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Abstract

Background: NFkB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory
responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases
(RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However,
a direct relationship between growth factor signaling pathways and NFkB activation has not been previously described,
although FGFs have been known to antagonize TNFa-induced apoptosis.

Methodology/Principal Findings: Here, we demonstrate an interaction between FGFR4 and IKKb (Inhibitor of NFkB Kinase
b subunit), an essential component in the NFkB pathway. This novel interaction was identified utilizing a yeast two-hybrid
screen [1] and confirmed by coimmunoprecipitation and mass spectrometry analysis. We demonstrate tyrosine
phosphorylation of IKKb in the presence of activated FGFR4, but not kinase-dead FGFR4. Following stimulation by TNFa
(Tumor Necrosis Factor a) to activate NFkB pathways, FGFR4 activation results in significant inhibition of NFkB signaling as
measured by decreased nuclear NFkB localization, by reduced NFkB transcriptional activation in electophoretic mobility
shift assays, and by inhibition of IKKb kinase activity towards the substrate GST-IkBa in in vitro assays. FGF19 stimulation of
endogenous FGFR4 in TNFa-treated DU145 prostate cancer cells also leads to a decrease in IKKb activity, concomitant
reduction in NFkB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFa
treatment of DU145 cells, in comparison with TNFa alone, favors proliferative genes while downregulating genes involved
in apoptotic responses and NFkB signaling.

Conclusions/Significance: These results identify a compelling link between FGFR4 signaling and the NFkB pathway, and
reveal that FGFR4 activation leads to a negative effect on NFkB signaling including an inhibitory effect on proapoptotic
signaling. We anticipate that this interaction between an RTK and a component of NFkB signaling will not be limited to
FGFR4 alone.
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Introduction

NFkB is a transcription factor of pivotal importance as a

regulator of genes that control cell differentiation, survival, and

inflammatory responses in mammalian cells. Thus, NFkB has

been the subject of intense research to identify clinically useful

inhibitors, and to understand the intersection of NFkB signaling

with signaling pathways that are important in cancer cell biology.

Upon activation with TNFa, IKKb phosphorylates IkB, the

inhibitor of NFkB, which targets it for proteasomal degradation.

Subsequently, NFkB is released from sequestration in the

cytoplasm, permitting translocation of NFkB dimers into the

nucleus where they activate the transcription of target genes

[2,3,4,5,6,7].

Members of the FGFR family of receptor tyrosine kinases

are of tremendous significance in many aspects of normal

development and, additionally, have been implicated in a

variety of human cancers, such as FGFR4 with regards to

prostate cancer [8,9,10]. Signaling by FGF2 has been shown to

be important for inhibition of apoptosis through PI3K/AKT

and IKKb [11,12], and FGF signaling has also been shown to

decrease TNFa-induced apoptosis through activation of the

p44/42 MAPK pathway [13]. Regulatory interactions between

FGFR4 and NFkB signaling pathways have not previously been

reported, although both pathways represent major axes of cell

signaling. In this work, we describe the discovery of a two-

hybrid interaction between the receptor tyrosine kinase FGFR4

and IKKb, an important regulatory protein in the NFkB

signaling pathway, and confirm this interaction in mammalian

cells. We also present evidence demonstrating a negative

regulatory effect upon NFkB signaling as a consequence of

FGFR4 activation.
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Results

Interaction of FGFR4 and IKKb proteins
Using the intracellular domain of FGFR4 as bait, we conducted

a yeast two-hybrid assay [1] and identified IKKb as an interacting

protein. The bait in this assay, fused to LexA, consisted of amino

acids 373–803 of FGFR4, which includes the entirety of the

intracellular domain. This was screened against a mouse

embryonic cDNA library encoding fusion proteins with the

VP16 transactivation domain. This novel interaction was initially

detected with a b-galactosidase filter lift assay (Figure 1A, left

panel), and confirmed by growth on selective media (Figure 1A,

right panel). The VP16-IKKb clone that interacted with the

LexA-FGFR4 bait consisted of amino acids 607–757 of murine

IKKb (NCBI Gene: BC037723.1, NCBI Protein: NP_

001153246.1), which exhibits complete identity with human

IKKb (NCBI Protein: NP_001547.1) in this region. This region

includes the NEMO binding domain, residues 705–742 [14], and

almost the entirety of the helix-loop-helix domain, residues 559–

756, of human IKKb [15].

To confirm the interaction of FGFR4 and IKKb by

coimmunoprecipitation using full-length proteins, human IKKb
was co-expressed with FGFR4 in HEK293 cells. IKKb interacted

with wild-type FGFR4 (FGFR4-WT), as well as with a

constitutively-activated mutant of the receptor (FGFR4-K645E)

(Figure 1B). Interestingly, IKKb also interacted with a kinase-dead

FGFR4 (FGFR4-KD), indicating that a functional FGFR4 kinase

domain is not essential for the interaction of these two proteins.

These interactions were further confirmed in the opposite

direction. As before, IKKb was detected in FGFR4 immunopre-

cipitates, whether kinase-active or kinase-dead (Figure 1C).

We also utilized mass spectrometry to characterize proteins

recovered in IKKb immunoprecipitates. Following expression of

both the activated FGFR4-K645E and IKKb in HEK293 cells,

IKKb immunoprecipitates were analyzed by immobilized metal

affinity chromatography/nano-liquid chromatography/electro-

spray ionization mass spectrometry (IMAC/nano-LC/ESI-MS)

[16,17]. In two independent samples, in addition to approximately

30% coverage of IKKb as indicated by tryptic peptides, FGFR4-

derived peptides were unambiguously identified as presented in

Table 1.

These results indicate a physical interaction between the

intracellular domain of FGFR4, a receptor tyrosine kinase, and

IKKb, an important regulatory protein in NFkB signaling. The

interaction described here of FGFR4 with IKKb, or indeed with

any protein involved in NFkB signaling, has not been previously

reported.

