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Abstract
We have developed a new method to provide a comprehensive quantitative analysis of brain
anatomy in cerebral palsy patients, which makes use of two techniques: diffusion tensor imaging
and automated 3D whole brain segmentation based on our brain atlas and a nonlinear
normalization technique (large-deformation diffeomorphic metric mapping). This method was
applied to 13 patients and normal controls. The reliability of the automated segmentation revealed
close agreement with the manual segmentation. We illustrate some potential applications for
individual characterization and group comparison. This technique also provides a framework for
determining the impact of various neuroanatomic features on brain functions.

Introduction
Cerebral palsy is the most common chronic motor disorder of childhood, affecting
approximately 2 to 2.5 infants per 1,000 live births (Ashwal et al., 2004). The increase in
survival rates for preterm infants has amplified the risk of brain injuries that potentially
cause CP. In addition to immeasurable health, social, and psychological problems that the
affected children and their families suffer, CP has a huge economic impact. Among 18
common congenital disorders, CP has the highest lifetime costs per new case (Grether,
Cummins, Nelson 1992). Therefore, efforts to prevent its occurrence, minimize the
morbidity, and improve the patient outcomes are important at both the individual and
societal levels.
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The term CP is descriptive and includes a number of etiologies and clinical presentations.
Patients have in common a non-progressive motor deficit due to a cerebral abnormality.
Independent of the etiology, CP patients typically have some type of white matter injury.
Periventricular leukomalacia (PVL) is the most common pattern (Volpe 2009). Despite a
plethora of accepted medical and rehabilitative interventions, there is often an incomplete
understanding of the etiology, as well as the variability in treatment and outcomes.
Remarkably, patients with similar etiology and clinical background can display different
time courses and prognoses. Identifying and understanding the factors responsible for this
variability might contribute not only to the understanding of brain function, but also to the
design of novel therapeutic options at the early stages of brain development.

The effective planning of patient treatment, however, is confounded by the fact that the child
must be 2–3 years of age to accurately measure normal functions. Magnetic resonance
imaging (MRI), which often reveals anatomic abnormalities, even as early as the newborn
stage, could offer a unique, non-invasive opportunity to predict neurological deficits (Hoon
2005; Krageloh-Mann and Horber 2007). Signal and volumetric abnormalities have been
shown to correlate with the type and severity of neurologic sequelae (Arzoumanian et al.,
2003). White matter abnormalities correlate with long-term motor outcome (Nanba et al.,
2007; Woodward et al., 2006). Compared with other methods and neurological tests, MRI
demonstrated the greatest accuracy in predicting combined motor outcomes, with 90%
specificity; however, the sensitivity is low (Spittle et al., 2009). In this study, we
hypothesized that quantitative analysis of the white matter anatomy, based on diffusion
tensor imaging (DTI), enhances our ability to sensitively and specifically predict the
outcome. With the detailed anatomy revealed by DTI, we now have access to a more
complete picture of the patterns of white matter injury. Previously, DTI-based white matter
analyses of CP patients have been reported, in which pre-defined and selected white matter
structures were investigated using manually placed regions of interest or tractography (Fan
et al., 2006; Hoon Jr et al., 2009; Nagae et al., 2007; Panigrahy et al., 2005; Son et al., 2007;
Son et al., 2009; Thomas et al., 2005; Yoshida et al., 2010).

In this study, we attempt to segment the brain into 110 sub-regions using an atlas-based 3D
image transformation method (Oishi et al., 2008). We believe that this comprehensive
analysis is essential for the evaluation of white matter injuries in CP patients because of the
following reasons. First, white matter injuries in CP may not be localized in one tract. The
functional disabilities could be better explained by the interaction among multiple abnormal
areas than by the effect of one or other isolated regions (Kinney et al., 1988). Second, as
mentioned previously, CP describes a heterogeneous group in terms of etiology, type of
lesions, functional status, and outcomes. An integrative and objective analysis of different
parameters in different regions could help in determining what, if any, are the
neuroanatomic similarities between different subgroups, and how different insults to the
developing brain contribute to differences in motor and cognitive ability. The detection of
these similarities may improve treatments and our ability to determine a neurodevelopmental
prognosis.

