [26]. There are numerous factors that influence the motion of the skin
following muscle contraction, and it is difficult to accurately account for all of them in a
deterministic model. Here, we take an image-based approach in which facial action classes
are learned directly from example image sequences of the actions, bypassing the physical
model. Image-based approaches have recently been advocated [11] and can successfully
accomplish tasks previously assumed to require mapping onto a physical model, such as
expression synthesis, face recognition across changes in pose, and synthesis across pose
[12], [61].

2 Overview
This paper explores and compares approaches to face image representation. Section 3
presents the image database used for the comparative study and the image preprocessing
techniques. We examined a number of techniques that have been presented in the literature
for processing images of faces and compare their performance on the task of facial action
classification. These approaches were grouped into the following classes: analysis of facial
motion, holistic spatial analysis, and local spatial analysis. Section 4 examines a
representation of facial motion based on optic flow. The technique is a correlation-based
method with subpixel accuracy [58]. Because local smoothing is commonly imposed on
flow fields to clean up the signal, we also examined the effects of local smoothing on
classification of facial motion. Holistic spatial analysis is an approach that employs image-
dimensional graylevel texture filters. Many of these approaches employ data-driven kernels
learned from the statistics of the face image ensemble. These approaches include eigenfaces
[60], [17], [48], [40] and local feature analysis (LFA) [49], in which the kernels are learned
through unsupervised methods based on principal component analysis (PCA). Eigenface and
LFA kernels are derived from the second-order dependencies among the image pixels,
whereas independent component analysis (ICA) learns kernels from the high-order
dependencies in addition to the second-order dependencies among the pixels [5], [4], [2].
Another class of holistic kernel, Fisher’s linear discriminants (FLD) [8], is learned through
supervised methods, and finds a class-specific linear projection of the images. Section 5
compares four representations derived from holistic spatial analysis: eigenfaces (PCA),
LFA, ICA, and FLD. Local spatial analysis is an approach in which spatially local kernels
are employed to filter the images. These include predefined families of kernels, such as
Gabor wavelets [20], [39], [66], and data-driven kernels learned from the statistics of small
image patches, such as local PCA [48]. Section 6 examines two representations based on the
outputs of local spatial filters: local PCA and a Gabor wavelet representation. The two local
representations were further compared via a hybrid representation, local PCA jets. Section 7
provides benchmarks for the performance of the computer vision systems by measuring the
ability of naive and expert human subjects to classify the facial actions.

3 Image Database
We collected a database of image sequences of subjects performing specified facial actions.
The full database contains over 1,100 sequences containing over 150 distinct actions, or
action combinations, and 24 different subjects. Each sequence contained six images,
beginning with a neutral expression and ending with a high magnitude muscle contraction.
Trained FACS experts provided demonstrations and instructions to subjects on how to
perform each action. The selection of images was based on FACS coding of stop motion
video. The images were coded by three experienced FACS coders certified with high
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intercoder reliability. The criterion for acceptance of images was that the requested action
and only the requested action was present. Sequences containing rigid head motion
detectable by a human observer were excluded. For this investigation, we used data from 20
subjects and attempted to classify 12 actions: six upper face actions and six lower face
actions. See Fig. 2 for a summary of the actions examined. There were a total of 111 action
sequences, (9, 10, 18, 20, 5, 18), respectively, of the six upper face actions, and (8, 4, 4, 5, 4,
6) of the six lower face actions. The actions were divided into upper and lower-face
categories because facial actions in the lower face have little influence on facial motion in
the upper face and vice versa [23], which allowed us to treat them separately.

The face was located in the first frame in each sequence using the centers of the eyes and
mouth. These coordinates were obtained manually by a mouse click. Accurate image
registration is critical to holistic approaches such as principal component analysis. An
alignment procedure similar to this one was found to give the most accurate image
registration during the FERET test [50]. The variance in the assigned feature location using
this procedure was 0.4 pixels in the 640 × 480 pixel images. The coordinates from Frame 1
were used to register the subsequent frames in the sequence. We found in pilot
investigations that rigid head motion was smaller than the positional noise in the registration
procedure. The three coordinates were used to align the faces, rotate the eyes to horizontal,
scale, and, finally, crop a window of 60 × 90 pixels containing the region of interest (upper
or lower face). The aspect ratios of the faces were warped so that the eye and mouth centers
coincided across all images. It has been found that identity recognition performance using
principal component-based approaches is most successful when the images are warped to
remove variations in facial shape [11], [62].

To control the variation in lighting between frames of the same sequence and in different
sequences, we applied a logistic filter with parameters chosen to match the statistics of the
grayscale levels of each sequence [46]. This procedure enhanced the contrast, performing a
partial histogram equalization on the images.

4 Optic Flow Analysis
The majority of work on facial expression recognition has focused on facial motion analysis
through optic flow estimation. In an early exploration of facial expression recognition, Mase
[44] used optic flow to estimate the activity in a subset of the facial muscles. Essa and
Pentland [26] extended this approach, using optic flow to estimate activity in a detailed
anatomical and physical model of the face. Motion estimates from optic flow were refined
by the physical model in a recursive estimation and control framework and the estimated
forces were used to classify the facial expressions. Yacoob and Davis [64] bypassed the
physical model and constructed a mid-level representation of facial motion, such as “right
mouth corner raises,” directly from the optic flow. These mid-level representations were
classified into one of six facial expressions using a set of heuristic rules. Rosenblum et al.
[54] expanded this system to model the full temporal profile of facial expressions with radial
basis functions, from initiation, to apex, and relaxation. Cohn et al. [15] are developing a
system for automatic facial action classification based on feature-point tracking. The
displacements of 36 manually located feature points are estimated using optic flow and
classified using discriminant functions.

