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Abstract
Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for
intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection
show decline in language or verbal memory function postoperatively. Two recent studies
demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes
in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative
to other noninvasive measures used alone. Addition of language and memory lateralization data
from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies.
Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool
for making better-informed decisions regarding elective surgery based on a quantitative
assessment of cognitive risk.
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Introduction
The first reports of human functional brain mapping using MRI scanners appeared 20 years
ago [1,2]. Functional magnetic resonance imaging (fMRI) in its most common form, using
endogenous blood oxygen-level-dependent (BOLD) contrast, is now practiced routinely at
most medical centers. Despite extensive research and clinical experience, uncertainty
persists over the use of fMRI in the presurgical evaluation for epilepsy. This article reviews
evidence supporting the use of fMRI for predicting postoperative language and verbal
memory deficits in patients undergoing elective anterior temporal lobe (ATL) surgery. This
clinical setting continues to be the most common indication for the intracarotid amobarbital
(Wada) test. Recent studies suggest that fMRI provides a valid noninvasive alternative to the
Wada test for most patients.

Although the focus of this review is on lateralization of language and verbal memory
functions, it should be noted that fMRI also provides detailed activation maps that can in
some cases be used to guide surgical resections. For example, fMRI can localize primary
and secondary motor areas, even in some patients whose brain anatomy has been profoundly
distorted by developmental anomalies or mass lesions [3-8]. Together with diffusion tensor
imaging (DTI) localization of corticospinal white matter pathways, these maps can be
valuable in helping surgeons maximize a resection zone while avoiding critical motor areas
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[9]. Similarly, fMRI can localize primary auditory, somatosensory, and visual cortex. In the
case of visual cortex, the fMRI experiment can be designed to generate a retinotopic map
showing the precise cortical representation of each region in the visual field [10,11],
allowing the surgeon to know with reasonable certainty what pattern of visual field loss will
result from resection of a particular cortical zone. The utility of these sensory and motor
activation maps, however, rests on well-established lesiondeficit relationships. The
discovery of retinotopic maps, for example, was based on decades of careful observation in
patients with focal occipital lesions [12], thus there is no doubt about the effects that can be
expected from focal damage to these regions.

Compared to these relatively straightforward relationships, the relationships between focal
lesions and specific language deficits are complex and incompletely understood. The
traditional emphasis on Broca and Wernicke areas has given way in recent decades to a
much more complex picture of the language system, with recognition that both production
and comprehension of language involve widely distributed brain networks, including many
regions outside the traditional Broca and Wernicke zones [13-21]. In addition, evidence
suggests that the exact location of language areas varies from person to person [22,23],
perhaps accounting for some of the wide variation in aphasia outcome after focal lesions
[24]. Given this uncertainty and the highly distributed nature of language processes,
important concerns have been raised about the meaning of activation foci identified by fMRI
language experiments. Unlike with primary motor and sensory areas, the effect of removing
an fMRI-defined “language area” is simply not known. Some areas identified by fMRI could
participate in language functions but play a nonessential role. Because language tasks
engage a variety of general cognitive processes, such as attention and working memory,
some of the areas “activated” in an fMRI language study may represent these general
cognitive processes rather than the language components of interest. Adding to the
uncertainty surrounding fMRI language maps is the fact that there are many different task
paradigms available, which produce markedly different patterns of activation (see [25-28]
for examples of comparisons between paradigms). Thus, a brain area declared “not active”
using one paradigm might very well turn out to be “active” using another. These legitimate
concerns about the specificity and sensitivity of fMRI-defined language maps currently limit
the usefulness of such maps for detailed surgical planning. Those who would use fMRI
language maps in this way run two risks: sparing of “active” regions that are actually not
critical for language, resulting in sub-optimal seizure control; and resection of critical
language zones that are “not active” merely due to insensitivity of the particular fMRI
protocol employed, resulting in post-operative language deficits. Only through carefully
designed and systematic studies – in which resections are performed blind to the fMRI data,
standardized procedures are used for assessing outcome, and quantitative measures are made
of the anatomical and functional lesion – will the usefulness of fMRI language maps for
planning surgical resections be determined.