In this paper, we first tested the accuracy of the whole brain segmentation. Although the
segmentation accuracy was previously tested for pediatric, young adult (Faria et al., 2010),
and elderly populations, including Alzheimer’s disease patients (Oishi et al., 2009), the
severe anatomical deformation of the CP population poses unique challenges; namely, the
extent of white matter injuries is often far greater and more specific to certain white matter
tracts in CP than in the Alzheimer population. Second, from the normal pediatric data, we
measured the extent of anatomical variability of 110 segmented structures, from which the
sensitivity of the measurements was estimated. Third, we applied the normal data for
automated abnormality detection of each CP patient, which leads to a “white matter injury
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profile,” and consists of a 110-element vector for regional white matter volume, FA, ADC,
radial, and axial diffusivity (total 5 × 110 matrix). The advantages and potential pitfalls of
this comprehensive quantitative analysis will be discussed.

Methods
Subjects

Data from 13 CP patients (8 males; ages ranging from 4 to 13 years old; mean, 6.4 years)
were used in this study. The scans were clinically indicated for diagnosis or follow-up.
Gestational age at birth ranged from 23 to 34 weeks (mean, 28 weeks). Most children had
spastic diplegia (11/13, 85%); one had spastic quadriplegia; and one had hemiplegia. All of
them had PVL diagnosed by neuroradiologic review of conventional MR imaging. The
patients’ demographic characteristics, as well as the diagnosis, are listed in Appendix Table
1. This study was approved by the Institutional Review Board of each participating site, and
written informed consent was obtained from each adult or from the child’s parents. The
patients required sedation for the conventional clinical images and remained sedated for the
DTI research images.

Data from a total of 35 subjects from a pediatric database (lbam.med.jhmi.edu) (Hermoye et
al., 2006), acquired with the same imaging protocol employed for CP patients, were used in
this study. This database included nine healthy pediatric volunteers (> 4 years old) and 17
pediatric patients referred for a clinical MR examination for extracranial symptoms (14
male; > 2 years-old; mean age, 6.7 years). The clinical indications were pathologies related
to the internal ear, the orbits, the spine, epilepsy, trauma, infectious disease, genetic disease,
and vascular/cisternal malformation. The clinical history of each patient was carefully
reviewed by a pediatric neurologist to exclude associated neurological disorders. All the
subjects were full-term. In all the patients, the cerebral anatomy was normal. The present
study also includes image data from nine healthy adult volunteers (five males, ages ranging
from 22 to 40 years old; mean age, 30 years).

MRI data
Images were acquired using a SENSE head coil on a 1.5 T whole body MRI scanner (Philips
Medical Systems, Best, The Netherlands). All patients had routine clinical pulse sequences,
including fat-saturated axial T2-weighted (TR/TE, 3992.36–4524.67/110 ms) sequence. For
DTI acquisitions, a single-shot spin echo, echo planar imaging (EPI) was used, with
diffusion gradients applied in 31 or 34 non-collinear directions and b = 700 s/mm2. One
reference image with least diffusion weighting (b = 33 s/mm2) was also acquired (called the
b0 image in this paper). Fifty axial slices were acquired, parallel to the AC–PC line. The
field of view (FOV), the size of the acquisition matrix, and the slice thickness were 240 ×
240 mm/96 × 96/2.5 mm. All images were zero-filled to the final reconstruction matrix of
256 × 256. Other imaging parameters were: TR = 6.2 to 9.4 s; TE = 80 ms; and SENSE
reduction factor = 2.5.

