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ABSTRACT

Motivation: An important question that has emerged from the
recent success of genome-wide association studies (GWAS) is
how to detect genetic signals beyond single markers/genes in
order to explore their combined effects on mediating complex
diseases and traits. Integrative testing of GWAS association data
with that from prior-knowledge databases and proteome studies has
recently gained attention. These methodologies may hold promise
for comprehensively examining the interactions between genes
underlying the pathogenesis of complex diseases.
Methods: Here, we present a dense module searching (DMS)
method to identify candidate subnetworks or genes for complex
diseases by integrating the association signal from GWAS datasets
into the human protein–protein interaction (PPI) network. The DMS
method extensively searches for subnetworks enriched with low
P-value genes in GWAS datasets. Compared with pathway-based
approaches, this method introduces flexibility in defining a gene set
and can effectively utilize local PPI information.
Results: We implemented the DMS method in an R package,
which can also evaluate and graphically represent the results. We
demonstrated DMS in two GWAS datasets for complex diseases,
i.e. breast cancer and pancreatic cancer. For each disease, the
DMS method successfully identified a set of significant modules and
candidate genes, including some well-studied genes not detected
in the single-marker analysis of GWA studies. Functional enrichment
analysis and comparison with previously published methods showed
that the genes we identified by DMS have higher association signal.
Availability: dmGWAS package and documents are available at
http://bioinfo.mc.vanderbilt.edu/dmGWAS.html.
Contact: zhongming.zhao@vanderbilt.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide association studies (GWAS) have revealed
hundreds of common variants conferring susceptibility to
common diseases. According to the National Human Genome
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Research Institute (NHGRI) Catalog of Published Genome-Wide
Association Studies (Hindorff et al., 2009), there have been
2898 SNPs reported in 596 publications (as of July 1, 2010,
http://www.genome.gov/gwastudies/). Although the discovered
single nucleotide polymorphisms (SNPs) greatly expanded our
knowledge of the molecular mechanisms of common diseases, only
limited heritability has been explained, and it still remains unclear
how these markers/genes interact and confer a predisposition
to disease. Depending on the underlying genetic structure of
diseases, it is possible that many markers/genes, having low or
moderate risk in and of themselves, interact to confer a significant
combined effect. So far, GWAS data analysis has largely focused
on single marker discovery. However, at the stringent genome-wide
significance level of P < 5×10−8, many markers that are truly
but weakly associated with disease often fail to be detected. Novel
statistical or computational methods to detect the combined effect
of a set of genes may provide useful alternative approaches in
GWAS.

Recently, integrative analysis of GWAS data with other high-
throughput datasets has been shown to be effective in the
examination of multiple variants’ combined effect. One example is
the application of gene-set-based methods to systematically examine
gene sets, typically in the form of biological pathways or functional
groups, using GWAS datasets. Representative examples include
gene set enrichment analysis (GSEA) adapted from the original
microarray expression data analysis (Wang et al., 2007), the SNP
ratio test (O’Dushlaine et al., 2009) and the hypergeometric test.
These methods search for significantly enriched gene sets collected
from predefined canonical pathways or functional annotations
such as Gene Ontology (GO) terms. However, by sorting genes
into classical pathways or functional categories, the results of
these methods might be over-limited to a priori knowledge (e.g.
predefined gene sets) and, thus, make it difficult to identify a
meaningful combination of genes (Ruano et al., 2010). Realizing
this problem, Ruano et al. (2010) suggested that investigators
group genes by cellular functions instead of classical pathways,
assuming that genetic variation might converge on components
acting across pathways. However, this strategy requires strong
disease-specific background knowledge, and still uses predefined
gene sets. Another limitation is the incomplete annotation of
pathways or GO annotations in the current knowledgebase.

The protein–protein interaction (PPI) network-based approach
may largely overcome these limitations because it allows flexibility
in setting the components of a gene set. This approach has recently
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been applied to GWAS data for multiple sclerosis to search for
overrepresented modules (Baranzini et al., 2009). So far, there has
been no user-friendly tool to integrate a GWAS dataset with a PPI
network and search for enriched subnetworks.

In this study, we introduced a network-based searching method
by integrating GWAS and PPI information. We first mapped all
SNP markers in a GWAS dataset to genes and then weighed
genes by the P-values of their mapped markers. Then, weighted
genes were loaded onto a comprehensive human PPI network to
construct a node-weighted PPI network. We modified a previous
method (Chuang et al., 2007) that was designed for dense module
searching (DMS) in gene expression datasets, and used it to search
for subnetworks that locally maximize the proportion of low-P-value
genes in the GWAS dataset. This method has the advantage of
searching the whole interactome and examining the combined effect
of multiple genes in an exhaustive manner. We further implemented
the method into a computational tool for public use.

