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Abstract

Aberrant micro RNA (miRNA) expression has been implicated in the pathogenesis of cancer. Recent studies have shown that
the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the
miR-17–92 cluster has been identified from the 59 arm of six precursors. However, the function of the miRNAs produced
from the 39 arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress
critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD), glutathione
peroxidase-2 (GPX2) and thioredoxin reductase-2 (TrxR2). Transfection of miR-17* into prostate cancer PC-3 cells
significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-
17* binding sequences located in the 39-untranslated regions of the three target genes. Disulfiram (DSF), a dithiolcarbomate
drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be
attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional
expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity
of prostate cancer through inhibition of mitochondrial antioxidant enzymes.
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Introduction

Micro RNA (miRNA), ,22 nucleotide RNA molecules that

generally repress the translation of target messenger RNAs, is

involved in various aspects of physiogenesis and pathogenesis [1–2].

The miR-17-92 cluster encodes six miRNAs, including miR-17,

miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92, which are

amplified in more types of cancer tissues than in corresponding

normal tissues [3–5]. Proto-oncogene c-MYC up-regulates tran-

scription of the miR-17–92 cluster and results in down-regulation of

E2F1 by miR-17 [6], of PTEN by miR-19 [7], and of Rb1 by miR-

20a [8], suggesting that miR-17–92 functions as an oncogenic

factor. To date, the majority of miRNAs identified as having the

ability to alter phenotype and development of cancer are generated

from the 59 arm of miRNA precursors. However, the production

and function of the 39 arm miRNA (miRNA*) remain elusive.

Deregulation of redox status is involved in a variety of

pathogeneses including cancer. Reactive oxygen species (ROS)

generated from oxygen metabolism is detoxified by multiple

antioxidant pathways [9]. Mitochondrial antioxidant enzymes,

including manganese superoxide dismutase (MnSOD), glutathi-

one-dependent peroxidase (GPX) and thioredoxin- dependent

peroxidase (TrxR2), comprise a primary defense system in

mitochondria and are essential for detoxification against ROS

[10–12]. A consequence of the high metabolism of rapidly growing

cancer cells is the rapid generation of cellular ROS. Cancer cells

therefore require a high antioxidant defense system to cope with

the high levels of ROS production [13,14]. Thus, selective

inhibition of antioxidant systems is an option for cancer

intervention.

Prostate cancer (PCa) is a common disease in North American

males. Because PCa develops a castration-resistant phenotype, the

levels of antioxidant proteins are increased and correlate to

acquire capabilities, such as self-sufficient growth, reduced

apoptosis, sustained angiogenesis, enhanced invasion and metas-

tasis, as well as cancer cell resistance to treatment [15–17]. In this

study, we use four complementary approaches to identify

mediators for the tumor suppressing effect of miR-17*. The

results demonstrate that suppression of mitochondrial antioxidant

enzymes is a mechanism for the tumor suppressor function of

miR-17*. This is the first report that reveals the link between

oxidative stress and the tumor suppressor role of miRNA

produced from the 39 arm of the miR-17-92 cluster.

Results

miR-17* represses three mitochondrial antioxidant
proteins

A number of studies have reported that miR-17 is highly

expressed in malignant tumors including PCa, but the level of its

partner, miR-17*, is normally low in cancers [18]. This evidence

predicts that the levels of miR-17 and miR-17* are differentially
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regulated and that the ratio of the two miRNAs may be important

for regulation of different sets of target genes during tumorigenesis.

The expressions of both miRNAs in different prostate cells,

including normal epithelial, stromal, viral transformed, androgen-

responsive and androgen-independent PCa cells, were quantified

by real-time RT-PCR. The level of miR-17 and the ratio of miR-

17 to miR-17* in PCa cells were higher than levels in non-

cancerous cells (Fig. 1A). By searching miRbase, we found that

MnSOD, Gpx2 and TrxR2, three important mitochondrial

antioxidant proteins that are essential for detoxification of O2
.2

and H2O2, are potential targets of miR-17*. To verify that miR-

17* is able to repress antioxidant proteins, mature miR-17* was

transfected into PC-3 cells, which have a low level of endogenous

miR-17*. The expression of the three antioxidant proteins was

reduced by the transfected miR-17* in a dose-dependent manner.