Imaging process
The six elements of the diffusion tensor, the fractional anisotropy, the eigenvectors, and the
eigenvalues were calculated using DtiStudio (H. Jiang and S. Mori, Johns Hopkins
University, Kennedy Krieger Institute). The procedure of the subsequent normalization
process, performed by DiffeoMap (Li, X.; Jiang, H.; and Mori, S.; Johns Hopkins
University, www.MriStudio.org), is shown in Fig. 1. LDDMM was performed to correct
distortion caused by b0 susceptibility according to a previous publication (Huang et al.,
2008), using T2-WI as the target and the b0 image as the DTI data. The images were then
normalized to the ICBM-DTI-81 coordinates (Mori et al., 2008) using 12-mode affine
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transformation and further transformed non-linearly to a single-subject template using
LDDMM (Miller et al., 2005;Zhang et al., 2007).

For the template, the JHU-DTI-MNI “Eve” atlas was chosen, which is a single-subject
template in the ICBM-DTI-81 space and is extensively segmented (Oishi et al., 2009). We
call this the “WMPM” (white matter parcellation map) hereafter. Because of the reciprocal
nature of the LDDMM, the transformation results can be used to warp the WMPM to the
original MRI data, thus automatically segmenting each brain into subregions. This is
basically a “reverse transformation” compared to the process described before. These initial
segmentation results (110 regions) were further segmented to separate the cortex and the
associated peripheral white matter, as shown in Fig. 1, using the FA threshold (FA ≥ 0.25).
Finally, five measurements were quantified for each region, in each subject: volume; FA;
ADC; and axial and radial diffusivities.

Accuracy of the Transformation-based Segmentation
The transformation-based segmentation was examined for accuracy by comparing the results
with manual segmentation. To ensure the accuracy, we tested our method in patients with
different types of large anatomic deformations. Thus, we chose ten CP patients with very
different types of injuries, based on the classification established in one of our previous
publications (Nagae et al., 2007). Because it is impossible to perform the entire 110 3D
segmentation by hand, we extracted representative 2D slices, and eight structures were
manually delineated using RoiEditor (Li, X.; Jiang, H.; and Mori, S.; Johns Hopkins
University, www.MriStudio.org or mri.kennedykrieger.org). Six white matter and two
subcortical gray matter structures were delineated, as shown in Fig. 2. To investigate intra-
rater variability of the manual delineation, a rater (AVF) repeated this manual delineation
three times at a more than two-week interval. Two other raters (KO and JH) performed
manual delineation to investigate inter-rater variability. The reliability analysis was
performed to estimate Kappa statistics, sensitivity, and specificity, false positive and
negative rates, positive and negative predictive values, Jaccard similarity metrics, and the
Dice coefficient (Shattuck et al., 2009; Zou et al., 2004).

In addition, to check the agreement between automated measurements and visual analysis,
the volumes of nine white matter tracts (bilateral posterior thalamic radiations,
retrolenticular part of internal capsule, superior corona radiate, and three corpus callosum
regions: genu, body, and splenium) in all the 13 CP patients were correlated with the
qualitative scoring of atrophy performed by three evaluators. The protocol for the visual
scoring followed our previous publications (Nagae et al., 2007) mentioned above and
correlation was calculated by Spearman (ranking) test.

Anatomical evaluation of CP patients
The volume, FA, and ADC of each parcellated area were measured in the images of the
normal individuals and processed using the same procedure described for the CP patients.
Using a subset of 13 controls, paired by age and gender with the CP patients, we obtained
the average and standard deviation values for a normal population with demographic
characteristics similar to those of the CP population. Using these values, we performed
power analyses to determine the number of patients and controls that would be required for
future studies. Particularly here, we calculated the number of participants needed for an
unpaired t-test with 95% power and statistical significance less than 0.05 to detect an effect
size of 10%.

For demonstrating the “individual classification” application, we applied this WMPM,
enriched by the normal data of the 35 subjects, for the quantitative detection of
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abnormalities in the CP patients. The values of FA and volume of each one of the 110 ROIs
of the normal development subjects (the Y axis) were plotted against age (the X axis) in a
logarithmic scale. We then calculated the linear curve that best fitted the normal data in each
ROI and created z-score maps for each CP patient in which the amount of deviations from
the normal fitted value was color-coded. These kinds of maps can be created for each
patient, allowing quantitative evaluation of their anatomy at a glance.