2 METHODS

2.1 Data source
We used two datasets to demonstrate our method: breast cancer GWAS
(Hunter et al., 2007) and pancreatic cancer GWAS (Amundadottir et al.,
2009). Both are from the National Cancer Institute Cancer Genetics
Markers of Susceptibility (CGEMS, http://cgems.cancer.gov/) study and
were obtained through an approved data request application. Both GWA
scan datasets were genotyped using an Illumina HumanHap 550 array. For
breast cancer, individual genotyping data for 1145 breast cancer cases and
1142 controls, nested within the prospective Nurses’ Health Study cohort,
were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap). These
women were included in Stage I of the CGEMS breast cancer study. We
excluded samples with missing genotype rates >0.05, or SNPs with minor
allele frequency (MAF) <0.05 or genotyping success rate <95% for our
analysis. After quality control, a total of ∼522000 SNPs were included in
the subsequent data analysis.

We used the trend test to calculate P-values of all markers in the GWAS
dataset. We mapped a SNP to a gene if it was located within the gene or
20 kb immediately upstream or downstream. The most significant SNP of
each gene, i.e. the SNP with the smallest χ2 trend statistic P-value, was
chosen to represent the association of the gene in the follow-up analysis.
The breast cancer GWAS data represented 19 542 genes.

For pancreatic cancer, we performed the same quality control and SNP
mapping. A total of 1924 cases and 2042 controls were finally included in our
analysis, involving ∼510000 SNPs covering 19 574 genes in this dataset.

We used a comprehensive human PPI network downloaded from the
Protein Interaction Network Analysis platform (PINA; Wu et al., 2009),
which collected and annotated data from six public PPI databases (MINT,
IntAct, DIP, BioGRID, HPRD and MIPS/MPact). Approximately 12 000
nodes and 64 000 interactions were included in this network (as of March 4,
2010).

2.2 DMS method
2.2.1 Scoring subgraphs Our ‘module’ is defined as a subgraph within the
whole network with a locally maximum proportion of low-P-value genes. To
quantitatively evaluate the density of low-P-value genes held by a module,
we computed a score Zm by

Zm =
∑

zi√
k

, (1)

where k is the number of genes in the module and zi is transferred from
P according to zi =�−1(1−Pi). Here, �−1 denotes the inverse normal
distribution function. In this way, a smaller P-value corresponds to a larger zi.

Thus, a module with a higher proportion of markers with small P-values will
have a higher combined score Zm (Ideker et al., 2002).

2.2.2 Normalization of Zm Zm was normalized by using a random set
of genes to determine whether it was higher than expected. Specifically,
for a module m with k genes, we randomly chose the same number of
genes from the whole network, computed Zm accordingly and denoted it by
Zm(π). Then, we repeated this process for 100 000 times to achieve sufficient
randomization. The resultant Zm(π) formed an estimated background
distribution of Zm for module m with size k. Zm was then normalized by

ZN = Zm −mean(Zm(π))

SD(Zm(π))
. (2)

ZN is independent of size k and, thus, modules with different sizes are
comparable by their ZN .

2.2.3 Permutation-based normalization of Zm To further evaluate
whether a module was significantly associated with the disease, we
performed permutation (N =1000) of the original GWAS data by swapping
the disease labels while ensuring the same number of cases and controls as
in the real case using PLINK (Purcell et al., 2007). During each permutation,
we repeated the calculation of Zm and denoted it as Zm(p). A nominal P was
then computed for each module by counting the number of permutations
that have Zm(p) greater than the real case, divided by the total number of
permutations, i.e.,

Nominal P= #{Zm
(
p
)
>Zm}

#{total permutations} . (3)

Note that normalization by Equation (2) and permutation by Equation (3)
test different features of the module. In normalization, the null hypothesis
is that there is no difference between the investigated module and modules
randomly selected from the whole network. In permutation testing, the null
hypothesis is that there is no association between the module and the disease
in investigation. Both are important; however, ZN is used to rank modules
because (i) it measures how different a module is from random cases in the
real dataset, while nominal P is used to filter out false-positive modules that
are not associated with the disease based on permutation data; (ii) ZN has
been corrected for module size; and (iii) practically, many modules were
observed to have nominal P-values equal to 0 using Equation (3), thus it is
not possible to rank modules by their nominal P-values.