Tyrosine phosphorylation of IKKb with FGFR4 activation
The primary mode of IKKb regulation is through phosphor-

ylation of serine residues, which can be either activating as when

Ser177 and Ser181 are phosphorylated, or inhibitory if phosphor-

ylated on C-terminal residues [18,19,20,21]. Tyrosine phosphor-

ylation of IKKb in response to growth factor receptor activation

has not been previously reported. We investigated the possible

tyrosine phosphorylation of IKKb in HEK293 cells expressing

FGFR4, and found that IKKb was tyrosine phosphorylated

(Figure 2). Expression of FGFR4 WT led to an increase in tyrosine

phosphorylation of IKKb, in contrast to the kinase-dead mutant of

FGFR4, indicating a requirement for FGFR4 kinase activity in

IKKb tyrosine phosphorylation. Additionally, a strongly activated

mutant of FGFR4 [22] led to a dramatic increase in tyrosine

phosphorylation of IKKb (Figure 2A). Importantly, all experi-

ments were performed using a non-epitope-tagged IKKb. In initial

Figure 1. IKKb interacts with FGFR4. A. Confirmation of yeast two-
hybrid assay with the intracellular domain of FGFR4 bait protein and
IKKb clone isolated by b-gal filter lift assay (left panel) and growth on
selective media (right panel). B. Full-length IKKb and full-length FGFR4
derivatives were transfected in HEK293 cells to examine in vivo
association. Cells were lysed in 1% NP-40 lysis buffer and immunopre-
cipitated with IKKb (H-4) antibody. Immunoblot analysis was performed
with FGFR4 (C-16) antibody (top panel). The membrane was stripped
and reprobed with anti-IKKb (middle panel). The expression of the
FGFR4 derivatives in the whole cell lysate is shown in lower panel. C.
Cells were transfected and lysed as in (B) then immunoprecipitated with
FGFR4 (C-16) antibody. Immunoblot analysis was performed with IKKb
(H-4) antibody (top panel). The membrane was stripped and reprobed
with anti-FGFR4 (second panel). The expression of IKKb and FGFR4 in
the whole cell lysate is shown in the two lower panels.
doi:10.1371/journal.pone.0014412.g001
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control experiments, we determined that the presence of the 3x-

HA epitope tag (YPYDVPDYA) at the N-terminus of IKKb
resulted in a significant increase in the extent of tyrosine

phosphorylation in response to FGFR4 activation (data not

shown), presumably due to phosphorylation at some of the 9

Tyr residues contained within the 3x-HA-tag.

By SDS PAGE, IKKb migrates at ,87 kDa while the lower,

unmodified band of FGFR4 almost comigrates at ,85 kDa. To

ensure that the tyrosine phosphorylation observed was on IKKb
and not autophosphorylation of FGFR4 (Figure 2A), cells were

lysed in RIPA buffer, and immunoprecipitations were washed over

10% sucrose to eliminate protein-protein interactions. In addition,

we examined tyrosine phosphorylation of IKKb when cotrans-

fected with a truncated, myristylated FGFR4 containing only the

intracellular domain of FGFR4 with a myristylation signal for

membrane localization [22]. Using these shorter FGFR4 con-

structs allowed clear separation from IKKb, and revealed that

tyrosine phosphorylation of IKKb was still present (Figure 2B).

Furthermore, we examined the interaction of these proteins and

demonstrated that the myr-FGFR4 proteins still interact with

IKKb in coimmunoprecipitation experiments (Figure 2B).

These experiments thus provide an explanation as to why

tyrosine phosphorylation of IKKb may not have been previously

reported, due to the presence of a Tyr-containing epitope tag on

the most commonly used IKKb vectors [21,23], allowing

artifactual Tyr phosphorylation within the epitope tag. Expression

of non-tagged IKKb in the experiments of Fig. 2, however, reveals

the presence of verifiable Tyr phosphorylation within IKKb
sequences, and which is observed only in the presence of activated

FGFR4 but not kinase-dead FGFR4.

Activated and kinase-dead FGFR4 decrease TNFa-
stimulated NFkB nuclear localization

Utilizing indirect immunofluoresence, we monitored changes in

NFkB translocation to the nucleus in TNFa stimulated cells

expressing FGFR4 proteins. In starved unstimulated cells, NFkB

was observed to be predominantly cytoplasmic (Fig. 3A), presum-

ably due to sequestration by IkB as described by others

[24,25,26,27]. In contrast, NFkB was observed to be predominatly

nuclear following TNFa stimulation. Significantly, when cells

expressing FGFR4 WT were stimulated with TNFa, we observed

a 40% decrease in cells exhibiting NFkB nuclear localization

compared to mock-transfected cells (Fig. 3B). Expression of a

constitutively-activated mutant, FGFR4-K645E, led to a 65%

decrease in cells exhibiting nuclear localization of NFkB. In

contrast, the kinase-dead FGFR4-KD led to only a 30% decrease

in NFkB nuclear localization. These results indicate that

expression of FGFR4-WT, or of the activated mutant FGFR4-

K645E, results in a significant decrease in the ability of TNFa to

stimulate NFkB nuclear localization. Although more modest in its

effects, even FGFR-KD was able to decrease the TNFa-stimulated

nuclear localization of NFkB, possibly reflecting a dominant-

negative effect involving recruitment of effector molecules to a

kinase-dead complex.

FGFR4 activation decreases TNFa-stimulated IKK kinase
activity assayed in vitro

To further examine the effects of FGFR4 expression on

downstream NFkB signaling, changes in endogenous IKKb
activity were monitored in HEK293 cells expressing FGFR4

and/or treated with the FGFR4-specific ligand FGF19 [28].