Results
Accuracy of the Transformation-based Segmentation

Figure 3 demonstrates the brain normalization by LDDMM for one of the most severely
affected CP patients, with large lateral ventricles and global volume reduction, particularly
of the white matter. As the native patient image (3B) was transformed by affine (3C) and
LDDMM (3D), matching between the patient anatomy and the WMPM progressively
improved. After the affine transformation (3C), there was still a considerable amount of
mismatch in the white matter, such as the corpus callosum, the internal capsules, the
cingulum, the thalamus and, more evidently, in the ventricles. After LDDMM, the matching
seems almost perfect visually (3D). Similar observations could be found when the WMPM
defined in the template space was warped to the subject space using the “backward”
LDDMM and the “inverse” linear matrix (3E).

Figure 4 shows the means and standard deviations of the volume, FA, and ADC obtained
using the manual and the automated segmentation, as well as the result of the quantitative
measurements for accuracy using the Kappa analysis. The overall Kappa for “manual vs.
automated” delineation of ROIs was 0.81, which means good agreement according to Landis
and Koch criteria. The cingulum had the smallest index of agreement (Kappa = 0.68) and the
putamen had the best agreement (Kappa = 0.89). Please note that the Kappa analysis results
tend to be smaller for narrow and long structures, such as the cingulum. In seven of the eight
regions, the Kappas from “manual vs. automated” are not significantly different from the
inter-rater Kappas, suggesting that the automated approach has accuracy similar to one of
the raters. The only exception was the corpus callosum for which all methods reached high
Kappas (> 0.8), but manual methods outperformed automated, due to the ease of accurate
and reproducible manual definition. Not surprisingly, the intra-rater Kappas are higher than
“manual vs. automated” or inter-rater Kappas for most of the regions. By averaging the
results from the eight regions, the Kappa values for “manual vs automated,” intra-rater, and
inter-rater measurements were 0.81, 0.89, and 0.83, respectively. The Dice coefficients were
virtually the same as the Kappa analysis.

The overall sensitivity of the “manual vs. automated” measurements was 82%, similar to
that obtained by the intra- and inter-raters measurements (88% and 86%, respectively). The
overall positive predictive value was 0.8 for both “manual vs. automated” and inter-rater
measurements, and 0.9 for the intra-rater measurements. The overall false negative rate was
18% for the “manual vs. automated,” compared to 14% for the inter-raters and 12% for the
intra-rater measurements. The sensitivity was extremely high (higher than 99%) and the
false positive ratio was extremely low (lower than 2%) in all the areas, and in all the
comparisons. The overall Jaccard similarity metric was 0.68 for the “manual vs. automated,”
compared with 0.73 for inter-raters and 0.81 for intra-raters metrics. All the accuracy
measurements are shown in the Appendix Table 2.

The correlation between the automatically measured volumes and the average scores of
atrophy based on the visual analysis performed by three evaluators was as strong as the
correlation between the scoring among evaluators (Rho = 0.63).
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Power Analysis
WMPM-based measurements applied to the 13 normal participants were used for the initial
estimation of power analysis. Table 1 and Fig. 5 summarize the results of power analysis to
detect a 10% change in FA, ADC, and volume (5A), and the amount of change needed in
each of these parameters to detect significant differences (5B). With the progressive increase
of the sample size and/or the progressive increase of the amount of “abnormalities,” we are
able to detect differences in an increasing number of regions, with a statistical power of
95%, using p-values<0.05. The former analysis provides information by which to design
group-based analysis (how many sample numbers are needed to detect 10% change), while
the latter analysis can be used to determine how many anatomical changes are required to
detect statistically significant abnormalities. For example, a sample size of 20 subjects
would be enough to detect 10% changes in approximately 80% of brain regions if one is
interested in FA and ADC changes (Fig. 5A), but the same sample size is not enough to
detect 10% volume changes in any of the anatomical regions. This is because regional
volumes have much higher variability among normal subjects. On the other hand, if there is
40% volume change, such change can be statistically detected in 80% of the regions (Fig.
5B).