2.2.4 Searching strategy The following steps perform greedy searching
iteratively using each gene in the network as a seed.

(1) A seed module is assigned. In the beginning, the seed module contains
only the seed gene. Zm is computed for the current seed module.

(2) Identify neighborhood interactors, which are defined as nodes whose
shortest path to any node in the module is shorter or equal to a
predefined distance constraint d (e.g. d =2).

(3) Examine the neighborhood interactors defined in Step (2) and find
the genes generating the maximum increment of Zm. Nodes will be
added if the increment is greater than Zm × r, where r is the rate
of proportion increment. That is, the expanded module has a score
Zm+1 greater than Zm × (1+r) (details are provided in Supplementary
Materials and online user’s guide).

(4) Repeat Steps 1–3 until adding any neighborhood nodes cannot yield
an increment that is greater than Zm × r.

The parameters d and r in the above procedure are the two important factors
to be decided in implementation. The parameter d was suggested to set at 2
in a previous work (Chuang et al., 2007), based on the fact that the median
distance between any two proteins in the human PPI network is less than 5.
Nevertheless, we assessed both d =1 and d =2 in this study. The parameter
r has a substantial effect on the results. When r is small, it imposes a loose
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Fig. 1. dmGWAS workflow.

restriction during the module expanding process; thus, unrelated nodes with
lower zi scores (higher P-values) might be included. On the other hand, when
r is large, a strict restriction is imposed and only those nodes with very high zi

scores (very low P-values) could be included. As a result, it may not include
informative nodes having moderate association P-values. In our work, we
primarily used r =0.1 and also evaluated other values for r.

2.3 Pathway enrichment of DMS genes
We used the ingenuity pathway analysis (IPA) system
(http://www.ingenuity.com) to perform pathway enrichment tests
of the genes from our DMS modules. Fisher’s exact test was
implemented in IPA to compute a P-value for each pathway. For
GSEA method, we used the R source code downloaded from MSigDB
(http://www.broadinstitute.org/gsea/msigdb/index.jsp) and adapted it for the
analysis of GWAS datasets.

3 IMPLEMENTATION
We implemented the DMS method in an R package, dmGWAS,
which is freely available from the web site (http://bioinfo.mc
.vanderbilt.edu/dmGWAS.html). Figure 1 shows the workflow of
the searching process. dmGWAS can directly take GWAS association
results as input and identify dense modules in a PPI network that
are significantly convergent with GWAS association signals. Several
comprehensive methods are implemented in dmGWAS. The DMS
is efficient. Its execution took ∼2 h on a server (3.00 GHz Quad
Core Intel® Xeon® Processor X5450 and 16.0 GB of RAM, one
thread) for a typical GWAS dataset, in addition to the running
time of PLINK, which may take hours to generate permutation
data depending on datasets and number of permutations. We briefly
introduce the key steps here. Detailed documentation along with
annotation data can be found at the above web site.

3.1 GWAS data preprocessing
dmGWAS first maps the SNPs genotyped in a GWA study to genes
by the following command:

> gene.map = SNP2Gene.match(assoc.file, snp2gene.file, id.type=
"affy", dist=20)

where assoc.file is the GWAS data generated from PLINK (Purcell
et al., 2007) and snp2gene.file is the annotation file, which can be

downloaded from our dmGWAS web site or prepared by the user.
Gene boundaries are extended by dist, e.g. 20 kb.

To compute a gene-based P-value (i.e. gene-wise P-value),
dmGWAS provides several options, including using the most
significant SNP, by Simes’ method (Chen et al., 2006), by Fisher’s
method, or using the smallest gene-wise false discovery rate (FDR)
value (Peng et al., 2010). One example command is:
> gene.weight = PCombine(gene.map, method="smallest").

3.2 DMS
A single function, dms, performs DMS, removes unqualified
modules, generates random networks and normalizes module scores
to assess the random effect. For example,
> res.list = dms(network, gene.weight).

The returned object, res.list, contains all related data for a user’s
records, such as the node-weighted network used for searching, the
resultant dense modules, the module score matrix containing Zm
and ZN and randomization data. Of note, we implemented further
quality control in the dms function, which includes (i) removing
modules whose size are less than five genes and (ii) keeping only
one module when multiple modules share the same component genes
though generated by different seed genes.