FGFR4-WT, activated mutant FGFR4-K645E, and kinase-dead

FGFR4-KD were expressed in HEK293 cells, followed by

stimulation with TNFa. Immunoprecipitated IKK complexes

from cell lysates were subjected to in vitro kinase assays utilizing

GST-IkB(1–54) as the substrate [24], and GST-IkB(1–54) phosphor-

ylation was visualized and quantified (Fig. 4A and B). Treatment

with TNFa resulted in an almost 10-fold increase in the IKK

complex activity, compared to unstimulated cells (Lane 2 versus

Lane 1). Cells expressing FGFR4-WT exhibited a 30% reduction

in IKK complex activity (Lane 3), which was further diminished

by expression of the activated mutant FGFR4-K645E, resulting in

a 45% reduction of IKK activity (Lane 4). When FGFR4-KD was

examined in this assay, TNFa-stimulation of IKK complex activity

was unimpaired (Lane 5). These results demonstrate that FGFR4

expression, particularly a constitutively-activated mutant, leads to

significant reduction in TNFa-stimulated IKK kinase activity

when assayed in vitro.

Importantly, when mock-transfected cells were stimulated with

FGF19 to activate endogenous FGFR4 signaling (Lane 6), a

significant reduction (approximately 25%) was observed in IKK

complex activity. This result demonstrates that activation of the

endogenous FGFR4 pathway, in the absence of overexpressed or

transfected FGFR4, is sufficient to negatively regulate NFkB

signaling. This negative regulation was further enhanced when

cells, stimulated with TNFa+FGF19, were expressing excess

FGFR4-WT (Lane 7). The inhibitory effects of FGF19 were

reversed, however, when cells stimulated with TNFa+FGF19 were

Table 1. Mass spec analysis identifies FGFR4 as binding partner of IKKb.

Exp Descrip IPI Protein Index Identifier Probability Coverage Peptide Sequence Instances Unique AA #

1 FGFR4 IPI00304578, IPI00420109 0.9999 3% LEIASFLPEDAGR 5 YES 86–98

1 FGFR4 IPI00304578, IPI00420109 0.9999 3% YNYLLDVLER 6 YES 235–244

2 FGFR4 IPI00304578, IPI00420109 1 9.1% LEIASFLPEDAGR 10 YES 86–98

2 FGFR4 IPI00304578, IPI00420109 1 9.1% YNYLLDVLER 13 YES 235–244

2 FGFR4 IPI00304578, IPI00420109 1 9.1% AEAFGMDPARPDQASTVAVK 2 YES 484–503

2 FGFR4 IPI00304578, IPI00420109 1 9.1% RPPGPDLSPDGPR 1 YES 566–578

2 FGFR4 IPI00304578, IPI00420109 1 9.1% IADFGLAR 4 NO 628–635

2 FGFR4 IPI00304578, IPI00420109 1 9.1% NVLVTEDNVMK 6 NO 617–627

2 FGFR4 IPI00304578, IPI00420109 1 9.1% VLLAVSEEYLDLR 2 YES 746–758

Mass spec analysis of IKKb complexes prepared from HEK293 cells identifies FGFR4 as a binding partner. The table shows recovered FGFR4 peptides. Amino acid
residues refer to the standard FGFR4 protein GenBank: AAB59389.1. Non-unique peptides appear identically within other proteins in the human proteome.
doi:10.1371/journal.pone.0014412.t001

RTK Interaction with IKKb

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14412



expressing FGFR4-KD (Lane 8). Thus, in this assay, the kinase-

dead receptor exhibited a dominant-negative effect.

Interaction of FGFR4 and NFkB pathways in DU145
prostate cancer cells

Since previous research has implicated FGFR4 in prostate

cancer progression, we sought to examine the effect of FGFR4

activation on NFkB signaling in DU145 prostate cancer cells

[9,10], known to express high levels of endogenous FGFR4 [29].

When DU145 cells were stimulated with TNFa, and assayed for

IKK complex activity, a significant increase was observed (Fig. 4C

and D, Lane 2 versus Lane 1). When these cells were also

stimulated with FGF19 in addition to TNFa, a significant decrease

(approximately 65%) in IKK complex kinase activity was observed

(Fig. 4C and D, Lane 3). These results demonstrate that FGF19-

stimulated activation of endogenous FGFR4 in DU145 cells

Figure 2. FGFR4 results in tyrosine phosphorylation of IKKb. A.
HEK293 cells were tranfected with IKKb and FGFR4 derivatives. Cells
were lysed in RIPA and immunoprecipitated with IKKb (H-4) antibody.
Immunoblot analysis was performed with the phosphotyrosine-specific
antibody 4G10 (top panel). The membrane was stripped and reprobed
with IKKb (H-4) antibody (second panel). The expression of the FGFR4
derivatives in the lysate is shown (lower panel). B. HEK293 cells were
tranfected with IKKb and FGFR4 derivatives that lack their extracellular
domain and are targeted to the membrane with a myristylation signal
(myr-FGFR4). Cells were lysed in 1% NP-40 lysis buffer and immuno-
precipitated with IKKb (H-4) antibody. After the proteins were
transferred, the membrane was cut in half and the upper part was
immunoblotted with the phosphotyrosine-specific antibody 4G10 (top
panel). It was stripped and reprobed with IKKb (H-4) antibody (second
panel). The lower half of the membrane was immunoblotted with
FGFR4 (C-16) antibody (third panel). The lysates were examined for the
expression of IKKb and myr-FGFR4 derivatives (bottom panels).
doi:10.1371/journal.pone.0014412.g002

Figure 3. FGFR4 expression relocalizes NFkB. A. HeLa cells were
seeded onto glass coverslips and transfected with FGFR4 derivatives.
The cells were treated with TNFa for 30 min. Indirect immunofluors-
cence was performed. The localization of endogenous NFkB was
dectected with NFkB p65 (F-6) antibody followed by FITC-conjugated
anti-mouse antiserum. Cells expressing the FGFR4 derivatives were
stained with anti-FGFR4 (C-16) and Rh-conjugated anti-rabbit secondary
antibody. The nuclei were visualized with Hoechst dye. The endoge-
nous localization of NFkB is shown in non-transfected cells 2/+ TNFa
treatment (top panels). The altered localization of NFkB in a cell
expressing FGFR4 WT with TNFa treatment is shown in lower panels. B.
Cells expressing FGFR4 derivatives were scored for the localization of
NFkB. 100 cells were counted for each sample in three independent
experiments. The error bars represent the standard deviation.
*, P#0.0001; **, P = 0.0061.
doi:10.1371/journal.pone.0014412.g003
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negatively regulates TNFa-stimulated activity of the IKK

complex.