Here, optic flow fields were estimated by employing a correlation-based technique
developed by Singh [58]. This algorithm produces flow fields with subpixel accuracy and is
comprised of two main components: 1) local velocity extraction using luminance
conservation constraints, 2) local smoothing.
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4.1 Local Velocity Extraction
We start with a sequence of three images at time t = t0 − 1, t0, t0 + 1 and use it to recover all
the velocity information available locally. For each pixel (x, y) in the central image (t = t0),
1) a small window ( ) of 3 × 3 pixels is formed around , 2) a search area ( ) of 5 × 5
pixels is considered around location (x, y) in the other two images, 3) the correlation
between ( ) and the corresponding window centered on each pixel in ( ) is computed,
thus giving the matching strength, or response, at each pixel in the search window ( ).

At the end of this process, ( ) is covered by a response distribution (ℛ) in which the
response at each point gives the frequency of occurrence, or likelihood, of the corresponding
value of velocity. Employing a constant temporal model, the response distributions for the
two windows corresponding to t0 − 1 and t0 + 1, (ℛ−1 and ℛ+1), are combined by R = ℛ+1
+ πℛ−1. Velocity is then estimated using the weighted least squares estimate in (1). Fig. 3
shows an example flow field obtained by this algorithm.

(1)

4.2 Local Smoothing
To refine the conservation constraint estimate  = (û, v̂) obtained above, a local
neighborhood estimate of velocity, , is defined as a weighted sum of the velocities in a
neighborhood of  using a 5 × 5 Gaussian mask. An optimal estimate  of (u, v) should
combine the two estimates  and , from the conservation and local smoothness constraints
respectively. Since  is a point in (u, v) space, its distance from , weighted by its
covariance matrix , represents the error in the smoothness constraint estimate. Similarly,
the distance between  and  weighted by  represents the error due to conservation
constraints. Computing , then, amounts to simultaneously minimizing the two errors:

(2)

Since we do not know the true velocity, this estimate must be computed iteratively. To
update the field, we use the equations [58]:

(3)

where  is the estimate derived from smoothness constraints at step k. The iterations stop
when

with ε ∝ 10−4.
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4.3 Classification Procedure
The following classification procedures were used to test the efficacy of each representation
in this comparison for facial action recognition. Each image analysis algorithm produced a
feature vector, f. We employed a simple nearest neighbor classifier in which the similarity S
of a training feature vector, ft, and a novel feature vector, fn, was measured as the cosine of
the angle between them:

(4)

Classification performances were also evaluated using Euclidean distance, instead of cosine,
as the similarity measure and template matching, instead of nearest neighbor as the
classifier, where the templates consisted of the mean feature vector for the training images.
The similarity measure and classifier that gave the best performance is indicated for each
technique.

The algorithms were trained and tested using leave-one-out cross-validation, also known as
the jack-knife procedure, which makes maximal use of the available data for training. In this
procedure, the image representations were calculated multiple times, each time using images
from all but one subject for training and reserving one subject for testing. This procedure
was repeated for each of the 20 subjects and mean classification accuracy was calculated
across all of the test cases.

Table 1 presents classification performances for the medium magnitude facial actions, which
occur in the middle of each sequence. Performance was consistently highest for the medium
magnitude actions. Flow fields were calculated from frames 2, 3, and 4 of the image
sequence and the performance of the brightness-based algorithms is presented for frame 4 of
each sequence. A class assignment is considered “correct” if it is consistent with the labels
assigned by human experts during image collection. The consistency of human experts with
each other on this image set is indicated by the agreement rates also shown in Table 1.

4.4 Optic Flow Performance
Best performance for the optic flow approach was obtained using the the cosine similarity
measure and template matching classifier. The correlation-based flow algorithm gave 85.6
percent correct classification performance. Since optic flow is a noisy measure, many flow-
based expression analysis systems employ regularization procedures such as smoothing and
quantizing. We found that spatial smoothing did not improve performance and, instead,
degraded it to 53.1 percent. It appears that high spatial resolution optic flow is important for
facial action classification. In addition, the motion in facial expression sequences is nonrigid
and can be highly discontinuous due to the formation of wrinkles. Smoothing algorithms
that are not sensitive to these boundaries can be disadvantageous.

There are a variety of choices of flow algorithms, of which Singh’s correlation-based
algorithm is just one. Also, it is possible that adding more data to the flow field estimate
could improve performance. The results obtained here, however, were comparable to the
performance of other facial expression recognition systems based on optic flow [64], [54].
Optic flow estimates can also be further refined, such as with a Kalman filter in an
estimation-and-control framework (e.g., [26]). The comparison here addresses direct, image-
based representations that do not incorporate a physical model. Sequences of flow fields can
also be analyzed using dynamical models, such as an HMMs or radial basis functions (e.g.,
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[54]). Such dynamical models could also be employed with texture-based representations.
Here, we compare all representations using the same classifiers.