Whereas transfection of control miRNA and antisense miR-17*

had no effect on the targets (Fig. 1B), oxidative stress stimuli such

as cytokines are able to induce the expression of the SOD2 gene

through activation of the NF-kB signaling pathway [19].

Transfection of miR-17* significantly repressed TNFa-induced

SOD2 expression in a dose dependent manner (Fig. 1C). To

confirm that the reduction of antioxidant proteins by miR-17* is

mediated through translational repression, the 39- untranslated

regions, including the putative miR-17* targeting sites of the genes

coding for the three antioxidant enzymes, were cloned down-

stream of the reporter gene. A vehicle and a miR-377 targeting site

located in the 39untranslated region of the SOD1 gene were

included as vehicle control and nonself negative control. As shown

in Fig. 1D, the cloned miR-17* targeting sequences are necessary

for the repression of reporter responses by transfected miR-17*.

DSF induces miR-17* expression
DSF is a dithiolcarbomate drug that has been shown to suppress

cancerous phenotypes by inducing the apoptotic pathway [20].

Figure 1. Identification of three mitochondrial antioxidant proteins as miR-17* targets. A, the levels of miR-17 and miR-17* expressed in
PCa and control cell lines were measured by RT-PCR. The ratio of miR-17 to miR-17* in each cell line is presented. B and C, transfection of miR-17* in
PC-3 cells to validate its function in repressing the expression of antioxidant proteins and diminishing TNF-mediated MnSOD induction. D, the
repressive effect of miR-17* on the antioxidant proteins is estimated by quantitative luciferase reporter assay. RNU24 and b-actin were used as
internal controls to normalize miRNA levels (A), protein levels (B and C). Images were normalized with the internal controls and then normalized by
PrEC (A), by control miRNA (B), and by no TNF treatment (C). b-gal activity was used to normalize luciferase reporter activities (D). Three samples
(n = 3) were used in the experiments and fold changes in Western blots are indicated. * (p,0.05) and ** (p,0.01) indicate significances as compared
to the controls: PrEC (A), control miRNA (B) and (D), and untreated samples (C).
doi:10.1371/journal.pone.0014356.g001
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We found that DSF inhibits the three antioxidant proteins in PCa

cells. After PC-3 and DU-145 cells were treated with DSF for

24 h, the reduction of the levels of the antioxidant proteins

corresponded significantly with the concentrations of DSF

(Fig. 2A). However, the mRNA levels of the antioxidant genes

were not changed in DSF-treated cells (Fig. 2B). Interestingly, RT-

PCR and Northern blots show that DSF induces miR-17* but has

no effect on expression levels of miR-17 (Fig. 2C). The induction

of miR-17* by DSF is further confirmed by reporter responses that

are regulated by miR-17* targeting sequences (Fig. 2D). Further-

more, to verify that the negative effect of DSF on the expression of

antioxidant proteins is mediated by the induction of miR-17*, the

PC-3 cells were transfected with antisense hsa-miR-17* followed

by DSF treatment. The results indicate that the antisense hsa-miR-

17* is able to reduce the DSF effect (Fig. 2E). These results suggest

that the reduction of antioxidant proteins by DSF occurs, at least

in part, through miR-17*-mediated translational repression.

miR-17* induces cell death in PCa cells
To determine DSF toxicity to PCa cells, PC-3 and DU-145 cells

were treated with DSF and cultured until colonies formed.

Because the cell density used for colony formation analysis was

100-fold less than the density shown in Fig. 2, the concentration

range of DSF was reduced 100-fold in colony formation

experiments. The results of survival fraction indicate that PCa

cells are extremely sensitive to DSF. More than 95% of the cells

were killed by treatment with 1 mM DSF (Fig. 3A). To verify

whether miR-17* contributes to DSF-mediated cell death, PC-3

cells were transfected with miR-17* and anti-miR-17* prior to

DSF treatment. Colony survival analysis shows that miR-17*

enhances the toxicity of DSF, whereas anti-miR-17* is able to

rescue cells from the DSF effect (Fig. 3B). To further verify that

reduction of antioxidant proteins is a major cause for the toxicity

of miR-17*, the PC-3 cells were co-transfected with miR-17* and

cDNAs ectopically expressing the three antioxidant proteins that

are not susceptible to miR-17* regulation. Cytotoxicity analysis by

trypan blue exclusion assay shows that expression of the three

antioxidant genes rescues cell survival from the toxicity of miR-17*

(Fig. 3C). The corresponding levels of the antioxidant proteins in

the transfected PC-3 cells were verified by Western blots (Fig. 3D).