We also examined the interaction of endogenous IKKb and

FGFR4 in DU145 cells. As shown in Fig. 5A (Lane 2), this

experiment revealed that endogenous FGFR4 protein can be

recovered in an IKKb immune complex. In addition, we

examined NFkB localization in DU145 cells following treatment

with TNFa and/or FGF19. Although we previously used indirect

immunofluoresence, we found that DU145 cells did not sit down

well on coverslips and produced equivocal images. Thus, we used

cell fractionation to prepare nuclear and cytoplasmic fractions

from DU145 cells. While NFkB was primarily cytoplasmic in

untreated cells (Fig. 5B, compare Lanes 1 and 4), TNFa
stimulation resulted in significant nuclear localization of NFkB

(Lane 5). When DU145 cells were stimulated with TNFa, and also

treated with FGF19, the nuclear localization of NFkB was

significantly reduced to a level of 56% relative to TNFa alone

(Lane 6, compare with Lane 5 which was set arbitrarily to 100%).

Lastly, we examined the effects of FGF19 treatment on TNFa-

induced NFkB DNA binding using EMSA assays (Figs. 5C and D).

Figure 4. FGFR4 expression and/or FGF19 stimulation inhibits endogenous IKKb activity. A. HEK293 cells were transfected with empty
vector or the indicated FGFR4 constructs, then starved for 16 h. Cells were then either stimulated with vehicle for 10 min or FGF19 for 10 min prior to
the addition of TNFa for an additional 10 min. The IKK complex was then immunoprecipitated from cytoplasmic extracts and subjected to an in vitro
kinase assay utilizing GST-IkB(1–54) as substrate. The top panel shows phosphorylation to produce 32P-GST-IkB(1–54) during the in vitro kinase reaction,
as visualized by autoradiography. The second panel shows the substrate GST-IkB(1–54) present in each reaction, as determined by Coomassie staining.
The lower panels show immunoblots of whole cell lysates from which immune complexes were prepared for the GST-IkB in vitro phosphorylation
assays. These cell lysates were separated by SDS-PAGE, transferred to Immobilon-P, and probed with the indicated antibodies. B. Kinase reactions
described in (A) were exposed to a Phosphorimager (Bio-Rad). Quantification of 32P incorporation into GST-IkB was performed using the Quantity
One software (Bio-Rad). The average 32P incorporation from three independent experiments, normalized to mock-transfected cells stimulated with
TNFa, is shown +/2 std. dev. *, P#0.0002; **, P = 0.004. C. DU145 cells were starved for 24 h prior to stimulation as described in (A). Kinase assays and
immunoblots were performed as in (A). D. Quantification of 32P incorporation into GST-IkB(1–54) was performed as in (B). The average 32P
incorporation from three independent experiments, normalized to mock-transfected cells stimulated with TNFa, is shown +/2 std. dev. *, P,0.0001.
doi:10.1371/journal.pone.0014412.g004
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Figure 5. Endogenous FGFR4 and IKKb interact in DU145 cells, and FGFR4 activation decreases TNFa-induced signaling. A.
Approximately 500 mg of total lysate was immunoprecipitated with 2 mg IKKb (H-4) mouse mAB in 1% NP-40 lysis buffer. Immunoblot analysis was
performed with FGFR4 (C-16) antibody (top panel). The membrane was stripped and reprobed with anti-IKKb (10AG2) (lower panel). No IKKb (H-4)
antibody was added during the immunoprecipitation for the ‘‘No antibody’’ control (lane 1), whereas an equal amount of normal mouse IgG was
added for the ‘‘IgG’’ control (lane 3). B. DU145 cells were treated with TNFa, or TNFa + FGF19. Cells were fractionated and the cytoplasmic and
nuclear fractions were immunoblotted with NFkB p65 (F-6) antibody (top panel). Membranes were stripped and reprobed with b-tubulin and mSin3A
antibodies to confirm cytoplasmic and nuclear fractions (lower panels). Quantitation of cytoplasmic NFkB in Lanes 1–3, for 3 independent
experiments, was normalized relative to tubulin in lower blot, with NFkB in Lane 1 set to 100%: Lane 1, 100%; Lane 2, 79%67%; Lane 3, 76%69%.
Quantitation of nuclear NFkB in Lanes 4–6, for 3 independent experiments, was normalized relative to Sin3A in lower blot, with NFkB in Lane 5 set to
100%: Lane 4, 16%610%; Lane 5, 100%; Lane 6, 56%618%. C. DU145 cells were stimulated with vehicle for 30 min, TNFa for 30 min, or FGF19 for
10 min prior to the addition of TNFa for an additional 30 min. Nuclear extracts were prepared and equal amounts of protein (2 mg) were subjected to
EMSA with 32P-labeled 30 bp double-stranded oligonucleotide containing a consensus kB-site. D. Samples from (C) were exposed to a
phosphorimager (Bio-Rad). Quantification of NF-kB binding to the probe was performed using the Quantity One software (Bio-Rad). The average NF-
kB binding from three independent experiments, normalized to mock-transfected cells stimulated with TNFa, is shown +/2 std. dev. *, P,0.0001. E.
DU145 cells were treated with TSA, FGF19 and TNFa as indicated. Cell lysates were separated by SDS-PAGE and transferred to Immobilon-P. The
membrane was cut and the top was incubated with antibody against cleaved-PARP (top panel). The lower portion was probed with b-tubulin
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Compared with unstimulated DU145 cells, TNFa stimulated

significant NFkB binding activity (Lane 2, compare with Lane 1).