Individual classification of the degree of abnormalities
In Fig. 6, individual-based quantitative anatomical evaluation is demonstrated, in which z-
score maps of the volume and FA values of two very different subjects, with regard to
anatomy and a control subject of similar age, were analyzed. The most evident characteristic
of Patient #1 is the ventricle enlargement and the reduction of the white matter. Patient #2 is
marked by abnormal intensities in the white matter (hyper ADC and hypo FA areas) due to
PVL, even though he also has large ventricles and a certain degree of white matter
reduction. Focusing on the superior longitudinal fasciculus left (SLF, arrows), for example,
visual inspection of the FA images of the patients reveals a smaller SLF, particularly in
Patient #1, with possibly lower FA values, particularly in Patient #2. However, it is not
straightforward to determine whether these maps are beyond the normal range of variability.
For each segment, age-dependence and variability range was calculated from the control
data, and deviations were delineated by z-scores, as shown in Fig. 6, second and third lines.
The actual fitting results for the left SLF are shown in the graphics. Our results indicate that
the CP patients (yellow squares) had smaller FA and volumes than the average control
value. Patients #1 and #2 had FA values lower by more than four standard deviations than
controls, and volumes lower by more than three standard deviations than controls. Note that
the SLF of Patient #2 showed even lower FA values, with a z-score near −10, while the SLF
in Patient #1 had an even lower volume, with a z-score near −4, which is in agreement with
our visual impression.

Discussion
In this paper, we tested the atlas-based quantification tool for the anatomical evaluation of
CP patients. Typically, with the large extent of anatomical alteration in the CP population,
the detection of anatomical abnormality by MRI is often straightforward and, thus, the aid of
sophisticated image analyses may not be needed if only abnormality detection is the
concern. What is not straightforward; however, is the quantification of the visible
abnormalities, which could be an important resource for understanding the pathology,
classifying patients, studying the anatomy-functional correlation, and possibly in the future,
predicting functional outcomes and designing an intervention at the early phase of brain
development.
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In the quest to establish correlation between anatomical damages and functional outcomes,
several attempts have been made in the past (Glenn et al., 2007; Hoon and Melhem 2000;
Huppi and Dubois 2006; Kanda et al., 2004; Ludeman et al., 2008; Maenpaa et al., 2003;
Nagae et al., 2007; Rose et al., 2007). One of the major targets of these past studies had been
to identify anatomically important areas, the injury of which could be a surrogate marker of
functional impairment. By focusing on several hypothetically important areas, these
approaches, however, had a limited power for functional correlation. For example, even for
a well-established relationship between motor function and the corticospinal tract, the
correlation in CP patients is far from clear, and, in fact, there is evidence that injuries in the
sensory pathway may also be a significant factor (Hoon Jr et al., 2009). We apparently need
a more comprehensive and quantitative approach to describe the anatomical status of the
patients. The proposed atlas-based quantification would provide means by which to
quantitatively analyze the status of multiple areas at once. This is an essential first step
toward comprehensive anatomy-function correlation studies of the CP population.

In this study, we introduced several new information and tools to further investigate the
anatomical description of the pathology. First, the use of DTI allows us to delineate many
substructures within the white matter, which are not visible with conventional MRI. Using
this contrast, there is the potential that we can characterize injuries in specific white matter
structures sensitively (Neil et al., 2002; Son et al., 2007). Second, we introduced 3D
quantitative analyses based on the atlas-based segmentation of the entire brain into 110
areas. By measuring the volume, FA, ADC, and axial and radial diffusivity, we created a 5 ×
110 matrix to profile the anatomical status of each patient quantitatively.