miR-17* suppresses the tumorigenicity of PCa
To determine the effect of miR-17* on tumor growth, the

sequence of mature miR-17* was cloned into a Tet-on based

lentiviral expression vector. The lentivirus expressing miR-17* was

transducted into PC-3 cells, and a stable cell line with Tet-on

based RFP expression was identified. The effect of miR-17* on the

three antioxidant proteins under Tet-on inducible conditions was

confirmed by Western blots (Fig. 4A). A mouse xenograft tumor

model was used to evaluate the effect of miR-17* on tumor

growth. When the clone was subcutaneously injected into nude

male mice, expression of miR-17* in vivo was induced by

administering Dox containing water. A vehicle control was

included to control the toxic effect of Dox. As shown in Fig. 4B,

the average time for tumors to reach 500 mm3 in the vehicle

control and miR-17* without Dox control groups is 12 to 13 days

(vehicle control without Dox, 12.262.1; vehicle control with Dox,

12.362.8; and miR-17* without Dox, 12.662.8). Notably, the

number of days for the miR-17* with Dox group to reach

500 mm3 tumor size is 2464.9, which is twice as long as the

control groups. To continuously measure tumor growth, mice in

the control groups were kept for 18 days after injection when

tumor size reached the maximum allowable size of 2000 mm3.

The tumor growth rates shown in Fig. 4C indicate that the tumor

growth in the miR-17* with Dox group was significantly delayed

as compared to the tumor growth in the control groups. To verify

whether the expression of miR-17* results in reduced antioxidant

proteins in the miR-17* expressed tumor tissues, the levels of miR-

17* and activities of the antioxidant enzymes in the tumor tissues

were quantified. Corresponding to the increased levels of miR-17*

in the Dox-treated group, the activities of the three antioxidant

enzymes were significantly reduced as compared to the untreated

group (Fig. 4D). Taken together, these results demonstrate that the

expression of miR-17* in PC-3 cell reduces the tumorigenicity, at

least in part, by inhibiting mitochondrial antioxidant function.

This result suggests that in contrast to the oncogenic effect of miR-

17, miR-17* plays a tumor suppressive role in PCa cells.

Discussion

miRNA generally functions as a posttranscriptional repressor,

which is thought to be an important mechanism of gene

regulation. miRNA biogenesis includes canonical primary miRNA

transcription, Drosha/Dicer-mediated cleavages, and strand

preferential selection through Argonaute (AGO) proteins [21].

When one strand is selected for repression of targets, its partner

strand is presumed to be degraded [22]. However, recent studies

have detected both miR-17 and miR-17* in many types of human

tissues [23]. In all cell lines tested, our results demonstrate that

miR-17* is present at a lower level than miR-17. However, the

levels of both miRNAs are higher in PCa cells than in the control

cells (data not shown). Since the level of miR-17 is higher than

miR-17*, the ratio of miR-17 to miR-17* in PCa cells is increased,

suggesting that miR-17 is a preferentially selected strand, although

both miR-17 and miR-17* precursors are transcribed. Recent

studies have demonstrated that AGO1 mediates miRNA produc-

tion in Drosophila, while AGO2 is associated with miRNA*

production [24]. However, the precise mechanism by which AGO

regulates miRNA biogenesis needs to be determined to uncover

preferential accumulation of miRNA strands under different

conditions.