5 Holistic Analysis
A number of approaches to face image analysis employ data-driven kernels learned from the
statistics of the face image ensemble. Approaches such as eigenfaces [60] employ principal
component analysis, which is an unsupervised learning method based on the second-order
dependencies among the pixels. Second-order dependencies are pixelwise covariances.
Representations based on principal component analysis have been applied successfully to
recognizing facial identity [18], [60], classifying gender [17], [29], and recognizing facial
expressions [17], [48], [6].

Penev and Atick [49] recently developed a topographic representation based on second-
order image dependencies called local feature analysis (LFA). A representation based on
LFA gave the highest performance on the March 1995 FERET face recognition competition
[51]. The LFA kernels are spatially local, but, in this paper, we class this technique as
holistic since the image-dimensional kernels are derived from statistical analysis over the
whole image. Another holistic image representation that has recently been shown to be
effective for identity recognition is based on Fisher’s Linear discriminants (FLD) [8]. FLD
is a supervised learning method that uses second-order statistics to find a class-specific
linear projection of the images. Representations such as PCA (eigenfaces), LFA, and FLD
do not address high-order statistical dependencies in the image. A representation based on
independent component analysis (ICA) was recently developed which is based on the high-
order, in addition to the second-order dependencies in the images [5], [4], [2]. The ICA
representation was found to be superior to the eigenface (PCA) representation for classifying
facial identity.

The holistic spatial analysis algorithms examined in this section each found a set of n-
dimensional data-driven image kernels, where n is the number of pixels in each image. The
analysis was performed on the difference (or δ) images (Fig. 2), obtained by subtracting the
first image in a sequence (neutral frame) from each of the subsequent frames in each
sequence. Advantages of difference images include robustness to changes in illumination,
removal of surface variations between subjects, and emphasis of the dynamic aspects of the
image sequence [46]. The kernels were derived from low, medium, and high magnitude
actions. Holistic kernels for the upper and lower-face subimages were calculated separately.

The methods in this section begin with a data matrix X where the δ-images were stored as
row vectors xj, and the columns had zero mean. In the following descriptions, n is the
number of pixels in each image, N is the number of training images and p is the number of
principal components retained to build the final representation.

5.1 Principal Component Analysis: “EigenActions”
This approach is based on [17] and [60], with the primary distinction in that we performed
principal component analysis on the dataset of difference images. The principal components
were obtained by calculating the eigenvectors of the pixelwise covariance matrix, S, of the
δ-images, X. The eigenvectors were found by decomposing S into the orthogonal matrix P
and diagonal matrix D: S = PDPT. Examples of the eigenvectors are shown in Fig. 4. The
zero-mean δ-frames of each sequence were then projected onto the first p eigenvectors in P,
producing a vector of p coefficients for each image.

Best performance with the holistic principal component representation, 79.3 percent correct,
was obtained with the first 30 principal components, using the Euclidean distance similarity
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measure and template matching classifier. Previous studies (e.g., [8]) reported that
discarding the first one to three components improved performance. Here, discarding these
components degraded performance.

5.2 Local Feature Analysis (LFA)
Local Feature Analysis (LFA) defines a set of topographic, local kernels that are optimally
matched to the second-order statistics of the input ensemble [49]. The kernels are derived
from the principal component axes and consist of “sphering” the PCA coefficients to
equalize their variance [1], followed by a rotation to pixel space. We begin with the zero-
mean matrix of δ-images, X, and calculate the principal component eigenvectors P according
to S = PDPT. Penev and Atick [49] defined a set of kernels, K as

(5)

where λi are the eigenvalues of S. The rows of K contain the kernels. The kernels were found
to have spatially local properties and are “topographic” in the sense that they are indexed by
spatial location [49]. The kernel matrix K transforms X to the LFA output O = KXT (see Fig.
5). Note that the matrix V is the inverse square root of the covariance matrix of the principal
component coefficients. This transform spheres the principal component coefficients
(normalizes their output variance to unity) and minimizes correlations in the LFA output.
Another way to interpret the LFA output O is that it is the image reconstruction using
sphered PCA coefficients, O = P(V PTXT).

5.2.1 Sparsification of LFA—LFA produces an n-dimensional representation, where n is
the number of pixels in the images. Since we have n outputs described by p ≪ n linearly
independent variables, there are residual correlations in the output. Penev and Atick
presented an algorithm for reducing the dimensionality of the representation by choosing a
subset ℳ of outputs that were as decorrelated as possible. The sparsification algorithm was
an iterative algorithm based on multiple linear regression. At each time step, the output point
that was predicted most poorly by multiple linear regression on the points in ℳ was added to
ℳ. Due to the topographic property of the kernels, selection of output points was equivalent
to selection of kernels for the representation.

The methods in [49] addressed image representation but did not address recognition. The
sparsification algorithm in [49] selected a different set of kernels, ℳ, for each image, which
is problematic for recognition. In order to make the representation amenable to recognition,
we selected a single set ℳ of kernels for all images. At each time step, the kernel
corresponding to the pixel with the largest mean reconstruction error across all images was
added to ℳ.

At each step, the kernel added to ℳ is chosen as the kernel corresponding to location

(6)

where Orec is a reconstruction of the complete output, O, using a linear predictor on the
subset of the outputs O generated from the kernels in ℳ. The linear predictor is of the form:
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(7)

where  = Orec, β is the vector of the regression parameters, and  = O(ℳ, N). Here, O(ℳ,
N) denotes the subset of O corresponding to the points in ℳ for all N images.1

β is calculated from:

(8)

Equation (8) can also be expressed in terms of the correlation matrix of the outputs, C =
OTO, as in [49]:

(9)

The termination condition was |ℳ| = N. Fig. 5 shows the locations of the points selected by
the sparsification algorithm for the upper-face images. We evaluated classification
performance using the first i kernels selected by the sparsification algorithm, up to N = 155.