3.3 Module selection, permutation and visualization
Because of the nature of the DMS algorithm, thousands of modules
might be generated with extensive overlap between closely ranked
modules. We suggest the user to select the top modules ranked by
ZN , and then evaluate their association with the disease of interest
using the permutation data from the GWAS (see online documents).
For example,
> simpleChoose(res.list, top=100, plot=T)
> zn.permutation(module.list, gene2snp, gene2snp.method= "smal-
lest", assoc.file, permutation.dir)

where permutation.dir contains the permutation files generated
by PLINK. Modules whose nominal P-values are both significantly
enriched in the whole network and significantly associated with the
disease may be used for further analysis and interpretation. Selected
modules can be presented graphically:
> moduleChoose(seed.list, res.list, plot=T)

where seed.list is the seed genes of significant modules.

4 APPLICATIONS
In this section, we applied the DMS method to two cancer GWAS
datasets (breast and pancreatic cancers). Based on these two specific
cases, we also evaluated two key parameters in the DMS method.
Finally, we compared the DMS method with the popularly used
GSEA method.

4.1 Breast cancer GWAS analysis
We applied the DMS method to the CGEMS breast cancer dataset
(Hunter et al., 2007) using d =2 and r =0.1. A total of 9212
single modules were generated. On average, the module size was
11.65±1.79 (mean ± SD). The normalized module score, ZN , was
within a range from 2.95 to 7.17. As described in Section 2, for each
module, its normalized score ZN indicated the extent of departure
from randomness, and was used to rank modules. These 9212
modules served as the candidate pool for further selection. To select a
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Fig. 2. PPI subnetwork for breast cancer using the CGEMS GWAS dataset. (A) The module having the best score. (B) PPI subnetwork constructed using the
top 10 modules. (C) The subnetwork containing 166 candidate genes from the top 93 modules (top 1% of all modules generated). The darkness of a node is
proportional to its P-value.

set of most significant candidate modules straightforwardly, one
may transform ZN back to P-values (PZN

=1−�(ZN )), as ZN
has normal distribution. However, PZN

of breast cancer modules
was observed in a range from 1.61×10−3 to 3.63×10−13, thus,
it would generate too many modules with PZN

as the criterion.
Besides, this algorithm introduces extensive overlap among the
closely ranked modules, making it inappropriate to perform multiple
testing correction directly. Even so, there were >8000 modules
having P<0.05 after Bonferroni correction, leaving too many to
select from.

We thus proposed to select the top ranked modules whose scores
are within the top 1% in module score distribution for the follow-
up analysis. Although this criterion is arbitrary, we consider it
appropriate to include modules that have high association scores,
while not introducing too many unrelated modules. Applying this
rule resulted in 93 modules, which were further evaluated using the
permutation data. All of them remained significant after permutation
testing and had nominal P < 0.001, indicating that they were not only
significantly enriched but also significantly associated with breast
cancer. Therefore, these 93 modules were considered as candidate
modules, and contained 166 non-redundant genes. The detailed gene
information is provided in Supplementary Table 1. These 166 genes
were considered as candidate genes for breast cancer and used for
our subsequent bioinformatics analysis.

4.1.1 Breast cancer candidate genes and subnetwork Among the
166 candidate genes, most had nominally significant P-values (e.g.
79.5% had P < 0.05). The most significant genes included FGFR2,
MMRN1, POLR1A, PTCD3, BMPR1B and STXBP1 (P < 10−4).
Of note, FGFR2 was the most significant gene reported in the
original GWA study (Hunter et al., 2007) and was also included

by our DMS method. Among the 166 candidate genes, 13 have
been collected by the Cancer Gene Census category (CGC,
http://www.sanger.ac.uk/genetics/CGP/Census/) as known cancer
genes; they are: ATIC, BCL3, EGFR, EWSR1, FGFR2, GATA2,
JAK1, KIT, PIK3R1, RAF1, RB1, SOCS1 and SYK (Futreal et al.,
2004). These genes have been indicated by CGC as having mutations
causally implicated in cancer. There were also other genes of interest
such as BARD1 (De Brakeleer et al., 2010), SMAD3 (Ito et al., 2010),
TP73 (Tomkova et al., 2008) and SOS1 (Sastry et al., 1997), which
have been well studied in breast cancer.