Our data demonstrate that miR-17* suppresses tumorigenicity

of PCa cells, suggesting that the function of miR-17* is opposite to

the oncogenic function of miR-17. Expression of the miR-17-92

cluster is tightly regulated in response to intercellular and

extracellular environments. Transcription of this cluster is up-

regulated by c-Myc under oxidative conditions [25] and down-

regulated by p53 under hypoxia conditions [26]. Interestingly,

DSF, a dithiolcarbomate, induces only the level of miR-17* and

not miR-17. This selective induction is consistent with the tumor

suppressive effect of miR-17* and is in agreement with a previous

finding that DSF induces apoptosis in cancer cells [20]. Taken

together, these results suggest that DSF may be effective as an

anticancer agent, in part by induction of miR-17*.

miRNA-based gene repression is considered to be a crucial

regulator controlling cell fate. However, it is a complicated

regulation system because one gene can be regulated by multiple

miRNAs and one miRNA has many different targets. In general,

the effect of miRNA on gene regulation is dependent on specific

tissue types, development statuses, or stimuli. Thus, identification

of miRNA targets is critical to define the real functions of miRNA

under physiological or pathological conditions. Our study

demonstrates that miR-17* is a negative regulator for three

important antioxidant enzymes located in mitochondria. These

antioxidant enzymes are major components of the primary

antioxidant system and they work in concert to safely remove

ROS generated in mitochondria. Inhibition of these proteins

should lead, therefore, to an accumulation of ROS, resulting in

miR-17* Inhibits Antioxidants
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cytotoxicity. Our findings suggest a novel therapeutic approach to

enhance cell death by miR-17* targeting. In addition, a recent

study demonstrated that miR-17 is able to silence HIF-1a
expression, a transcription factor for maintenance of redox

homeostasis and cell survival under hypoxic conditions [27].

Together, these findings predict that the ratio of miR-17 to miR-

17* may have an important role in the regulation of cellular redox

status.

Although the Warburg effect, a high rate of aerobic glycolysis in

tumors, has been observed in various types of cancer, cancers have

functional mitochondria and mitochondrial respiration is neces-

sary for cancer cell proliferation [28]. Furthermore, cancer cells

have high levels of ROS and also express high levels of antioxidant

proteins to detoxify the elevated rates of ROS generation [29]. For

instance, MnSOD is expressed at a high level in aggressive PCa

cells, which is essential for protection of PCa cells against

radiation-induced ROS [30]. Thus, triggering pro-apoptotic

signaling pathways by targeting mitochondria antioxidant en-

zymes could also be considered an anti-cancer therapeutic

strategy. Our results, which demonstrate that miR-17* inhibition

of mitochondrial antioxidant proteins suppresses tumorigenicity of

PCa cells in vivo, provide experimental evidence for the proof-of-

concept that miRNA* can function as a tumor suppressor by

inhibition of mitochondrial defense capacities.

Figure 3. Cytotoxicity of miR-17* in PCa cells. A, the PCa cells were treated with DSF at the indicated concentrations for colony survival analysis.
The formed colonies were counted and plotted in a log scale. B, the PC-3 cells were transfected with miR-17* and control miRNAs prior to the DSF
treatment. The effects of miR-17* and antisense miR-17* on colony survival were determined. C and D, miR-17* was co-transfected with constructs for
expression of the three antioxidant proteins. The overexpressed antioxidant proteins were confirmed by Western blots with b-actin normalization
and fold changes are indicated (D). Protective effects of the transfected antioxidant enzymes on the cells against miR-17* toxicity were determined by
a trypan blue exclusion assay (C). Three samples (n = 3) were used in the experiments. * (p,0.05) and ** (p,0.01) indicate significances as compared
to control miRNA samples (B) and compared to vehicle control samples (C), (D).
doi:10.1371/journal.pone.0014356.g003

Figure 2. Induction of miR-17* in PCa cells by DSF. A, PCa cells were treated with DSF at indicated concentrations. The levels of the three
antioxidant proteins were measured by Western blots. B, mRNA levels of the three antioxidant genes were quantified by RT-PCR. C, the levels of miR-
17 and miR-17* in the DSF-treated cells were quantified by RT-PCR. The miR-17* levels were confirmed by Northern blots. D, the effect of DSF-induced
miR-17* on the reporter responses was determined. E, after transfected anti-miR-17*, PC-3 cells were treated with DSF. The effect of anti-miR-17* on
restoring antioxidant proteins was quantified by Western blots. b-actin was used to normalize the levels of proteins (A), (E), and the levels of mRNA
(B). The fold changes are indicated. RNU24 was used to normalize the levels of miR-17 and miR-17* (C). b-gal activity was used to normalize luciferase
reporter activities (D). Three samples (n = 3) were used in the experiments (with the exception of Northern blot). * (p,0.05) and ** (p,0.01) indicate
significances as compared to no DSF treatment (A), (C), (D), and compared to no DSF and no miRNA transfected samples (E).
doi:10.1371/journal.pone.0014356.g002
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Materials and Methods