The local feature analysis representation attained 81.1 percent correct classification
performance. Best performance was obtained using the first 155 kernels, the cosine
similarity measure, and nearest neighbor classifier. Classification performance using LFA
was not significantly different from the performance using global PCA. Although a face
recognition algorithm related to LFA outperformed eigenfaces in the March 1995 FERET
competition [51], our results suggest that an aspect of the algorithm other than the LFA
representation accounts for the difference in performance. The exact algorithm used in the
FERET test has not been disclosed.

5.3 “FisherActions”
This approach is based on the original work by Belhumeur et al. [8] that showed that a class-
specific linear projection of a principal components representation of faces improved
identity recognition performance. The method is based on Fisher’s linear discriminant
(FLD) [28], which projects the images into a subspace in which the classes are maximally
separated. FLD assumes linear separability of the classes. For identity recognition, the
approach relied on the assumption that images of the same face under different viewing
conditions lie in an approximately linear subspace

of the image space, an assumption which holds true for changes in lighting if the face is
modeled by a Lambertian surface [56], [32]. In our dataset, the lighting conditions are fairly
constant and most of the variation is suppressed by the logistic filter. The linear assumption
for facial expression classification is that the δ-images of a facial action across different
faces lie in a linear subspace.

Fisher’s Linear Discriminant is a projection into a subspace that maximizes the between-
class scatter while minimizing the within-class scatter of the projected data. Let
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( ) be the set of all N = |χ| data, divided into c classes. Each class χi is
composed of a variable number of images xi ∈ Rn. The between-class scatter matrix SB and
the inter-class scatter matrix SW are defined as

(10)

where μi is the mean image of class χi and μ is the mean of all data. Wopt projects
(Rn↦Rc−1) and satisfies

(11)

The {wi} are the solutions to the generalized eigenvalues problem SBwi = λiSW wi for i = 1,
…, c − 1. Following [8], the calculations are greatly simplified by first performing PCA on
the total scatter matrix (ST = SW + SB) to project the feature space to Rp. Denoting the PCA
projection matrix Wpca, we project SW and SB:

(12)

The original FLD problem is thus reformulated as:

(13)

From (11) and (13), Wopt = WpcaWfld, and the { } can now be calculated using

, where S̃W is full-rank for p ≤ N − c.

Best performance was obtained by choosing p = 30 principal components to first reduce the
dimensionality of the data. The data was then projected down to five dimensions via the
projection matrix, Wfld. Best performance of 75.7 percent correct was obtained with the
Euclidean distance similarity measure and template matching classifier.

Clustering with FLD is compared to PCA in Fig. 6. As an example, three lower face actions
were projected down to c − 1 = 2 dimensions using FLD and PCA. The FLD projection
virtually eliminated within-class scatter of the training set and the exemplars of each class
were projected to a single point. The three actions in this example were 17, 18, and 9 + 25.

Contrary to the results obtained in [8], Fisher’s Linear Discriminants did not improve
classification over basic PCA (eigenfaces), despite providing a much more compact
representation of the data that optimized linear discrimination. This suggests that the linear
subspace assumption was violated more catastrophically for our dataset than for the dataset
in [8] which consisted of faces under different lighting conditions. Another reason for the
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difference in performance may be due to the problem of generalization to novel subjects.
The FLD method achieved the best performance on the training data (close to 100 percent),
but generalized poorly to new individuals. This is consistent with other reports of poor
generalization to novel subjects [14] (also H. Wechsler, personal communication). Good
performance with FLD has only been obtained when other images of the test subject were
included in the training set. The low dimensionality may provide insufficient degrees of
freedom for linear discrimination between classes of face images [14]. Class discriminations
that are approximately linear in high dimensions may not be linear when projected down to
as few as five dimensions.

5.4 Independent Component Analysis
Representations such as eigenfaces, LFA, and FLD are based on the second-order
dependencies of the image set, the pixelwise covariances, but are insensitive to the high-
order dependencies of the image set. High-order dependencies in an image include nonlinear
relationships among the pixel grayvalues, such as edges, in which there is phase alignment
across multiple spatial scales, and elements of shape and curvature. In a task such as facial
expression analysis, much of the relevant information may be contained in the high-order
relationships among the image pixels. Independent component analysis (ICA) is a
generalization of PCA which learns the high-order moments of the data in addition to the
second-order moments. In a direct comparison, a face representation based on ICA
outperformed PCA for identity recognition. The methods in this section are based on [5],
[4], [2].

The independent component representation was obtained by performing “blind separation”
on the set of face images [5], [4], [2]. In the image synthesis model of Fig. 7, the δ-images in
the rows of X are assumed to be a linear mixture of an unknown set of statistically
independent source images S, where A is an unknown mixing matrix. The sources are
recovered by a learned unmixing matrix W, which approximates A−1 and produces
statistically independent outputs, U.