Next, we specifically examined the module with the highest
score (i.e. the top-ranked module). This module contained
12 genes, including: BARD1, FGFR2, GSK3B, HGS, PIK3R1,
POLR1A, PRKCA, PRKCB, PTCD3, SF3B1, STXBP1 and TCERG1
(Fig. 2A). The nominal P-values of these genes were generally low
(Supplementary Table 1), thus, this module was strongly enriched
with the genetic signal of breast cancer. We further examined the
10 modules with the highest scores (top 10 modules), including 28
non-redundant genes (Supplementary Table 1) shown in Figure 2B.
Finally, we merged all 93 modules to construct a breast cancer-
specific subnetwork based on this CGEMS GWAS data (Fig. 2C).
The combined subnetwork includes several genes with high degrees,
including PIK3R1, EGFR, PRKCA, GSK3B, PTK2, INSR, EWSR1,
PLCG1, JAK1, SYK, SMAD3, PRKCB and KIT, all of which with
degree >10.

Of note, some genes in the merged network had a weak association
signal. They were recruited by DMS because they interacted
with a substantial portion of other network nodes with stronger
association signals. For example, the gene-wise P-value of gene
SMAD3 was not significant itself (P=0.10), however, it interacted
with several genes having moderate association P-values, such as
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Table 1. Top 10 pathways by IPA

Ingenuity canonical pathways P-value∗ Ratioa

Breast cancer
PTEN signaling 7.94×10−12 0.124
EGF signaling 1.58×10−11 0.204
FAK signaling 7.94×10−11 0.120
Thrombin signaling 1.20×10−10 0.078
Neuregulin signaling 1.32×10−10 0.117
Integrin signaling 1.55×10−10 0.079
IL-2 signaling 1.55×10−10 0.172
Molecular mechanisms of cancer 1.95×10−9 0.051
PDGF signaling 2.04×10−9 0.132
Fcγ receptor-mediated phagocytosis

in macrophages and monocytes
2.95×10−9 0.109

Pancreatic cancer
Myc-mediated apoptosis signaling 1.70×10−7 0.127
Neuregulin signaling 2.82×10−7 0.087
Fcγ receptor-mediated phagocytosis

in macrophages and monocytes
3.72×10−7 0.089

Agrin interactions at neuromuscular
junction

4.07×10−7 0.116

ERK/MAPK signaling 1.62×10−6 0.057
FAK signaling 2.51×10−6 0.080
PTEN signaling 3.24×10−6 0.076
HGF signaling 6.17×10−6 0.078
Molecular mechanisms of cancer 7.24×10−6 0.038
14-3-3-mediated signaling 1.55×10−5 0.070

aRatio is the number of molecules from the 166 breast cancer candidate genes that
map to the pathway divided by the total number of molecules that map to the canonical
pathway.
∗P-values were calculated by Fisher’s exact test, indicating probability of the association
of the candidate genes with the canonical pathway from chance.

TP73 (P=1.6×10−3), POLR1A (P = 3.7×10−5), and BARD1
(P = 1.1×10−3). The same scenario was observed in several
interesting genes such as PIK3R1, PLCG1 and EWSR1, which could
not pass nominal significance but interacted with other moderately
significant genes. These results indicate the power of DMS in
leveraging the combined effect of a gene set instead of single gene(s).

4.1.2 Pathway enrichment We used the IPA system to evaluate
our resultant module genes. As shown in Table 1, several
cancer-related pathways were enriched in our module genes,
including PTEN signaling (P=7.94×10−12), EGF signaling
(P=1.58×10−11), molecular mechanisms of cancer (P=1.95×
10−9) and PDGF signaling (P=2.04×10−9). These results further
indicate the significant enrichment of our identified subnetwork with
genes related to cancer (Blanco-Aparicio et al., 2007; Cully et al.,
2006; Roussidis et al., 2007; Roy et al., 2010), as GWA study is
essentially hypothesis free.

4.2 Pancreatic cancer GWAS analysis
For the analysis of the pancreatic cancer GWAS dataset, we also
used d =2 and r =0.1 to perform DMS and identified 9281 single
modules. The modules have an average size of 10.27 (SD = 1.85).
Similar to breast cancer, we selected the top 1% of modules based on
module score distribution as candidates. Ninety-three modules were
thus selected; their ZN values ranged from 6.95 to 7.51. Examination
of the 93 modules using permutation data indicated that all were

significantly associated with pancreatic cancer (nominal P<0.001).
We then selected the 159 non-redundant genes involved in these
modules as candidate genes for pancreatic cancer (Supplementary
Table 2).