Although in the author's opinion fMRI language maps should not yet be routinely used for
planning resection boundaries, fMRI already has a clearly established role to play as an
alternative to the Wada test. Temporal lobectomy is highly effective for seizure control
[29-31], yet roughly half of patients undergoing dominant ATL resection experience
postoperative language [32-37] or verbal memory decline [38-46]. The traditional role of the
Wada test is to estimate the risk of decline by determining the patient's hemispheric
dominance for language and memory. Risk assessment provides the patient and physician
with additional information that can be useful in deciding whether to proceed with treatment
in elective situations. This information can also be used to select high-risk patients for more
invasive procedures such as electrical stimulation mapping.
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Use of FMRI for Predicting Naming Outcome
Measuring Language Lateralization

The Wada test was originally developed to assess the risk of language decline in patients
undergoing brain surgery [47], based on the assumption that operating on the language-
dominant hemisphere entailed increased risk. Though the Wada test has been in use for over
50 years, until recently the relationship between Wada language asymmetry and
postoperative language outcome had never been quantified. The historical reasons for this
curious knowledge gap relate to the traditional view of language lateralization as
dichotomous (left or right) or trichotomous (left, right, or bilateral). Under this schema, it
was obvious that operating on a non-dominant hemisphere would be safer than operating on
a language-dominant hemisphere. Several aspects of this formulation have changed in recent
decades. First, language lateralization has come to be seen as a continuously graded rather
than an all-or-none phenomenon, with relative degrees of dominance rather than distinct
categories [48-54]. Thus, while the majority (∼75%) of patients who undergo left
hemisphere surgery for epilepsy are left-hemisphere dominant for language, there is
variation within this group in terms of the degree of left dominance. This variability raises
the question of whether graded degrees of language dominance are reflected in graded levels
of risk. Second, quantitative neuropsychological evaluation for postoperative language
deficits has become a more standard practice, resulting in a shift of the clinical focus away
from prediction of severe aphasia (which is very rare after standard left ATL resection) and
toward prediction of more moderate degrees of language decline.

Use of fMRI for predicting language outcome in epilepsy surgery is therefore motivated by
two critical assumptions. First, it is assumed that patients show varying degrees of language
(mainly naming) deficit after surgery, and that it is desirable to know before surgery what
degree of decline can be expected. Second, it is assumed that the degree of decline will be
related to the degree of language lateralization toward the surgical hemisphere. The goal of
fMRI in this context is thus to provide a reliable and valid measure of language
lateralization. Many fMRI language activation paradigms have been described, differing in
the type of language stimuli, stimulus modality, language task, control stimuli, and control
task used, raising the question of which of these paradigms, if any, is optimal. Though
different paradigms have seldom been compared quantitatively, it is clear that they can
produce very different, in some cases entirely non-overlapping, activation patterns. This
variation is related primarily to the cognitive, sensory, and motor processes engaged by the
tasks, and the degree to which the language and control conditions differ in engaging these
specific processes [55].

Several simple criteria can be applied in assessing the usefulness of fMRI language
paradigms. First, the pattern of activation obtained in healthy, right-handed adults should be
lateralized to the left hemisphere, as almost all such individuals are left-hemisphere
dominant for language [50,56]. Second, the activation should be robust, i.e., it should be
reliably obtained across individuals and in the same general brain regions. Third, there
should be concordance between language lateralization measured with the fMRI paradigm
and lateralization measured with other techniques, such as the Wada test, in the same
individuals. Finally, it may be desirable that the paradigm produce activation in particular
target brain regions. In the case of ATL surgery, for example, activation asymmetry in the
temporal lobe might be more predictive of outcome than activation in the frontal lobe, thus a
paradigm that activates the temporal lobe would have advantages over one that does not.