Accuracy of the brain segmentation and power analysis
The results of the whole-brain segmentation, based on the WMPM, were compared with
manual segmentation (Appendix Table 2). The Kappa value, Jaccard similarity metrics, and
Dice coefficients showed that the segmentation accuracy rivals that of inter-rater variability
in all measured structures except for the corpus callosum, for which the inter-rater accuracy
was significantly better than the automated method, but all measurements showed a high
level of accuracy (Kappa > 0.80). The atlas-based segmentation showed noticeably lower
accuracy for the cingulum, which was expected for this type of long and narrow structure;
even a one-pixel shift along the entire length would lead to substantially lower accuracy.
High inter-rater variability (large standard deviation) and accuracy (low Kappa) were
observed for the superior corona radiata (SCR). This is understandable because there is no
clear boundary of the corona radiata to separate it from the anterior, superior, and posterior
portions. There is the potential that the WMPM-based segmentation could introduce
objective criteria to delineate such structures.

The specificity was high (>99%) and the false negative rate was low (<2%) for all the
regions, in all the comparisons. However, the overall sensitivity (82%) was slightly lower
and the false negative rate (18%) was slightly higher for the automated segmentation
compared to that achieved with inter (86% and 14%) and intra-raters (88% and 12%).
Nevertheless, the correlation between automated measurements and visual scoring for
atrophy was as strong as the correlation between visual scorings performed by different
evaluators, indicating that the automated method is a practical alternative for the labor
intense and time consuming visual semi-quantitative analysis.

The required level of accuracy depends on the expected effect size and the normal range of
anatomical variability. The preliminary power analysis data, based on the 13 normal subjects
is, thus, important for judging the usefulness of this approach. The variability observed for
each of the 5 × 110 anatomical matrices is influenced by the true anatomical variability and
accuracy of the measurements. Fig. 4 indicates the amount of abnormality needed in each
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variable to detect a difference between groups using an unpaired t-test, with an alpha less
than 0.05. It also indicates the number of subjects needed per group to detect a 10% change
in each variable in the same conditions, with a power of 0.95. We need, for example, larger
samples or a larger degree of abnormalities to detect volumetric differences than is needed
to detect FA or ADC differences. In the same way, the sample size or the differences in
subcortical gray matter must be larger than that for structures in the white matter to detect
the same degree of contrast difference. On the other hand, smaller differences or a smaller
sample size is needed to detect volume differences in the subcortical gray matter compared
to the white matter.

Quantitative anatomical profiling of each patient
Based on the atlas-based segmentation tool, we performed quantitative whole-brain
evaluation of the anatomical status of each CP patient, as shown in Fig. 6. In agreement with
the results from the power analysis, smaller variations in FA, compared to volume, can be
detected as beyond the normal limits (predicted values ± 2 standard deviations - SD). In this
example, a decrease of 12% in the left superior longitudinal fasciculus FA places the subject
under the normal curve −2SD, while a decrease of 45% in volume is needed to have the
same effect. Regardless of the relative insensitivity of the volume measurements, the volume
z-score maps of the CP patients detected as many abnormal regions as the FA z-score maps,
indicating the large amount of brain atrophy in this population. Once segmented, we can
create an extensive report that will capture the characteristic anatomic features of each
patient. For diseases like CP, which is known as a highly inhomogeneous entity, this type of
evaluation would provide a highly individualized view of brain anatomic status. The
proposed approach may provide information to identify not only anomalous regions,
compared to normal subjects, but also their correlation with clinical performance. It is
potentially possible to identify regions that determine subgroups in terms of anatomical and/
or functional characteristics. In CP, this ‘global’ approach of analyzing the combined effect
of multiple regions, tracts, or systems is particularly promising since clinical evidence points
to multiple abnormalities that, together, determine the clinical status. In this paper, our
results are descriptive and are limited to quantitative presentation of the abnormalities. For
future investigations, this type of quantitative analysis will be a key to the effective
utilization of MRI data acquired at an early phase of brain development to enable better
prediction of prognosis.