4.2.1 Pancreatic cancer candidate genes and subnetwork
Among the 159 genes, 84.3% achieved nominal significance
(P<0.05). Survey of the CGC data revealed that 13 genes have
been previously reported as cancer genes; they are ALK, ASXL1,
ATIC, EGFR, EP300, HNRNPA2B1, KIAA1549, KTN1, LCK, MYC,
NSD1, ROS1 and SEPT6 (Folch-Puy et al., 2006; Futreal et al.,
2004; Gayther et al., 2000).

We further combined these top 93 modules and constructed a PPI
subnetwork for pancreatic cancer (Supplementary Fig. 1). In this
subnetwork, the genes of highest degree (degree ≥6) are EGFR,
ATF7IP, GRB2, NCK1, ESR1, ACTB, RAC1, MEPCE, STAT3,
FASLG, SRC, EP300, ATXN1, BCAR1, MYC, LCK, FAS, DLG2 and
DOCK1. As observed in breast cancer, we found some genes with
non-significant P-values were recruited by DMS, such as EP300
(P=0.062) (Mees et al., 2010) and GRB2 (P=0.15) (Sastry et al.,
1997).

4.2.2 Pathway enrichment analysis Pathway enrichment analysis
using IPA revealed several cancer-related pathways enriched
in the subnetwork (Table 1). For example, Myc-mediated
apoptosis signaling (P=1.70×10−7), ERK/MAPK signaling
(P=1.62×10−6) and molecular mechanisms of cancer (P=7.24×
10−6) were significantly enriched and ranked within the top 10
pathways. Most of these pathways have been reported to play
roles in cell-cycle regulation, cell survival and cell apoptosis
(Cully et al., 2006; Furukawa, 2008). Constitutive activation of
the ERK/MAPK signaling pathway has been observed in many
tumors with consequences including increased cell proliferation,
motility and invasion, and inhibition of apoptotic mechanisms
(Modjtahedi and Essapen, 2009). The gene EGFR from the
ERK/MAPK signaling pathway, which is a highly connected node
in our subnetwork (Supplementary Figure 1), was found to be over-
expressed in multiple cancers, and has been specifically designated
as a promising drug target in pancreatic cancer (Furukawa, 2008;
Modjtahedi and Essapen, 2009).

4.3 Comparison with GSEA of GWAS datasets
Our application of dmGWAS to two cancer GWAS datasets
revealed interesting results that evade identification by the typical
single marker/gene analysis of GWAS data (Amundadottir et al.,
2009; Hunter et al., 2007). To evaluate whether DMS has better
performance than other methods, we compared our DMS results
with those generated by GSEA, a method widely used in microarray
expression data and other genomic data analysis including GWAS
analysis.

To compare with the GSEA algorithm, we took the 166
module genes for breast cancer as one gene set (termed
‘CGEMS_Breast_Cancer’), and analyzed it using the GSEA method
adapted to GWAS (Jia et al., 2010; Wang et al., 2007), together with
other pathway gene sets downloaded from MSigDB (Subramanian
et al., 2005). Pathways with ≥20 genes and ≤250 genes were used
for testing. In total, 533 pathways were examined using both the
original and permutation datasets of CGEMS breast cancer. The
top five enriched pathways are listed in Table 2. Strikingly, our
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Table 2. Comparison of GSEA results of module gene sets with canonical
pathways

Pathway Set size ESa NES Nominal
P-value

FDR

Breast cancer
CGEMS_Breast_Cancer 166 0.723 9.741 <0.001 0.000
SIG IL4 receptor in B

lyphocytes
27 0.556 2.658 0.004 0.333

SA B-cell receptor complexes 24 0.627 2.645 0.005 0.333
Axon guidance 126 0.524 2.562 0.005 0.333
Regulation of actin

cytoskeleton
209 0.427 2.552 0.002 0.266

Pancreatic cancer
CGEMS_Pan_Cancer 159 0.748 11.193 <0.001 0.000
Aldosterone-regulated sodium

reabsorption
41 0.615 3.659 <0.001 0.000

Cell-to-cell pathway 13 0.761 3.422 <0.001 0.000
N_glycan biosynthesis 21 0.636 3.148 <0.001 0.000
B-cell receptor signaling

pathway
74 0.508 3.106 0.001 0.076

aES: enrichment score.

module gene set has the highest normalized enrichment score (NES)
compared with all other canonical pathway gene sets, indicating
that the genes we identified using DMS result in more association
signal than any prior-knowledge pathways. A full list of pathways
with nominal P<0.05 and NES > 0 were provided in Supplementary
Table 3.