Lateralization of fMRI activation is typically expressed numerically in the form of a
laterality index (LI). The first such LI was based on a simple count of the voxels that
survived thresholding in each hemisphere [49]. The formula (L - R)/(L + R), where L and R
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refer to the voxel counts in each hemisphere, yields a number that varies from +1 when all
activated voxels are on the left side to -1 when all activated voxels are the right. LI values
obtained with this method vary as a function of the threshold used for defining activated
voxels, thus several authors have explored alternative asymmetry measures that do not
require thresholding [27,53,54,57-59]. No consensus regarding the optimal method for
calculating activation asymmetry has yet emerged from these studies.

Figure 1 illustrates the critical importance of task selection in language fMRI studies. The
figure shows average activation maps obtained while 26 right-handed subjects listened to
spoken words and performed a semantic decision task [14,28]. In the top panel, BOLD
signal during this task is compared to a “resting” baseline. The activated regions are largely
bilateral, including bilateral auditory, working memory, general executive, and attention
networks. In the middle panel of the figure, the semantic decision task is compared to a
nonlinguistic auditory control task. In this case the activated regions are strongly left-
lateralized and include several left temporal, parietal, and prefrontal regions (indicated by
blue arrows) that were not observed when the resting baseline was used. These data illustrate
in dramatic fashion how activation patterns depend on the choice of control condition. In the
second paradigm, the use of an active nonlinguistic control task “subtracts out” bilateral
activation in early auditory, general executive, and attention networks, leaving activation in
left-lateralized language networks. These results also demonstrate that many high-level
language processing regions are active during the “resting” state and can only be observed
when an active nonlinguistic control condition is employed [28,60-64]. Graphs in the lower
portion of Figure 1 show average activation volumes and laterality indexes for each task
contrast, again illustrating the dramatic differences that can occur simply by changing the
choice of control condition.

Many fMRI language paradigms have been compared to Wada language testing
[25,26,49,53,58,65-80]. These studies generally report high concordance rates, typically in
the 80-90% range (for reviews, see [81,82]). In assessing concordance, patients are usually
assigned to categories such as “left dominant”, “right dominant”, or “mixed” on each test.
The proportion of concordant cases depends strongly on how these arbitrary categories are
defined.

Predicting Outcome
With so many studies focusing on fMRI-Wada correlations, it is easy to forget that the
actual aim of measuring language lateralization prior to brain surgery is prediction of
language outcome. An fMRI procedure that reliably identifies patients at risk for
postoperative naming deficits would be a valuable clinical tool, especially if the fMRI
results added information over and above other available tests. Previous studies have
identified demographic and behavioral variables that may predict outcome. For example, left
ATL patients who develop seizures at an earlier age generally have a lower risk for
postoperative language decline [34,83,84], presumably because earlier age at onset is
associated with a higher probability of language shift to the right hemisphere [50]. Better
preoperative naming performance is associated with a higher risk for decline [32]. It has
long been assumed that Wada language testing is predictive of language outcome, though
the actual evidence on this issue is limited to a few case reports [33,47].

Sabsevitz et al. [37] studied 24 consecutively encountered patients undergoing left ATL
resection. The fMRI paradigm used a contrast between an auditory semantic decision task
and a nonlinguistic tone decision task (see Figure 1). A previous study had shown that
asymmetry of activation with this task paradigm is correlated with language lateralization on
the Wada test [49]. For the Sabsevitz et al. study, separate LIs were computed for the whole
hemisphere, frontal lobe, temporal lobe, and angular gyrus. All patients also underwent
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Wada testing and preoperative assessment of confrontation naming using the 60-item Boston
Naming Test (BNT). The BNT was administered again at 6 months after surgery, and a
change score was calculated as the difference between postop and preop scores. Surgeries
were performed blind to the fMRI data but were tailored using intraoperative electrical
stimulation mapping.

Compared to a control group of 32 right ATL patients, the left ATL group declined
postoperatively on the BNT (p < .001), with an average change score of -9. Within the left
ATL group there was considerable variability, with 13 patients (54%) showing variable
degrees of decline relative to the control group. The temporal lobe fMRI LI was the
strongest predictor of outcome (r = -.64, p < .001), indicating that language lateralization
toward the left (surgical) temporal lobe was related to poorer naming outcome, whereas
lateralization toward the right temporal lobe was associated with little or no decline. This
fMRI measure showed 100% sensitivity, 73% specificity, and a positive predictive value of
81% in predicting significant decline. By comparison, the Wada language LI showed a
somewhat weaker correlation with outcome (r = -.50, p < .05), 92% sensitivity, 43%
specificity, and a positive predictive value of 67%. Notably, the frontal lobe fMRI LI was
also less predictive (r = -.47, p < .05), suggesting that an optimal LI is one that indexes
lateralization in the surgical resection area.