The ICA unmixing matrix W was found using an unsupervised learning algorithm derived
from the principle of optimal information transfer between neurons [9], [10]. The algorithm
maximizes the mutual information between the input and the output of a nonlinear transfer
function g. A discussion of how information maximization leads to independent outputs can
be found in [47], [9], [10]. Let u = Wx, where x is a column of the image matrix X and y =
g(u). The update rule for the weight matrix, W, is given by

(14)

We employed the logistic transfer function, , giving y′ = (1 − 2yi). Convergence is
greatly speeded by including a “sphering” step prior to learning [10], in which the zero-

mean dataset X is passed through the whitening filter, . This removes both
the first and the second-order dependencies from the data. The full transform was, therefore,
W = WI * WZ, where WI is the weight obtained by information maximization in (14).

The projection of the image set onto each weight vector in W produced an image of the
statistical dependencies that each weight vector learned. These images are the rows of the
output matrix U and examples are shown in Fig. 8. The rows of U are the independent
components of the image set and they provided a basis set for the expression images. The
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ICA representation consisted of the coefficients, a, for the linear combination of basis
images in U that comprised each face image in X. These coefficients were obtained from the
rows of the estimated mixing matrix  [4]. The number of independent components
extracted by the ICA algorithm corresponds with the dimensionality of the input. Two
hundred independent components were extracted for the upper and lower face image sets,
respectively. Since there were more than 200 images, ICA was performed on 200 linear
mixtures of the faces without affecting the image synthesis model. The first 200 PCA
eigenvectors were chosen for these linear mixtures since they give the combination of the
images that accouts for the maximum variability among the pixels. The eigenvectors were
normalized to unit length. Details are available in [24

Unlike PCA, there is no inherent ordering to the independent components of the dataset. We
therefore selected as an ordering parameter the class discriminability of each component. Let
āk be the overall mean of coefficient ak and ājk be the mean for action j. The ratio of
between-class to within-class variability, r, for each coefficient is defined as

(15)

where σbetween = Σj(ājk − āk)2 is the variance of the j class means and σwithin = ΣjΣi(aijk −
ājk)2 is the sum of the variances within each class. The first p components selected by class
discriminability comprised the independent component representation.

Best performance of 95.5 percent was obtained with the first 75 components selected by
class discriminability, using the cosine similarity measure and nearest neighbor classifier.
Independent component analysis gave the best performance among all of the holistic
classifiers. Note, however, that the independent component images in Fig. 8 were local in
nature. As in LFA, the ICA algorithm analyzed the images as whole, but the basis images
that the algorithm learned were local. Two factors contributed to the local property of the
ICA basis images: Most of the statistical dependencies were in spatially proximal image
locations and, second, the ICA algorithm produces sparse outputs [10].

6 Local Representations
In the approaches described in Section 5, the kernels for the representation were learned
from the statistics of the entire image. There is evidence from a number of sources that local
spatial filters may be superior to global spatial filters for facial expression classification.
Padgett and Cottrell [48] found that “eigenfeatures,” consisting of the principal components
of image subregions containing the mouth and eyes, were more effective than global PCA
(full-face eigenfaces) for facial expression recognition. Furthermore, they found that a set of
shift-invariant local basis functions derived from the principal components of small image
patches were more effective than both eigenfeatures and global PCA. This finding is
supported by Gray et al. [30], who found that a similar local PCA representation gave better
performance than global PCA for lipreading from video. Principal component analysis of
image patches sampled from random locations such that the image statistics are stationary
over the patch describes the amplitude spectrum [27], [53].

An alternative to adaptive local filters such as local PCA are predefined wavelet
decompositions such as families of Gabor filters. Gabor filters are obtained by modulating a
2D sine wave with a Gaussian envelope. Such filters remove most of the variability in
images due to variation in lighting and contrast, and closely model the response properties of
visual cortical cells [52], [36], [21], [20]. Representations based on the outputs of families of
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Gabor filters at multiple spatial scales, orientations, and spatial locations have proven
successful for recognizing facial identity in images [39], [50]. In a direct comparison of face
recognition algorithms, Gabor filter representations gave better identity recognition
performance than representations based on principal component analysis [65]. A Gabor
representation was also more effective than a representation based on the geometric
locations of facial features for expression recognition [66].

Section 6 explores local representations based on filters that act on small spatial regions
within the images. We examined three variations on local filters that employ PCA and
compared them to the biologically inspired Gabor wavelet decomposition.

A simple benchmark for the local filters consisted of a single Gaussian kernel. The δ-images
were convolved with a 15 × 15 Gaussian kernel and the output was down-sampled by a
factor of 4. The dimensionality of the final representation was . The output of this basic
local filter was classified at 70.3 percent accuracy using the Euclidean distance similarity
measure and template matching classifier.

6.1 Local PCA
This approach is based on the local PCA representation that was found to outperform global
PCA for expression recognition [48]. The shift-invariant local basis functions employed in
[48] were derived from the principal components of small image patches from randomly
sampled locations in the face image. A set of more than 7,000 patches of size 15 × 15 was
taken from random locations in the δ-images and decomposed using PCA. The first p
principal components were then used as convolution kernels to filter the full images. The
outputs were subsequently down-sampled by a factor of 4 such that the final dimensionality
of the representation was isomorphic to Rp×n/4. The local PCA filters obtained from the set
of lower-face δ-images are shown in Fig. 9.

Performance improved by excluding the first principal component. Best performance of 73.4
percent was obtained with principal components 2–30, using Euclidean distance and
template matching. Unlike the findings in [48], shift invariant basis functions obtained
through local PCA were no more effective than global PCA for facial action coding.
Performance of this local PCA technique was not significantly higher than that obtained
using a single 15 × 15 Gaussian kernel.