We also performed GSEA using the 159 pancreatic cancer
candidate genes as one gene set (termed as CGEMS_Pan_Cancer)
plus canonical pathways. GSEA was performed with both the
original and permutated GWAS datasets of CGEMS pancreatic
cancer. As shown in Table 2, CGEMS_Pan_Cancer is the most
significant one with NES as 11.193. There are also other
significant pathways that have significant nominal P-values, such as
aldosterone-regulated sodium reabsorption, cell-to-cell pathway and
N_glycan biosynthesis. However, the CGEMS_Pan_Cancer gene set
has the highest NES, which is mostly used in GSEA method to rank
gene sets. A full list of pathways with nominal P<0.05 and NES > 0
were provided in Supplementary Table 4.

4.4 Parameter settings in dmGWAS
There are two key parameters in the implementation of DMS: d, the
shortest path from a candidate node to any node in a module and r,
the rate of proportion increment of Zm. We used d =2 and r =0.1
in the above demonstration using DMS to analyze breast cancer
and pancreatic cancer datasets. However, we also examined other
potential values and showed that the values we used are appropriate.

To evaluate the effect of d, we performed the same procedure on
breast cancer GWAS dataset using d =1. The top 1% modules and
involved genes were selected and analyzed using IPA. However,
most of the cancer pathways and functions are no longer ranked
as significant, e.g. the three most significant pathways are axonal
guidance signaling, ephrin receptor signaling and thrombopoietin
signaling (data not shown). Similar results occurred in analysis of
the pancreatic cancer dataset. These results indicate that the value
we chose for d is effective.

Fig. 3. Module size using different values of r. (A) Impact of r on breast
cancer GWAS dataset. (B) Impact of r on pancreatic cancer GWAS dataset.

To assess the impact of r during the DMS process, we used
four different r-values (0.05, 0.1, 0.15 and 0.2) for both breast
cancer and pancreatic cancer data, following the same procedure
for benchmarking. As shown in Figure 3, the average module size
decreases when r increases. For breast cancer, average module size
was 20.08 when r =0.05, 11.65 when r =0.1, 8.50 when r =0.15
and 7.00 when r =0.2. The same trend was observed for pancreatic
cancer. When r is small, the size of modules tends to be large so that
non-specific nodes might be included and, thus, dilute the signal.
When r is large, the size of the modules became small, possibly
excluding informative genes from the module. When r is 0.2, the
module size is close to five, the value that we used for inclusion of
a module.

5 DISCUSSION
We introduced a DMS method to prioritize candidate genes by
integrating the association signal from GWAS datasets with a
protein-protein interaction network. We proposed a comprehensive
strategy to incorporate the method into GWAS data analysis and
provide an R-package implementation for public use. Although the
original searching algorithm has been applied in expression data
analysis, the strategy proposed and the novel tool developed here are
more specifically designed for GWAS, thus making a more direct
application possible for geneticists.

5.1 DMS results revealed more cancer-related genes
and pathways

For both breast and pancreatic cancer, our DMS method identified a
set of disease candidate genes including many cancer genes enriched
in several cancer-related pathways. These genes generally have
modest association levels in the original GWAS data, i.e. most of
them could not reach genome-wide significance (5×10−8); thus,
they have remained unidentified by single marker analysis. However,
these genes were recruited by DMS because of their combined effect,
specifically in the form of a module in the human interactome, which
is significant in respect of both an enrichment test (indicated by ZN )
and association test (nominal P). It is worth noting that our DMS of
CGEMS dataset could not identify two breast cancer genes, BRCA1
or BRCA2, because they did not have small P-values of markers (the
smallest P-value was 0.324 in BRCA1 and 0.102 in BRCA2), neither
were they located in a low-P-value PPI environment. Furthermore,
caution should be used that those genes are not directly clinically
relevant; rather, they are assessed by functional enrichment analysis
and prior evidence.