Sabsevitz et al. also created multivariate models to determine the contribution of fMRI
relative to other noninvasive predictors. Both age at epilepsy onset (r = -.35, p = .09) and
preoperative performance (r = -.39, p = .06) showed strong trends toward a correlation with
outcome, and together these variables accounted for 27% of the variance in outcome.
Adding the temporal lobe fMRI LI to this model accounted for an additional 23% of the
variance, indicating a significant increase in predictive power (p < .01). Addition of the
Wada language asymmetry score did not improve the model (1% increase in explained
variance, p > .1).

These results show how preoperative fMRI can be used to stratify patients in terms of risk
for language decline in the setting of left ATL resection, allowing patients and physicians to
more accurately weigh the risks and benefits of the surgery. It is crucial to note, however,
that these results hold only for the particular methods used in the study and may not
generalize to other fMRI protocols, analysis methods, patient populations, or surgical
procedures. Future studies should not only confirm these results using larger patient
samples, but also test whether other fMRI protocols in current widespread use have similar
predictive capability.

Use of FMRI for Predicting Verbal Memory Outcome
Verbal memory decline after left ATL resection is a consistent finding in group studies and
is observed in 30-60% of such patients [38-46,85-90]. A main focus of the preoperative
evaluation in ATL surgery candidates is, therefore, to estimate the risk of verbal memory
decline in patients undergoing left ATL resection. The Wada memory test was originally
developed for the purpose of predicting global amnesia after ATL resection [91]. Studies of
its ability to predict material-specific verbal memory decline have been inconsistent, with
several suggesting good predictive value [41,87-89,92] and others showing little or none,
particularly when used in combination with non-invasive tests [42,45,46,93-95]. Some
authors have questioned the general validity and reliability of Wada memory results
[96-102]. Others have emphasized the sensitivity of the test to certain details of the stimulus
presentation, procedures used for recall, and other methodological factors [103-106].

As with any invasive test, a major concern with the Wada test is whether it adds information
beyond that available from noninvasive measures. Structural MRI of the hippocampus is
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modestly predictive of memory outcome [42,45,107-109] as is inter-ictal positron emission
tomography [110]. Preoperative neuropsychological testing is one of the strongest predictors
of outcome, in that patients with good memory abilities prior to surgery are more likely to
decline than patients with poor preoperative memory [39,42-46,85,86,111-113]. Age at
onset of epilepsy is also predictive, with decline more likely in those with later age at onset
[43,86,111,114]. Recent research has investigated whether fMRI might provide additional
predictive information.

Medial Temporal Lobe FMRI as a Predictor of Verbal Memory Outcome
Medial temporal lobe (MTL) activation during memory encoding and retrieval tasks has
been a subject of intense research with fMRI (for reviews, see [115-121]). FMRI of this
region is not without technical challenges. The hippocampal formation is small relative to
typical voxel sizes used in fMRI. Within-voxel averaging of signals from active and inactive
structures may thus impair detection of hippocampal activity. Loss of MRI signal in the
medial ATL due to macroscopic field inhomogeneity can affect the amygdala and
occasionally the anterior hippocampus [122-124]. Finally, the baseline state employed in
subtraction analyses is probably of critical importance. Human imaging evidence suggests
that the hippocampus is relatively activated in the “resting” state [61,125,126]. Stark &
Squire [61], for example, showed that the hippocampus and parahippocampus both show
higher BOLD signals during “rest” than during active perceptual discrimination tasks.
Activation of these MTL regions during encoding of pictures was detected using the
perceptual discrimination tasks as a baseline, but not when “rest” was used as a baseline.