Conclusion
We have developed a method that will provide a comprehensive quantitative analysis of
brain anatomy based on DTI, as well as an automated 3D whole-brain segmentation
supported by our brain atlas and a nonlinear diffeomorphic normalization technique. The
accuracy measurements indicate the automated approach can deliver accuracy similar to
manual delineation. We applied this tool to characterize the anatomical status of individual
CP patients. The results of this quantitative analysis can be used for diagnosis guidance,
group analysis, functional correlation, or even for the creation of prognostic models, which
is particularly useful for diseases that heterogeneously involve multiple systems, such as CP.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic diagram of the image normalization process. The initial images for the image
analysis are the subject’s MRI in the original space and the atlas with the white matter
parcellation map (WMPM). For the “forward” transformation, the subject image was first
linearly normalized (affine transformation), followed by non-linear normalization
(LDDMM). After this procedure, all subject images were transformed to a shape similar to
that of the atlas. For the “backward” transformation, the WMPM was transformed to the
original MRI using the same transformation matrices and deformation maps that were used
for the forward transformation. This allowed automated segmentation of the original images
into 110 subregions. Because the peripheral white matter has a large amount of anatomical
variability, it was further defined using a threshold (FA > 0.25), followed by minimum
manual adjustments for each subject.

Faria et al. Page 12

Neuroimage. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Regions and 2D slices defined for the test of accuracy.
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Figure 3.
Demonstration of the normalization process and accuracy. (A) The Eve atlas used as the
normalization target image; (B) a subject in the native space; (C) then warped to the atlas
using the linear normalization, and finally (D) after LDDMM normalization. The WMPM
defined for “Eve” was overlaid in A, B, C, and D. The superimposed lines are the template
anatomical definition (WMPM). Note the complete mismatch between the WMPM and the
subject in the native space (B) and the improvement of the matching in the image after
LDDMM (D), compared to the same image after affine (C) in regions such as the corpus
callosum, the cingulum, the internal capsula, the thalamus, the posterior thalamic radiation,
and the ventricles. (E) The WMPM warped to the subject original image, where the
measurement of volume and diffusivity indices was performed.
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Figure 4.
Bar graphs showing the means and standard deviations of the volume (mm3), FA, and ADC
(mm2/s) obtained using the manual and the automated segmentation and the results of Kappa
analysis. ALIC: anterior limb of internal capsule; EC: external capsule; PLIC: posterior limb
of internal capsule; Put: putamen; Thal: thalamus; Cing: cingulum; SCR: superior corona
radiata; CC: corpus callosum. * indicates statistical differences at p-value<0.05. Note that
there is no significant difference between the automated and manual measurements of
volume, FA, and ADC for any structure.
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Figure 5.
(A) Cumulative graphic of the sample size needed to detect 10% of change in FA, ADC, and
volume in each region defined by the WMPM, in an unpaired t-test, with a p-value
significance of 0.05 and 95% power. (B) Cumulative graphic of the percentage of change in
FA, ADC, and volume required to detect a difference between groups, in the same
conditions (n=13 subjects per group).
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Figure 6.
Demonstration of automated abnormality detection using the atlas enriched by a normal
database of developing brains. The ADC and FA maps of one control and two CP patients
show the large ventricles and white matter atrophy, particularly in Patient #1, and the
abnormal contrast in the deep white matter, secondary to PVL, particularly in Patient #2.
The FA and volume Z-score maps (second and third lines) show the degree of deviation
from control values. These maps are shown in the atlas space, with which abnormal white
matter tracts can be identified at a glance. Linear regressions of FA and the volume (mm3)
of the left superior longitudinal fasciculus (SLF, arrows and surrounded area) of normal
subjects (green dots) are shown by the continuous lines. Shaded area is 95% confidence
interval of the curve and dashed lines are the prediction interval for z-scores of +/−2 (gray
and red lines, respectively), -3 (blue line), and -4 (yellow line). Yellow squares are the
results from CP patients. The color surrounding the images and circle colors in the scatter
plots identify the subjects.
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