The addition of FGF19 decreased NFkB DNA binding activity by

about 25% as measured by EMSA (Lane 3).

Using multiple assays, these experiments thus demonstrate that

stimulation of the endogenous FGFR4 receptor in DU145 cells

exerts an unequivocal negative regulatory effect on TNFa-

stimulated outcomes.

FGF19 stimulation reduces TNFa-induced apoptosis in
DU145 cells

Next we examined the effect of FGF19 treatment on TNFa-

induced apoptosis in the DU145 prostate cancer cell line. Since

this cell line has previously been found to be resistant to apoptosis

induced by TNF-family ligands, we utilized trichostatin A (TSA), a

histone deacetylase inhibitor, to sensitize the cells to TNFa
[30,31]. DU145 cells were treated with TSA and FGF19 prior to

the addition of TNFa. Cells were examined for Poly(ADP-ribose)

Polymerase (PARP) cleavage as an indicator of apoptosis. FGF19

treatment reduced the amount of cleaved PARP induced by TNFa
by approximately 35% (Figs. 5E and F). These results indicate that

activation of FGFR4 signaling pathways in DU145 cells by FGF19

is able to negatively regulate apoptosis induced by TNFa
stimulation.

FGF19 treatment alters global TNFa-induced gene
expression in DU145 cells

Changes in global gene expression were quantified by micro-

array analysis using DU145 cells treated with TNFa, FGF19, or

both, and harvested at 1.5 h. Using Mock (2FGF19/2TNFa) as

the control condition, 1148 out of 24,220 probesets satisfied a

corrected p-value cut-off of 0.015 using ANOVA analysis;

furthermore, of these, 307 satisfied a fold-change cut-off of 2.0.

These results are presented graphically in the heat map shown in

Fig. 6A, revealing that significant changes in global gene

expression occur in DU145 cells treated with or without FGF19,

and with or without TNFa, as early as 1.5 h. See Supporting

Information Table S1 for complete data.

The microarray expression data were reanalyzed using the same

statistical cutoff as before, but with the [+TNFa] as the control

condition. Approximately 260 probesets exhibited a fold change

cut-off of 2.0 or more (Supporting Information Table S2). A subset

of these is presented in Table 2, showing all genes involved in the

regulation of cell cycle, apoptosis, or NFkB signaling. The

stimulation of DU145 cells with FGF19 + TNFa, in comparison

to TNFa alone, exhibits the following general effects: 1)

stimulation of cell proliferation by upregulation of proliferative

genes such as GAB1, IRF2, and CCNK; 2) stimulation of cell

proliferation by downregulation of cell cycle inhibitory genes such

Figure 6. FGF19 alters TNFa-stimulated Gene Expression. A. Microarray analysis profiles global expression changes in DU145 cells at 1.5 h
after stimulation 2/+ FGF19 and 2/+ TNFa. Heat map presents expression changes for probesets at a p-value cut-off of 0.015, and which satisfy a fold
change cut-off of 2.0 relative to the [Mock] sample. Complete data are presented in Supporting Information Table S1. B. Schematic showing possible
interactions between FGFR4 and NFkB pathways.
doi:10.1371/journal.pone.0014412.g006

antibody (bottom panel). F. The experiment from (E) was performed in triplicate and quantitated, with the amount of cleaved PARP normalized to the
TNF sample, shown +/2 sem. *, P,0.03.
doi:10.1371/journal.pone.0014412.g005
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as CDKN1A and BTG1; 3) inhibition of genes involved in

regulation of NFkB signaling, such as TNFRSF10B and FADD,

and 4) inhibition of apoptotic responses by downregulation of

genes such as MIF and MTCH1.

Discussion

In this report, we characterize a novel interaction between a

receptor tyrosine kinase, FGFR4, and a key regulatory protein in

the NFkB pathway, IKKb. This interaction was initially identified

by yeast two-hybrid screening (Fig. 1A), confirmed by coimmu-

noprecipitation in both directions in HEK293 cells (Fig. 1B and

1C), and subsequently validated by the identification of FGFR4-

derived peptides by mass spectrometry analysis of IKKb immune

complexes (Table 1). Furthermore, we demonstrate that endoge-

nous FGFR4 and IKKb proteins interact in the DU145 prostate

cancer cell line (Fig. 5A). This latter result is significant, as

otherwise one could argue that the protein-protein interaction

Table 2. Effects of FGF19 + TNFa treatment vsTNFa alone on gene expression in DU145 Cells.

Protein/Gene

Regulation
[FGF+TNF]
vs [TNF]

Fold change
[FGF+TNF]
vs [TNF]) RefSeq

Relevant Gene Ontology
Biological or Molecular
Designations

LRRCC1 // leucine rich repeat
and coiled-coil domain 1

UP 2.26 NM_033402 Cell cycle.

GAB1 // GRB2-associated
binding protein 1

UP 2.07 NM_207123 Cell proliferation.

IRF2 // interferon regulatory
factor 2

UP 2.03 NM_002199 Cell proliferation.

CCNK // cyclin K UP 2.01 NM_001099402 Cell cycle.

DDIT4 // DNA-damage-
inducible transcript 4

DOWN 3.22 NM_019058 Apoptosis.

MIF // macrophage
migration inhibitory factor

DOWN 2.42 NM_002415 Inflammatory response.