Several fMRI studies have examined the relationship between preoperative medial temporal
lobe (MTL) activation and memory outcome after ATL surgery (Table 1). Rabin et al. [127]
studied 23 patients undergoing ATL resection (10 left, 13 right) using a scene-encoding task
that activates the posterior MTL bilaterally [128]. Patients were tested for delayed
recognition of the same pictures immediately after scanning. Delayed picture recognition
was then tested again after surgery, and the change on this recognition task was used as the
primary memory outcome variable. About half of the patients in both surgery groups
declined on this measure. Preoperative fMRI activation lateralization toward the side of
surgery was correlated with decline, as was the extent of activation on the side of surgery.
These results were the first to demonstrate a relationship between preoperative fMRI
activation asymmetry and outcome, yet they are of limited relevance to the problem of
predicting verbal memory outcome. In the left ATL patients studied by Rabin et al., neither
Wada memory nor fMRI activation asymmetry predicted verbal memory decline as
measured by standard verbal memory tests.

Richardson and colleagues studied correlations between hippocampal activation and verbal
memory outcome in three small studies [129-131]. Patients performed a semantic decision
task with words during the fMRI scan and then took a recognition test after scanning. Words
that were subsequently recognized were contrasted with words that were judged to be
familiar but not recognized. In the first of these studies [129], the authors observed a focus
in the anterior hippocampus where asymmetry of activation (i.e., left -right) predicted verbal
memory outcome on a standardized word list learning test after left ATL resection. Greater
activation in this region on the left side relative to the right side predicted greater decline.
The second study by the same authors, however, showed correlations between outcome and
hippocampal activation on either side [130]. That is, greater activation unilaterally on the
left or the right was associated with poorer outcome. The correlation between verbal
memory decline after left ATL resection and activation in the right hippocampus is difficult
to explain, as patients with greater activation in the right hippocampus preoperatively would
be expected to have a better outcome, not a worse outcome [132]. This finding was not
replicated in the third study [131], which reported a correlation between left hippocampus

Binder Page 6

Epilepsy Behav. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activation and poor outcome but no correlation between right hippocampus activation and
outcome. A methodological limitation in all of these studies is that they are based on fMRI
activation values extracted from a small region of interest defined by searching the volume
for voxels that show a correlation with outcome across a group of patients. As the
coordinates of these correlated voxels have varied across the studies, it is not clear how this
method of extracting activation values would be applied to a newly encountered patient.

Frings et al. studied the relationship between preoperative hippocampal activation
asymmetry and verbal memory outcome in a small sample of patients undergoing left or
right ATL resection [133]. The fMRI protocol used a task in which patients viewed a
virtual-reality environment containing colored geometric shapes and either memorized the
location of these objects or performed a recognition decision following memorization. These
“memory tasks” were contrasted with a control task in which patients saw two versions of a
geometric object and indicated which one was larger. This fMRI contrast had been shown
previously to activate posterior MTL regions (mainly posterior parahippocampus)
bilaterally. A lateralization index was computed using the entire hippocampus as the region
of interest. Verbal memory change was marginally correlated (1-tailed p = .077) with
preoperative LI in the left ATL surgery group, but not in the right surgery group. A
significant correlation (1-tailed p < .05) was obtained when the groups were combined,
indicating greater verbal memory decline when preoperative hippocampal activation was
lateralized more toward the side of surgery.

Köylü et al. examined correlations between preoperative MTL activation and verbal
memory performance before and after ATL surgery [134]. Average fMRI activation
produced by a semantic decision - tone decision contrast was measured in left and right
MTL regions of interest including the hippocampus and parahippocampus. The authors
observed correlations between MTL activation and both preoperative and postoperative
verbal memory. In the left ATL surgery group, postoperative memory was positively
correlated with preoperative activation in the right MTL. Unfortunately, the analyses
examined only pre- and postoperative scores in isolation and not pre- to postoperative
change, which is the primary issue of clinical interest.

