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We used a whole-genome scanning technique to identify the NADH dehydrogenase gamma subunit (nuoG)
primer set that is sensitive and specific enough to detect a diverse number of Bartonella species in a wide range
of environmental samples yet maintains minimal cross-reactivity to mammalian host and arthropod vector
organisms.

Bacteria in the genus Bartonella are found in a wide variety
of mammalian hosts (2, 8, 18, 20, 21) and are thought to be
transmitted by arthropod vectors, including fleas, ticks, and
possibly mites (4, 7, 9, 14, 16); humans serve as accidental
hosts. Of the at least 20 named Bartonella species, 10 have
been shown to cause disease in humans, including Carrion’s
disease (13), cat scratch disease (7, 14, 25), endocarditis (6,
11), and recently a febrile illness in humans from Thailand
(caused by Bartonella tamiae) (17). Because of their wide
distribution and potential for frequent contact with humans,
many Bartonella species are considered potential emerging
pathogens (1, 26, 28).

Bartonella identification requires the ability to detect bac-
teria in both mammalian hosts and arthropod vectors. Al-
though bacterial culture is considered ideal, the difficulty
and time involved make it impractical for large-scale use.
Additionally, nucleic acid-based detection techniques may
be hindered by inhibitors in environmental and clinical sam-
ples, low sensitivity, and the absence of genus-specific prim-
ers (10, 27).

To address these issues, we used whole-genome scanning
based on the complete genomes of Bartonella bacilliformis,
B. henselae, and B. quintana to identify host- and vector-
blind primer sets for real-time PCR detection of Bartonella
in various field-collected samples. We identified a primer set
based on the NADH dehydrogenase gamma subunit (nuoG)
that is specific for Bartonella species and sensitive enough to
detect Bartonella in both mammalian hosts and arthropod
vectors.

Identification of host-blind primer sets. A whole-genome
scan was performed on complete genomic sequences from B.
henselae and B. quintana and shotgun sequences from B. ba-
cilliformis available in GenBank. Each subsequence of 16, 17,
18, and 19 nucleotides present in published Bartonella genomes
was compared with subsequences from other genomes present
in GenBank, including genomes for bacteria that could infect
human blood and tissues and potential mammalian hosts and
arthropod vectors for bartonellae. The number of base changes
necessary to convert each Bartonella subsequence to the closest
subsequence in the background collection was calculated to
identify potential primers with a reduced probability of hybrid-
izing to and amplifying nontarget DNA.

In total, one ultraspecific, host-blind primer pair (the nuoG
primer pair) was identified that met the following conditions:
the pair (i) maintained at least a 2-base specificity among the
complete GenBank sequence database, (ii) amplified frag-
ments of identical sizes in the B. henselae and B. quintana
genomes, (iii) had predicted amplicon sizes of less than 400 bp,
and (iv) had primer melting temperatures (Tms) within 2°C.
Although they did not conform to all of these conditions, the
ftsZ and gltA primer sets were included in further comparisons
due to the large amount of sequence data available for these
genes.

Primer pairs were tested in reaction with three Bartonella
species (B. henselae, B. quintana, and B. bacilliformis) and
then with the use of �30-fold excess competitor DNA from
J774 (murine) and THP1 (human) tissue culture cells over
the template DNA from B. henselae. Interestingly, despite
their common use, the gltA primer set demonstrated high
cross-reactivity both to potential Bartonella hosts (Rattus
spp., Mus spp., and Homo sapiens) and to bacterial species,
such as Ehrlichia spp., that could inhabit similar ecological
niches (Table 1).
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Amplification performance of the nuoG, gltA, and ftsZ
primer sets against reference Bartonella DNA and environmen-
tal samples. The nuoG, gltA, and ftsZ primer sets were used to
amplify reference DNAs from 11 Bartonella species, chosen for
their distant phylogenetic relationships, under conditions op-
timized for each primer set. The amplification results differed
considerably between primer sets and species of Bartonella
being amplified (Table 2) and are as follows: the nuoG primer
set performed best (amplifying first, with the lowest threshold
cycle [CT] value) on 3 of the 11 tested species, the gltA set
performed best on 7 of the 11 species, and the ftsZ set per-
formed best on 1 of the 11 species. Although the gltA primer
set performed best for the highest number of reference species,
only the nuoG set successfully amplified all 11 species.