Because the local PCA implementation differed from global PCA in two properties, spatial
locality and image alignment, we repeated the local PCA analysis at fixed spatial locations.
PCA of location-independent images captures amplitude information without phase,
whereas alignment of the images provides implicit phase information [27], [10]. Local PCA
at fixed image locations is related to the eigenfeatures representation addressed in [48]. The
eigenfeature representation in [48] differed from shift-invariant local PCA in image patch
size. Here, we compare shift-invariant and shift-variant versions of local PCA while
controlling for patch size.

The images were divided into  15 × 15 fixed regions. The principal components of
each region were calculated separately. Each image was thus represented by p × m
coefficients. The final representation consisted of p = 10 principal components of m = 48
image regions.

Classification performance was tested using up to the first 30 components of each patch.
Best performance of 78.3 percent was obtained with the first 10 principal components of
each image patch, using Euclidean distance and the nearest neighbor classifier. There is a
trend for phase alignment to improve classification performance using local PCA, but the
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difference is not statistically significant. Contrary to the findings in [48], neither local PCA
representation outperformed the global PCA representation. It has been proposed that local
representations reduce sensitivity to identity-specific aspects of the face image [48], [30].
The success of global PCA here could be attributable to the use of δ-images, which reduced
variance related to identity specific aspects of the face image. Another reason for the
difference in findings could be the method of downsampling. Padgett and Cottrell selected
filter outputs from seven image locations at the eyes and mouth, whereas here,
downsampling was performed in a grid-wise fashion from 48 image locations.

6.2 Gabor Wavelet Representation
Here, we examine predefined local filters based on the Gabor wavelet decomposition. This
representation was based on the methods described in [39]. Given an image ℐ(x⃗) (where x⃗ =
(x, y)), the transform  is defined as a convolution

(16)

with a family of Gabor kernels ψi

(17)

Each ψi is a plane wave characterized by the vector k⃗i enveloped by a Gaussian function,
where the parameter σ = 2π determines the ratio of window width to wavelength. The first
term in the square brackets determines the oscillatory part of the kernel and the second term
compensates for the DC value of the kernel [39]. The vector k⃗i is defined as

(18)

where

The parameters ν and μ define the frequency and orientation of the kernels. We used five
frequencies, (ν = 0 – 4), and eight orientations, (μ = 1 – 8), in the final representation,
following the methods in [39]. Example filters are shown in Fig. 10. The Gabor filters were
applied to the δ-images. The outputs { } of the 40 Gabor filters were downsampled by a
factor q to reduce the dimensionality to  and normalized to unit length, which
performed a divisive contrast normalization. We tested the performance of the system using
q = 1, 4, 16 and found that q = 16 yielded the best generalization rate. Best performance was
obtained with the cosine similarity measure and nearest neighbor classifier.

Classification performance with the Gabor filter representation was 95.5 percent. This
performance was significantly higher than all other approaches in the comparison except
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independent component analysis, with which it tied. This finding is supported by Zhang et
al. [65], who found that face recognition with the Gabor filter representation was superior to
that with a holistic principal component-based representation. To determine which
frequency ranges contained more information for action classification, we repeated the tests
using subsets of high frequencies (ν = 0, 1, 2) and low frequencies, (ν = 2, 3, 4).
Performance with the high frequency subset was 92.8 percent, almost the same as for ν = 0, ,
4, whereas performance with the low frequency subset was 83.8 percent. The finding that
the higher spatial frequency bands of the Gabor filter representation contain more
information than the lower frequency bands is consistent with our analysis of optic flow,
above, in which reduction of the spatial resolution of the optic flow through smoothing had a
detrimental effect on classification performance. It appears that high spatial frequencies are
important for this task.

6.3 PCA Jets
We next investigated whether the multiscale property of the Gabor wavelet representation
accounts for the difference in performance obtained using the Gabor representation and the
local PCA representation. To test this hypothesis, we developed a multiscale version of the
local PCA representation, PCA jets. The principal components of random subimage patches
provide the amplitude spectrum of local image regions. A multiscale local PCA
representation was obtained by performing PCA on random image patches at five different
scales chosen to match the sizes of the Gaussian envelopes (see Fig. 10). Patch sizes were
chosen as ±3σ, yielding the following set: [9 × 9, 15 × 15, 23 × 23, 35 × 35, and 49 × 49].
The number of filters was matched to the Gabor representation by retaining 16 principal
components at each scale, for a total of 80 filters. The downsampling factor q = 16 was also
chosen to match the Gabor representation.

As for the Gabor representation, performance was tested using the cosine similarity measure
and nearest neighbor classifier. Best results were obtained using eigenvectors 2 to 17 for
each patch size. Performance was 64.9 percent for all five scales, 72.1 percent for the three
smaller scales, and 62.2 percent for the three larger scales. The multiscale principal
component analysis (PCA jets) did not improve performance over the single scale local
PCA. It appears that the multiscale property of the Gabor representation does not account for
the improvement in performance obtained with this representation over local representations
based on principal component analysis.

7 Human Subjects
The performance of human subjects provided benchmarks for the performances of the
automated systems. Most other computer vision systems test performance on prototypical
expressions of emotion, which naive human subjects can classify with over 90 percent
agreement (e.g., [45]). Facial action coding is a more detailed analysis of facial behavior
than discriminating prototypical expressions. The ability of naive human subjects to classify
the facial action images in this set gives a simple indication of the difficulty of the visual
classification task and provides a basis for comparing the results presented here with other
systems in the literature. Since the long-term goal of this project is to replace human expert
coders with an automated system, a second benchmark was provided by the agreement rates
of expert human coders on these images. This benchmark indicated the extent to which the
automated systems attained the goal of reaching the consistency levels of the expert coders.