TNFRSF10B // tumor necrosis
factor receptor superfamily,
member 10b

DOWN 2.37 NM_003842 Activation of caspase activity;
Activation of NF-kappaB-inducing kinase activity;
Induction of apoptosis via death domain receptors; Activation of
pro-apoptotic gene products.

FADD // Fas (TNFRSF6)-
associated via death domain

DOWN 2.35 NM_003824 Induction of apoptosis via death domain receptors; Activation of
pro-apoptotic gene products;
Regulation of apoptosis;
Positive regulation of I-kappaB kinase/NF-kappaB cascade.

SLC35B2 // solute carrier
family 35, member B2

DOWN 2.33 NM_178148 Positive regulation of I-kappaB kinase/NF-kappaB cascade.

MTCH1 // mitochondrial
carrier homolog 1

DOWN 2.32 NM_014341 Activation of caspase activity;
Positive regulation of apoptosis.

UBB // ubiquitin B DOWN 2.26 NM_018955 Cell cycle.

BRMS1 // breast cancer
metastasis suppressor 1

DOWN 2.22 NM_015399 Negative regulation of cell cycle.

BTG1 // B-cell translocation
gene 1, anti-proliferative

DOWN 2.16 NM_001731 Negative regulation of cell proliferation;
Regulation of apoptosis.

DUSP1 // dual specificity
phosphatase 1

DOWN 2.13 NM_004417 Cell cycle.

PLEKHG4 // pleckstrin homology
domain containing, family G
(with RhoGef domain) member 4

DOWN 2.11 NM_015432 Cell death.

FNTB // farnesyltransferase,
CAAX box, beta

DOWN 2.09 NM_002028 Negative regulation of cell proliferation.

TNIP2 // TNFAIP3 interacting
protein 2

DOWN 2.06 NM_024309 I-kappaB kinase/NF-kappaB cascade.

CDKN1A // cyclin-dependent
kinase inhibitor 1A (p21Cip1)

DOWN 2.04 NM_078467 Cell cycle arrest; Negative regulation of cell proliferation.

CHTF8 // CTF8, chromosome
transmission fidelity factor 8

DOWN 2.03 NM_001039690 Cell cycle.

CHMP1A // chromatin
modifying protein 1A

DOWN 2.02 NM_001083314 Cell cycle.

CKS2 // CDC28 protein
kinase regulatory subunit 2

DOWN 2.00 NM_001827 Cell cycle; Cell proliferation.

Microarray expression data are presented for all genes involved in the regulation of cell cycle, apoptosis, or NFkB signaling, and which satisfy a fold-change cut-off of 2.0
and p-value cut-off of 0.015. For complete details and information, see Supporting Information Table S2.
doi:10.1371/journal.pone.0014412.t002

RTK Interaction with IKKb

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e14412



results from overexpression in HEK293 cells. We have addition-

ally demonstrated a similar protein-protein interaction between

the related receptor FGFR2 and IKKb (data not shown).

Although it seems likely that this may represent a direct interaction

between these two proteins, at present, we cannot exclude the

possibility that an additional unidentified protein may be involved

in mediating this interaction.

These results raise the question of the biological significance of

this interaction. In one approach to this question, we examined the

kinase activity of IKKb complexes recovered from cells expressing

different mutants of FGFR4, using phosphorylation of GST-IkB(1–

54) as the readout. We show that expression of FGFR4-WT or an

activated FGFR4 K645E mutant, but not kinase-dead FGFR4,

leads to a decrease in the in vitro kinase activity of endogenous

IKKb complexes (Fig. 4A and 4B), indicating that FGFR4 kinase

activity is required for the reduction in IKKb activity. Moreover,

stimulation of endogenous FGFR4 with the ligand FGF19 leads to

a decrease in the kinase activity of IKKb complexes prepared from

either HEK293 or DU145 cell lines (Fig. 4). In an alternate

approach, we show that expression of FGFR4 and/or stimulation

of endogenous FGFR4 with FGF19 leads to a reduction in NFkB

nuclear localization as revealed by immunofluorescence localiza-

tion (Fig. 3) and by cell fractionation (Fig. 5B). In a third approach,

we also demonstrate a decrease in the amount of NFkB DNA

binding using EMSA assays (Fig. 5C and 5D). In the three

different cell lines used, similar effects of FGF19/FGFR4

activation were observed with regards to the downregulation of

NFkB signaling. From these assays, we conclude that FGFR4

activation overall exerts an inhibitory effect upon IKKb activity

and NFkB signaling.

Using DU145 prostate cancer cells, we demonstrate that FGF19

stimulation results in a decrease in TNFa-induced apoptosis

(Fig. 5E and 5F). In addition, we utilized microarray expression

analysis to profile global changes in gene expression in a short time

interval (1.5 h) following treatment of DU145 cells with FGF19,

TNFa, or both. When microarray data for DU145 cells stimulated

with FGF19 + TNFa were compared with cells stimulated with

TNFa alone, we found that the addition of FGF19 in general

favored proliferative changes, while decreasing the expression of

inflammatory and apoptotic genes (Table 2). Key examples of

proliferative functionalities are: the increased expression of GAB1

(GRB2-associated binding protein 1), which stimulates Ras/

MAPK activity [32]; the increased expression of CCNK, cyclin

K, which activates CDK9 and downregulates p27Kip1 [33,34]; the

downregulation of CDKN1A, the cyclin-dependent kinase inhib-

itor p21Cip1 [35]; and the downregulation of BTG1, a member of

an anti-proliferative gene family that regulates cell growth and

differentiation [36]. On the other hand, prominent examples of

anti-apoptotic changes are: the decreased expression of the

proinflammatory mediator MIF (macrophage migration inhibitory

factor) [37]; decreased expression of TNFRSF10B (TNF receptor

superfamily, member 10b), also known as TRAIL-R2 or DR5, a

Death Receptor directly involved in apoptosis [38]; decreased

expression of FADD (FAS-associated death domain protein),

which functions as an adapter protein in assembly of the death-

inducing signaling complex [39]; and decreased expression of the

pro-apoptotic mitochondrial outer membrane protein MTCH1

(mitochondrial carrier homolog 1), also known as Presenilin 1-

associated protein [40]. We interpret these changes to be generally

pro-proliferative and anti-apoptotic in nature, without over-

interpreting the importance of altered expression of any individual

gene, which would require further detailed analysis.