The primer sets were next tested against a panel of DNA
from field-collected samples (purified from liver samples from
Nepalese rats and ticks from Colombia) to determine their
efficacy in detecting Bartonella DNA in field-collected hosts
and vectors. Consistent with the predicted specificities from
the whole-genome scans, the nuoG primer set demonstrated
significantly higher sensitivity and specificity for Bartonella
than the other primer sets by consistently yielding more se-

quence-confirmed PCR-positive results (Table 3). For the 61
total ticks sampled, the nuoG primer set yielded 7 Bartonella-
positive samples, compared to 1 and 0 for the ftsZ and gltA sets,
respectively. Of 24 total rodent liver samples tested, 18 were
found to be Bartonella positive by the nuoG primer set, com-
pared to 10 and 2 for the ftsZ and gltA sets, respectively.

Phylogenetic analysis. Analysis of a nuoG-derived phylog-
eny showed strong statistical support for the following clades:
B. henselae and Bartonella koehlerae; the species found in Rat-
tus and related hosts, including Bartonella elizabethae, B. ratti-
massiliensis, and B. tribocorum; 3 Bartonella vinsonii subspecies
(Bartonella vinsonii subsp. arupensis, B. vinsonii subsp. vinsonii,
and B. vinsonii subsp. berkhoffii); and two strains of B. tamiae,
described to occur in febrile Thai patients (type strain Th239
and strain Th307) (Fig. 1). All of these species groups share
high genetic similarity within their respective clades, suggesting
that the nuoG primer set provides better phylogenetic estima-
tion with closely related species. Bartonella bovis was placed
extremely distant to the other Bartonella species, with strong
statistical support; conversely, B. bacilliformis was placed more
centrally within the phylogeny than is seen with other genes,
though this placement did not have strong statistical support.
These placements, which are different from those generated
with multiple concatenated Bartonella sequences (Fig. 1) (17),
are likely due to the genetic rearrangements and horizontal
gene transfer events that commonly occur in Bartonella (3, 12,
19, 23). Because of this, care should be taken when interpreting
phylogenies based solely on nuoG sequences. A much more
reliable approach is to include the nuoG sequence as one of
many concatenated sequences to be used for phylogenetic
analysis.

In summary, whole-genome scanning has allowed us to iden-
tify nuoG as a sensitive and specific target gene for use in

TABLE 1. Details of primers used in this studya

Gene and
orientation Nucleotide sequence Primer

Tm

Amplicon
size (bp)

Expected amplification
result Other species carrying the gene

gltA B. henselae, B. quintana Legionella pneumophila, Erlichia spp.,
F GGGGACCAGCTCATGGTGG 57.58 340 Alkalilimnicola ehrlichei, Mus
R AATGCAAAAAGAACAGTAAACA 56.68 musculus, Rattus norvegicus, Homo

sapiens

nuoG B. henselae, B. quintana, None
F GGCGTGATTGTTCTCGTTA 55.56 346 B. bacilliformis
R CACGACCACGGCTATCAAT 56.68

ftsZ B. henselae, B. quintana None
F CGCATAGAAGTATCATCCA 50.72 753
R ACGATTAATCTGCATCGGC 53.99

a Expected amplification results and occurrences in other genomes were determined by whole-genome scanning versus B. henselae, B. bacilliformis, and B. quintana.
F, forward; R, reverse.

TABLE 2. CT values for the three primer sets resulting from
amplification of 11 reference DNAs derived

from culture samplesa

Species

CT

nuoG1
primer set

gltA
primer set

ftsZ72
primer set

Cotton rat sp. A1 26.1 28.6 23.8
Cotton rat sp. C1 17.1 18.6 34.5
Bartonella grahamii 21.2 18.3 21.8
Bartonella phoceensis 25.5 28.2 29.8
B. rattimassiliensis 21.9 21.0 22.0
B. tamiae 37.7 29.9 NA
B. tribocorum 28.3 11.8 19.8
B. vinsonii subsp. arupensis 17.9 15.3 17.7
B. vinsonii subsp. berkhoffii 26.7 14.9 18.9
B. vinsonii subsp. vinsonii 22.4 22.0 21.9
Bartonella washoensis 16.9 NA 19.5

a Values for those cases with more than 3.3 cycles (1-log starting quantity) are
in bold. CT values higher than 35 are considered not valid (NA), due to the
potential influence of primer dimers.

TABLE 3. Bartonella-positive samples, as verified by sequencing,
based on primer set, for field-collected samples

Primer
set

No. of Colombian
ticks (%) (n � 61)

No. of Nepal rodent
livers (%) (n � 24)

gltA set 0 (0) 2 (9)
ftsZ72 set 1 (2) 10 (42)
nuoG set 7 (11) 18 (75)
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detection of Bartonella species from various clinical and envi-
ronmental specimens. nuoG’s superior performance in identi-
fying Bartonella species in field-collected samples makes it an
ideal candidate for complementing the use of gltA and ftsZ on
culture samples.
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