Naive subjects
Naive subjects were 10 adult volunteers with no prior knowledge of facial expression
measurement. The upper and lower face actions were tested separately. Subjects were
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provided with a guide sheet which contained an example image of each of the six upper or
lower face actions along with a written description of each action and a list of image cues for
detecting and discriminating the actions from [23]. Each subject was given a training session
in which the facial actions were described and demonstrated and the image cues listed on the
guide sheet were reviewed and indicated on the example images. The subjects kept the guide
sheet as a reference during the task.

Face images were preprocessed identically to how they had been for the automated systems,
as described in Section 3, and printed using a high resolution HP Laserjet 4si printer with
600 dpi. Face images were presented in pairs, with a neutral expression image and the test
image presented side by side. Subjects were instructed to compare the test image with the
neutral image and decide which of the actions the subject had performed in the test image.
Ninety-three image pairs were presented in both the upper and lower face tasks. Subjects
were instructed to take as much time as they needed to perform the task, which ranged from
30 minutes to one hour. Naive subjects classified these images at 77.9 percent correct.
Presenting uncropped face images did not improve performance.

Expert coders
Expert subjects were four certified FACS coders. The task was identical to the naive subject
task with the following exceptions: Expert subjects were not given a guide sheet or
additional training and the complete face was visible, as it would normally be during FACS
scoring. Although the complete action was visible in the cropped images, the experts were
experienced with full face images and the cropping may bias their performance by removing
contextual information. One hundred and fourteen upper-face image pairs and 93 lower-face
image pairs were presented. Time to complete the task ranged from 20 minutes to 1 hour and
15 minutes. The rate of agreement of the expert coders with the assigned labels was 94.1
percent.

8 Discussion
We have compared a number of different image analysis methods on a difficult
classification problem, the classification of facial actions. Several approaches to facial
expression analysis have been presented in the literature, but until now, there has been little
direct comparison of these methods on a single dataset. These approaches include analysis
of facial motion [44], [64], [54], [26], holistic spatial pattern analysis using techniques based
on principal component analysis [17], [48], [40], and measurements of the shapes and facial
features and their spatial arrangements [40], [66]. This investigation compared facial action
classification using optic flow, holistic spatial analysis, and local spatial representations. We
also included in our comparison a number of representations that had been developed for
facial identity recognition and applied them for the first time to facial expression analysis.
These representations included Gabor filters [39], Linear Discriminant Analysis [8], Local
Feature Analysis [49], and Independent Component Analysis [4].

Best performances were obtained with the local Gabor filter representation and the
Independent Component representation, which both achieved 96 percent correct
classification. The performance of these two methods equaled the agreement level of expert
human subjects on these images. Image representations derived from the second-order
statistics of the dataset (PCA and LFA) performed about as well as naive human subjects on
this image classification task, in the 80 percent accuracy range. Performances using LFA
and FLD did not significantly differ from PCA nor did spatially local implementations of
PCA. Correlation-based optic flow performed at a level between naive and expert human
subjects, at 86 percent. Classification accuracies obtained here compared favorably with
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other systems developed for emotion classification, despite the additional challenges of
classifying facial actions over classifying prototypical expressions reviewed in [31].

We obtained converging evidence that local spatial filters are important for analysis of facial
expressions. The two representations that significantly outperformed the others, the Gabor
representation [39] and the Independent Component representation [4], were based on local
filters. ICA was classified as a holistic algorithm since the analysis was performed over the
images as a whole. The basis images that the algorithm produced, however, were local. Our
results also demonstrated that spatial locality of the image filters alone is insufficient for
good classification. Local principal component representations such as LFA and local PCA
performed no better than the global PCA representation (eigenfaces).

We also obtained multiple sources of evidence that high spatial frequencies are important for
classifying facial actions. Spatial smoothing of optic flow degraded performance by more
than 30 percent. Second, classification with only the high frequencies of the Gabor
representation was superior to classification using only the low spatial frequencies. A similar
result was obtained with the PCA jets. These findings are in contrast to a recent report that
the information for recognizing prototypical facial expressions was carried predominantly
by the low spatial frequencies [66]. This difference in findings highlights the difference in
the task requirements of classifying facial actions versus classifying prototypical expressions
of emotion. Classifying facial actions is a more detailed level of analysis. Our findings
predict, for example, that high spatial frequencies would carry important information for
discriminating genuine expressions of happiness from posed ones, which differ in the
presence of AU 6 (the cheek raiser) [24].

The relevance of high spatial frequencies has implications for motion-based facial
expression analysis. Since optic flow is a noisy measure, many flow-based expression
analysis systems employ regularization procedures such as smoothing and quantizing to
estimate a principal direction of motion within an image region. The analysis presented here
suggests that high spatial resolution optic flow is important for analysis of facial behavior at
the level of facial action coding.