Cell culture and cell toxicity analysis
PrEC, human prostate epithelial primary cells (Cambrex Corp.),

and PrSC, human prostate stromal cells (Clonetics), were grown in

PrEBM medium (Lonza). PZ-HPV-7, HPV-18 transformed

human prostate epithelial cells (American Type Culture Collec-

tion, ATCC), was grown in Keratinocyte-SFM medium (Invitro-

gen). Human epithelial carcinoma cells LNCaP, DU-145 and

adenocarcinoma PC-3 cells (ATCC) were grown in RPMI

medium (Invitrogen) containing 10% FCS (Hyclone). Colony

formation assay was used to quantify toxicity of miR-17* to PCa

cells plated in 6-well plates at low densities. To induce miR-17*

expression, the PCa cells were treated with DSF at a concentration

range of 0 to 1 mM for 24 h. The colonies were washed with 1x

PBS and stained with a crystal violet dye. The surviving fraction

was calculated as the ratio of the number of colonies formed to the

number of cells efficiently plated. Trypan blue exclusion assay was

used to determine the protective effects of increased antioxidant

enzymes on the toxicity of miR-17*. The cells were co-transfected

with miR-17* and expression constructs of the three antioxidant

genes. After culture for 48 h, the transfected cells were stained

with a 0.4% trypan blue dye and counted using a Vi-Cell cell

viability analyzer (Beckman Coulter).

Figure 4. Suppression of tumorigenicity of PC-3 by expression of miR-17*. A, has-miR-17* was cloned in a Tet-on lentiviral vector and stably
transected into PC-3 cells. The clone was tested by RFP screening under Dox- inductive conditions and then confirmed by measuring the expression
of the three target genes using Western blots with b-actin normalization. B and C, the generated clone was injected into male nude mice to
determine its tumorigenicity. The vehicle control was included. The number of days needed for tumor size to reach 500 mm3 is shown in (B) and
calculated tumor growth rates in (C). D, total RNA and proteins were isolated from the tumor tissues and the level of miR-17* and corresponding
activities of the three antioxidant proteins were quantified. Three samples (n = 3) were used in testing the generated miR-17* inducible clone (A). Nine
vehicle control animals (n = 9) with or without DOX treatment and eighteen miR-17* expressed animals (n = 18) with or without DOX treatment were
used to test the effect of miR-17* on tumor growth (B), (C), (D). * (p,0.05) and ** (p,0.01) indicate significances as compared to without DOX control
(A) and (C).
doi:10.1371/journal.pone.0014356.g004
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Micro RNA expression reporter assay
To test whether miR-17* regulates expression of the target

genes, the 39-untranslated regions of the target genes containing

the putative miR-17* binding sites were cloned between Sac I and

Hind III sites of the pMIR-reporter vector (Ambion). The

generated miRNA expression reporter constructs were co-

transfected with b-gal internal control vector (Ambion) into PC-

3 cells using lipofectamine (Invitrogen). After culture for 36 h, the

cells were harvested; luciferase activity was measured using a

luciferase assay kit (Promega); and b-gal activity was measured

using chlorophenol red-a-D-glactopyranoside monosodium sub-

strate (Roche Molecular Biochemicals). Relative luciferase re-

sponses were estimated by b-gal-normalized luciferase activity.