The data presented in Fig. 2 demonstrate tyrosine phosphor-

ylation of IKKb in cells expressing a kinase-active FGFR4, but not

kinase-dead FGFR4. The simplest interpretation of this result

would be that FGFR4 directly phosphorylates IKKb and

modulates its activity and/or stability. However, many other

proteins are likely to be recruited into a complex with FGFR4 and

IKKb, and so the possibility exists that IKKb tyrosine phosphor-

ylation may be the result of an ancillary protein kinase in the

complex. Other FGFR family members have been shown to

recruit a variety of regulatory proteins including Grb2-SOS [41],

Pyk2/RAFTK [42], RSK2 [43], SH2-B [44] and others; any of

these might mediate effects through interaction with NFkB family

members. Although beyond the scope of the present paper, using

mass spectrometry, we have identified multiple sites of Tyr

phosphorylation on IKKb (data not shown). Understanding the

role of these multiple phosphorylation sites is an ongoing area of

research and will require significant effort to unravel. We have also

demonstrated that coexpression of IKKb with other members of

the FGFR family, FGFR1, FGFR2, and FGFR3, results in IKKb
Tyr phosphorylation (data not shown); thus we are confident that

the interaction we report here is not restricted to FGFR4 alone.

Several previous studies have reported activation of NFkB

signaling downstream of RTKs. For example, EGF stimulation of

EGFR in A431 cells or in mouse embryo fibroblasts enhanced the

degradation of IkBa and resulted in NFkB activation [45]. Using

non-small cell lung adenocarcinoma cell lines, this effect was

subsequently shown to require phosphorylation of IkBa Tyr-42 and

to be independent of IKK [46]. EGF treatment of ER-negative

breast cancer cells also led to NFkB activation and indirectly,

through increased expression of cyclin D, increased cell cycle

progression [47]. Overexpression of the related receptor, ErbB2, in

MCF-7 breast carcinoma cells resulted in enhanced NFkB

activation in response to ionizing radiation [48]. A recent study

[49] analyzing a prostate cancer tissue microarray documented a

significant role of ErbB/PI3K/Akt/NFkB signaling in the progres-

sion of prostate cancer. These studies thus present a fairly consistent

picture of NFkB activation downstream of EGFR activation.

In contrast, however, inhibition of EGFR in cervical carcinoma

cells by the small molecule inhibitor PD153035 led to a dose-

dependent increase in NFkB activation [50]. In studies of an

unrelated RTK, activation of Ron by its ligand, hepatocyte growth

factor-like protein, decreases TNFa production in alveolar

macrophages after LPS challenge, resulting in decreased NFkB

activation and increased IkB activity [51]. Thus, it seems clear that

the interplay between the many different human RTKs with

NFkB signaling components will be complex and most likely will

depend on cell type and specific conditions.

FGFR4 is widely expressed during development, especially

during myogenesis and development of endodermally derived

organs [52,53]. In addition, FGFR4 may be constitutively-activated

or overexpressed in a variety of human neoplasias, including

hepatocellular carcinoma [54,55], prostate cancer [9,56], rhabdo-

myosarcoma [57] and breast cancer [58,59], and the potential

utility of FGF19 and/or FGFR4 as a target for growth inhibition

has been proposed [54,60,61]. While chronic FGFR stimulation can

undoubtedly serve as a driver for cellular proliferation, the results

reported here indicate a more complex relationship in that FGFR4

also clearly interacts with IKKb. FGFR4 activation leads to an

inhibitory effect on NFkB signaling, including an inhibitory effect

on proapoptotic signaling mediated by NFkB pathways.

Materials and Methods

Cell culture
HeLa and HEK293 cells were grown in DMEM with 10% FBS

and 1% Pen/strep; DU 145 cells were grown in RPMI1640 with
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10% FBS and 1% Pen/strep. HeLa and DU145 cells were

maintained in 5% CO2; HEK-293 cells were maintained in 10%

CO2. Cell lines were obtained from ATCC (American Type

Culture Collection) (http://www.atcc.org/).

Plasmid constructs
The full-length FGFR4-WT and constitutively active FGFR4-

K645E were described previously [22]. The kinase dead (K504M)

and E681K derivatives were generated by QuikChange site-

directed mutagenesis (Stratagene). The HA-IKKb clone was

received from Dr. Mark Hannink (University of Missouri). The

HA-tag was removed by QuikChange site-directed mutagenesis

and confirmed by DNA sequencing. The GST-IkB(1–54) plasmid

was provided by Prof. Alexander Hoffmann (UCSD).