In addition to spatial locality, the ICA representation and the Gabor filter representation
share the property of redundancy reduction and have relationships to representations in the
visual cortex. The response properties of primary visual cortical cells are closely modeled by
a bank of Gabor filters [52], [36], [21], [20]. Relationships have been demonstrated between
Gabor filters and independent component analysis. Bell and Sejnowski [10] found, using
ICA, that the filters that produced independent outputs from natural scenes were spatially
local, oriented edge filters, similar to a bank of Gabor filters. It has also been shown that
Gabor filter outputs of natural images are at least pairwise independent [57]. This holds
when the responses undergo divisive normalization, which neurophysiologists have
proposed takes place in the visual cortex [33]. The length normalization in our Gabor
representation is a form of divisive normalization.

The Gabor wavelets, PCA, and ICA each provide a way to represent face images as a linear
superposition of basis functions. Gabor wavelets employ a set of predefined basis functions,
whereas PCA and ICA learn basis functions that are adapted to the data ensemble. PCA
models the data as a multivariate Gaussian and the basis functions are restricted to be
orthogonal [41]. ICA allows the learning of nonorthogonal bases and allows the data to be
modeled with non-Gaussian distributions [16]. As noted above, there are a number of
relationships between Gabor wavelets and the basis functions obtained with ICA. The Gabor
wavelets are not specialized to the particular data ensemble, but would be advantageous
when the amount of data is too small to estimate filters.
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The ICA representation performed as well as the Gabor representation, despite having two
orders of magnitude fewer basis functions. A large number of basis functions does not
appear to confer an advantage for classification. The PCA-jet representation, which was
matched to the Gabor representation for number of basis functions as well as scale,
performed at only 72 percent correct.

Each of the local representations underwent down-sampling. The effect of downsampling on
generalization rate was examined in the Gabor representation and we found downsampling
improved generalization performance. The downsampling was done in a grid-wise fashion
and there was no manual selection of facial features. Comparison to representations based
on individual facial features (or fiducial points) has been addressed in recent work by Zhang
[66] which showed that multiresolution Gabor wavelet coefficients give better information
than the geometric positions of fiducial points for facial expression recognition.

9 Conclusions
The results of this comparison provided converging evidence for the importance of using
local filters, high spatial frequencies, and statistical independence for classifying facial
actions. Best performances were obtained with Gabor wavelet decomposition and
independent component analysis. These two representations are related to each other. They
employ graylevel texture filters that share properties of spatial locality, independence, and
have relationships to the response properties of visual cortical neurons.

The majority of the approaches to facial expression recognition by computer have focused
exclusively on analysis of facial motion. Motion is an important aspect of facial expressions,
but not the only cue. Although experiments with point-light displays have shown that human
subjects can recognize facial expressions from motion signals alone [7], recognition rates
are just above chance and substantially lower than those reported for recognizing a similar
set of expressions from static graylevel images (e.g., [45]). In this comparison, best
performances were obtained with representations based on surface graylevels. A future
direction of this work is to combine the motion information with spatial texture information.
Perhaps combining motion and graylevel information will ultimately provide the best facial
expression recognition performance, as it does for the human visual system [7], [63].
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Fig. 1.
The Facial Action Coding System decomposes facial motion into component actions. The
upper facial muscles corresponding to action units 1, 2, 4, 6, and 7 are illustrated. Reprinted
with permission from Ekman and Friesen (1978).
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Fig. 2.
List of facial actions classified in this study. From left to right: Example cropped image of
the highest magnitude action, the δ image obtained by subtracting the neutral frame (the first
image in the sequence), Action Unit number, and Action Unit name.
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Fig. 3.
Optic flow for AU1 extracted using local velocity information extracted by the correlation-
based technique, with no spatial smoothing.
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Fig. 4.
First four principal components of the difference images for the (a) upper face actions and
(b) lower face actions. Components are ordered left to right, top to bottom.
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Fig. 5.
(a) An original δ-image, (b) its corresponding LFA output O(x), and (c) the first 155 filter
locations selected by the sparsification algorithm superimposed on the mean upper face δ-
image.
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Fig. 6.
PCA and FLD projections of three lower-face action classes onto two dimensions. FLD
projections are slightly offset for visibility. FLD projected each class to a single point.
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Fig. 7.
Image synthesis model for the ICA representation.
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Fig. 8.
Sample ICA basis images.
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Fig. 9.
(a) Shift-invariant local PCA kernels. First nine components, order left to right, top to
bottom. (b) Shift-variant local PCA kernels. The first principal component is shown for each
image location.
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Fig. 10.
(a) Original δ-image. (b) Gabor kernels (low and high frequency) with the magnitude of the
filtered image to the right. (c) Local PCA kernels (large and small scale) with the
corresponding filtered image.
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TABLE 1

Best Performance for Each Classifier

Optic Flow
Correlation 85.6% ± 3.3

Smoothed 53.1% ± 4.7

Holistic Spatial Analysis

PCA 79.3% ± 3.9

LFA 81.1% ± 3.7

FLD 75.7% ± 4.1

ICA 95.5% ± 2.0

Local Spatial Analysis

Gaussian Kernel 70.3 ± 4.

PCA Shift-inv 73.4% ± 4.2

PCA Shift-var 78.3% ± 3.9

PCA Jets 72.1% ± 4.2

Gabor Jets 95.5% ± 2.0

Human Subjects
Naive 77.9% ± 2.5

Expert 94.1% ± 2.1

PCA: Principal component analysis. LFA: Local feature analysis. FLD: Fisher’s linear discriminant. ICA: Independent component analysis. Shift-
inv: Shift-invariant. Shift-var: Shift-variant.
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