Expression of miR-17*
To increase miR-17* level in PCa cells, miR-17* molecules and

controls (Ambion) were transfected into the cells using oligofecta-

mine (Invitrogen). To induce miR-17* expression in PCa cells, the

cells were treated with disulfiram (Sigma) at a concentration of 0 to

100 mM for 24 h. To stably express miR-17* in PCa cells, a

mature miR-17* sequence spanned by Drosha and Dicer cleavage

sites was cloned into a Tet-on inducible lentiviral vector, TRIPZ

(Open Biosystems), using Xho I and EcoR I sites. Sequence of

insert containing the miR-17* (shown by an underline) is

CTCGAGTGCTGTTGACAGTGAGCGAACTGCAGTGAA-

GGCACTTGTAGTAGTGAAGCCACAGATGTACTACAA-

GTGCCTTCACTGCAGTCTGCCTACTGCCTCGGAGAA-

TTC. The cloned miR-17* was packaged using a translentiviral

packaging system (Open Biosystems). The miR-17* lentivirus was

concentrated and titered prior to transduction into the cells under

2 mg/ml puromycin selective conditions. The miR-17* clone

was further selected by Tet-on inducible expression of a red

fluorescence protein (RFP) tag using media containing 1 mg/ml

doxycycline (Dox). The stable clone was verified by screening the

expression of the targets using Western blots.

Expression of antioxidant enzymes
To rescue cell survival from the toxicity of miR-17*, cDNA

constructs for expression of the three antioxidant proteins were

transfected into PC-3 cells prior DSF treatment. The ectopically

expressed antioxidant proteins are not affected by has-miR-17*,

because the cDNA constructs do not have the 39-untranslational

regions where the binding sites are identified for has-miR-17* binding.

Animals
Four-weeks-old male NCRNU (nu/nu athymic nude) mice were

purchased from Taconic (Hudson, NY). 106 cells mixed with

Matrigel (BD Biosciences) were injected into the right flank of the

mice. The injected mice were separated into two groups: two days

before injection, one group of mice started to drink water

containing 2 mg/L doxycycline and the control group continued

to drink regular water. Tumor volumes were calculated using a

standard formula (A6B26.52; A and B represent the diagonal

tumor lengths).

Western blots
Proteins were extracted from cultured cells and tumor tissues as

described previously (11) and 100 mg of extracted proteins were

electrophoresed on an 8% (w/v) SDS-PAGE gel, transferred onto

a nitrocellulose membrane, and subsequently incubated with

primary antibodies against MnSOD (Upstate Biotech.), Gpx2

(Abcam), TrxR2 and b-actin (Santa Cruz Biotech). Western blots

were visualized using an enhanced chemiluminescence detection

system (ECL, Amersham Pharmacia Biotech.).

Real-time PCR (RT-PCR)
To enrich miRNA in RNA preparation, total RNA was isolated

from the cultured cells and tumor tissues using a mirVana miRNA

Isolation Kit (Ambion). For quantification of miR-17 and miR-

17*, the RNA was analyzed using a TaqMan MicroRNA Reverse

Transcription Kit with internal controls RNU6B, RNU24 and

RNU48 (Applied Biosystems). To quantify mRNA levels of the

miR-17* target genes, the RNA was analyzed using TaqMan

Reverse Transcription Reagents (Applied Biosystems) and RT-

PCR with the Universal ProbeLibrary Set (Roche Applied

Science). RT-PCR was performed in a TaqMan Universal PCR

Master Mix using a LightCycler 480 Real-Time PCR System

(Roche Applied Science).

Northern Blots
The level of miR-17* was quantified using a miRtect-IT

miRNA Labeling and Detection kit (USB Corp.) in accordance

with the manufacturer’s protocol.

Enzyme activity assay
MnSOD activities were measured by the nitroblue tetrazolium

(NBT)-bathocuproin sulfonate (BCS) reduction inhibition method.

Sodium cyanide (2 mM) was used to inhibit Cu/ZnSOD activity

[31]. GPx activity was measured by using a reaction mixture

consisting of 0.2 mM H2O2, 1.0 mM GSH, 0.14 U of glutathione

reductase (GR), 1.5 mM NADPH, 1.0 mM sodium azide, and

0.1 M phosphate buffer (pH 7.4) and 1 mg/ml of supernatant

protein [32]. TrxR activity was measured using Thioredoxin

Reductase Activity Assay Kit (Redoxica) in accordance with the

manufacturer’s protocol.

Statistical data analyses
Multiple independent experiments were performed for each set

of data. Images in Northern blots and Western blots were

quantified using Carestream Molecular Imaging software (Care-

stream Health Inc.). Statistical significance was analyzed using

one-way ANOVA and Tukey’s Multiple Comparison Test,

followed by data analysis with Graphpad Prism.
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