Antibodies, reagents, immunoprecipitation and
immunoblot

Antibodies were obtained from the following sources: FGFR4

(C-16), IKKb (H-4), IKKb (10AG2), NFkB p65 (F-6), b-tubulin

(H-235), IKKc (FL-419), normal mouse IgG (sc-2025) from Santa

Cruz Biotechnology; phospho-p44/42 MAPK (Thr202/Tyr204;

E-10) and cleaved PARP (Asp214) from Cell Signaling; MAPK

(ERK1+ERK2) from Zymed; 4G10 (antiphosphotyrosine) from

Upstate Biotechnology; horseradish peroxidase (HRP) anti-mouse,

HRP anti-rabbit from GE Healthcare; fluorescein-conjugated

anti-mouse from Sigma and rhodamine-conjugated anti-rabbit

from Boehringer-Mannheim. FGF19 and TNFa were obtained

from R&D. mSin3A antibody (Santa Cruz, K-20) was a gift from

Dr. Alexander Hoffmann. Poly(Glu, Tyr) was obtained from

Sigma. Trichostatin A (TSA) was a gift from Dr. Leor Weinberger

(UCSD). Techniques for immunoprecipitation and immunoblot-

ting were as described previously [22,42,62]. Endogenous protein

interactions were detected by coimmunoprecipitation using

500 mg of total cell lysate as previously described [42,44]. To

examine the effect of FGF19 stimulation on TNFa-induced

apoptosis, DU145 cells were starved overnight, pre-treated with

100 ng/ml TSA as previously described [30], followed by 50 ng/

ml FGF19 plus 50 mg/ml heparin for 25 min, after which TNFa
was added at 1 ng/ml for 3 h.

Yeast two-hybrid assay
The yeast two-hybrid assay was conducted as described [1,63].

Briefly, the Saccharomyces cerevisiae strain L40 generated by Dr.

Stan Hollenberg was transformed with derivatives of pBTM116

(constructed by Dr. Paul Bartel and Dr. Stan Fields). A LexA bait

plasmid was constructed containing the juxtamembrane and

intracellular region of FGFR4 (amino acids 373–803), fused in

frame with LexA in pBTM116. This was screened against a 9.5

d.p.c. mouse embryonic cDNA library encoding fusion proteins

with the transactivation domain of pVP16, kindly provided by

Dr. Stan Hollenberg. Controls for two-hybrid assays, LexA-

lamin as a negative control, and VP16-PLCc as a positive

control, were previously described [63]. The two-hybrid screen,

His6 minimal media assays, lacZ reporter b-galactosidase filter

assay, and the use of controls were performed as previously

described [63].

Indirect immunofluorescence
Techniques for indirect immunofluorescence have been previ-

ously described [22,42,62]. Briefly, HeLa cells plated on glass

coverslips were transfected using Fugene 6 (Roche) or calcium

phosphate precipitation, starved the following day for 24 h, and

treated with TNFa for 30 min prior to fixation.

In vitro kinase assays
HEK293 or DU145 cells were transfected as indicated prior to

overnight starvation in DMEM, then treated with 25 ng/ml

FGF19 for 10 min and/or followed by 10 ng/ml TNFa for

10 min. Cells lysates were prepared, immunoprecipitated with

IKKc antibody, collected on Protein A-Sepharose beads, and

subjected to in vitro kinase assay utilizing GST-IkB(1–54) as the

substrate [24,64,65]. In vitro kinase assays containing 1 mCi

[c-32P]-ATP in a total of 20 mM ATP were incubated at 30uC
for 30 min, separated by 10% SDS-PAGE, exposed to film or

phosphorimager screen, and quantitated.

Electrophoretic Mobility Shift Assay (EMSA)
EMSA assays were as described elsewhere [66]. Briefly, 2 mg of

total nuclear protein was reacted at room temperature for 15 min

with excess 32P-labeled 30 bp double-stranded oligonucleotide

(AGCTTGCTACAAGGGACTTTCCGCTGTCTACTTT) con-

taining a consensus kB-site in 6 ml binding buffer (10 mM Tris-HCl

pH 7.5, 50 mM NaCl, 10% glycerol, 1% NP-40, 1 mM EDTA,

0.1 mg/ml Poly(dI,dC)). Complexes were resolved on a non-

denaturing 5% acrylamide gel containing 5% glycerol, and visualized

and quantified using a Phosphorimager (Bio-Rad). Experimental

details and probe specificity have been described [67].

NFkB localization by cell fractionation
DU145 cells were plated on 10 cm dishes. Upon reaching 80%

confluency, cells were starved overnight and treated the next day

with 50 ng/ml FGF19 and 1 mg/ml heparin for 10 min prior to

the addition of 10 ng/ml TNFa for 30 min. Cell lysates were

fractionated as for EMSA.

Mass spectrometry analysis
HEK293 cells were plated (36106 per 15 cm dish, 10 dishes

total), 1 day prior to transfection with expression plasmids for both

the activated FGFR4-K645E and IKKb. After an additional 24 h,

cell lysates were prepared as described [16,17]. IKKb immune

complexes were prepared by incubation with IKKb (H-4)

antiserum at 4uC overnight, collected with Protein A-sepharose

for an additional 2 h, and then trypsinized in 2 M urea. Peptides

were analyzed by the Proteomics Facility of the Sanford-Burnham

Medical Research Institute using immobilized metal affinity

chromatography/nano-liquid chromatography/electrospray ioni-

zation mass spectrometry (IMAC/nano-LC/ESI-MS) [16,17].

Microarray expression analysis
DU145 cells were plated (86105 per 10 cm dish), and the

following day cells were starved for 24 h. Cells were treated with

50 ng/ml FGF19 and 50 mg/ml heparin for 10 min prior to the

addition of 10 ng/ml TNFa for 1.5 h. RNA was isolated using

RNA-BEE (Tel-Test) per manufacturer’s protocol. RNA was

analyzed by the UCSD Moores Cancer Center Microarray

Shared Resource using Affymetrix GeneChip Human Gene 1.0

ST Arrays (# 901085). Duplicate samples were analyzed in

duplicate microarrays, and data were further analyzed by

VAMPIRE and GeneSpring. All data is MIAME compliant and

the raw data have been deposited in the Gene Expression

Omnibus (GEO) (accession number GSE22807).

Supporting Information

Table S1 Microarray Expression Data of DU145 Cells.

Found at: doi:10.1371/journal.pone.0014412.s001 (0.03 MB

PDF)
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Table S2 Microarray Expression Data of DU145 Cells Using

TNFalpha as Control.

Found at: doi:10.1371/journal.pone.0014412.s002 (0.12 MB

PDF)
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