100



[10:57 10/12/2010 Bioinformatics-btq615.tex] Page: 101 95–102

dmGWAS

Comparison with pathway-based methods showed that the DMS
method is flexible in searching for and defining a gene set associated
with a disease. The pathways enriched in our modules as identified
by IPA are generally more relevant to each disease than those
revealed by GSEA. For example, the PTEN signaling pathway
is involved in multiple cellular processes including apoptosis,
metabolism, cell proliferation and cell growth and has been reported
to be involved in many tumors (Blanco-Aparicio et al., 2007; Li
et al., 1997). Germline mutations in PTEN have been commonly
observed in breast cancer patients and intimately involve cross-
talk with the PI3K signaling pathway and the EGF signaling
pathway (Li et al., 1997; Navolanic et al., 2003). Although
PTEN was not included in our breast cancer subnetwork, several
key participants involved in these signaling pathways, such as
EGFR, GSK3B, JAK1, PIK3R1, PIK3R2, RAF1 and SOS1 were
observed in breast cancer (Cully et al., 2006). For pancreatic cancer,
the PTEN signaling pathway was significantly enriched as well
as Myc-mediated apoptosis signaling and ERK/MAPK signaling,
which have been well documented for involvement (Jimeno et al.,
2008; Roy et al., 2010). Therapies targeting epidermal growth
factor receptors (EGFRs) and RAS-MAPK pathways have also
been developed and investigated (Furukawa, 2008). Interestingly,
EGFR is the hub node in our pancreatic cancer subnetwork
with the most interactors (Supplementary Fig. 1). Compared with
the pathways identified by GSEA, the genes and pathways we
identified tend to be more relevant to cancer and may provide
further clues in understanding the interactions between these
genes.

Our results also prove that genetic signals may converge in
certain subnetworks in the human interactome that are enriched
with interesting biological pathways and functional groups. This
is consistent with the hypothesis that pathway-based methods often
adopt, i.e. that certain pathways might be significantly enriched in
the whole dataset (Wang et al., 2007). Recent developments in the
understanding of human genetics have demonstrated that for most
complex diseases, there might be a few rare variants that dispose
significant risk to cause the disease, while it is also possible that
multiple common variants are responsible for the disease, each
predisposing a modest risk factor and affecting certain important
molecular processes. Our results provide further support for the
second hypothesis that genes with modest association P-values
could converge in a specific subnetwork significantly associated with
the disease.

5.2 Determination of d and r
The DMS method relies on two key parameters, i.e. d and r. In our
demonstration, we used d =2 and r =0.1. Our examination of other
values for d and r showed that the values we used are effective.
As suggested by Chuang et al. (2007) work, the parameter d is
suggested to be 2 in most cases, which has also been proved in
our comparative results (Section 4.4). The parameter r appeared to
have moderate impact on the results because r can directly affect the
size of a module and the genes included during module expansion
process. The value of r might work in a way dependent on specific
datasets [e.g. in expression data, r is set as 0.05 (Chuang et al.,
2007)]. Thus, we propose to assess multiple values of r to select an
appropriate value before performing module searching. This option
has been made easily available in our R package.

5.3 Module selection strategies
Although the strategy we used to select top modules appears
to be arbitrary, it works appropriately, as demonstrated by our
follow-up evaluation using a permutated GWAS dataset. Our
evaluation showed that these modules are significantly associated
with the disease. A previous work by Baranzini et al. (2009) used
jActiveModule in Cytoscape and performed similar network-based
analysis of GWAS dataset for multiple sclerosis. They selected
modules with minimum overlap. We consider this as another option
to select modules and could be incorporated in the updated version
of dmGWAS. However, jActiveModule was originally designed for
microarray gene expression data and is not immediately used for
GWAS data, especially dealing with the permutation process of
the GWAS datasets. With the fast development and data generation
in the field of GWAS, more and more datasets are expected to be
available in the near future; thus, we propose a method of selecting
significant modules by using two GWAS datasets, one as discovery
and the other as an evaluation dataset, in order to minimize bias.
We have implemented this dual-evaluation strategy (the ‘multiple
GWAS datasets’ strategy in Fig. 1 and detailed documentation can
be found in dmGWAS web site) in the dmGWAS package and it will
be incorporated in our future work.

In conclusion, we proposed a DMS method for integrative
analysis of GWAS data and PPI data and implemented the method in
an R package, dmGWAS. We demonstrated the method in two GWAS
datasets for breast cancer and pancreatic cancer and identified a set
of candidate genes for each disease. Importantly, our DMS method
showed the connections among these genes in the context of PPI
network, and thus may help further understanding and elucidation
of the mechanisms underlying complex diseases. Each gene set
was further assessed using pathway enrichment methods and it was
shown that several cancer-related pathways were enriched in both
gene sets. The genes we identified greatly expanded the candidate
gene list as revealed in the original GWA studies and provide
more targets for future validation. The R package we provided also
makes the method easily applicable in the analysis of other complex
diseases.
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