Finally, Binder et al. [135] measured hippocampal activation asymmetry in 30 left and 37
right ATL surgery patients using a scene-encoding task. When contrasted with a perceptual
matching task, this paradigm activates the anterior hippocampus bilaterally [136]. Activation
asymmetry was correlated with side of seizure focus (p = .004) and with Wada memory
testing performed in the same patients (p = .009). This activation asymmetry, however, did
not predict verbal memory outcome.

Although preliminary, these studies are informative in several ways. Three studies
[127,133,135] used complex scene encoding tasks that activate the MTL bilaterally on
fMRI, a pattern that suggests activation of both verbal and nonverbal memory encoding
systems. Prediction of verbal memory outcome using these paradigms seems to be weak at
best. In contrast, the verbal memory fMRI paradigms used by Richardson et al. provide
better predictive information regarding verbal memory outcome, at least when the analysis is
confined to a specific region of the hippocampus. The persistent difficulty in applying the
latter approach, however, is identifying a priori the small set of voxels that will be
predictive in a given individual patient.

Language Lateralization as a Predictor of Verbal Memory Outcome
Binder et al. studied the relationship between preoperative language lateralization and verbal
memory outcome [46]. The premise underlying this approach is that the verbal episodic
memory encoding system is likely to be co-lateralized with language. More generally, the
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authors proposed that the type of material preferentially encoded by the left or right MTL
depends on the type of information it receives from the ipsilateral neocortex. According to
this model, the MTL in the language-dominant hemisphere is more critical for supporting
verbal episodic memory, and language lateralization should be a reliable indicator of verbal
memory lateralization.

The study included 60 patients who underwent left ATL resection and a control group of 63
patients who underwent right ATL resection. The fMRI paradigm used a contrast between
an auditory semantic decision task and a nonlinguistic tone decision task (Figure 1). Verbal
memory was measured preoperatively and 6 months after surgery using the Selective
Reminding Test, a word-list learning and retention test [137]. Other neuropsychological
testing included the story recall and visual reproduction subtests from Wechsler Memory
Scale [138]. Language LIs were computed from the fMRI data using a large region of
interest covering the lateral two-thirds of each hemisphere [50]. All patients also underwent
preoperative Wada language and object memory testing.

The left ATL surgery group showed substantial changes in verbal memory, with an average
raw score decline of 43% on word list learning and 45% on delayed recall of the word list.
Of the individual patients in this group, 33% declined significantly on the learning measure
and 55% on the delayed recall measure. In contrast, the right ATL surgery group improved
slightly on both measures. Neither group showed significant changes on any nonverbal
memory tests. Preoperative measures that predicted verbal memory decline in the left
surgery group included the preoperative score, the fMRI language LI, the Wada language
asymmetry score, the age at onset of epilepsy, and the Wada memory asymmetry score
(Table 2, Figure 2).

In applying these results to real clinical situations, the main questions to resolve are: which
tests make a significant independent contribution to predicting outcome, and how should
results from these tests be optimally combined? Binder et al. addressed these questions in a
series of stepwise multiple regression analyses. The first variables entered in all analyses
were preoperative test performance and age at onset of epilepsy. The rationale for including
these variables first is that they can be obtained with relatively little expense and at no risk
to the patient. Next, the fMRI language LI was added, followed by simultaneous addition of
both the Wada memory and Wada language asymmetry scores. The rationale for adding
fMRI in the second step is that fMRI is non-invasive and carries less risk than the Wada test.
The two Wada scores were added together in the final step because these measures are
typically obtained together.

Preoperative score and age at onset of epilepsy together accounted for 49% of the variance
in List Learning outcome and 54% of the variance in Delayed Recall outcome. The fMRI LI
accounted for an additional 10% of the variance in List Learning outcome (p = .001) and 7%
of the variance in Delayed Recall outcome (p = .003). Addition of the Wada language and
memory data did not significantly improve the predictive power of either model (R2 change
for List Learning = .025, R2 change for Delayed Recall = .017, both p > .1). When patients
were categorized as showing decline or no decline based on a negative change score 1.5
standard deviations or more from the mean change score in the right ATL surgery group, the
List Learning outcome model showed sensitivity of 90% and specificity of 80% for
predicting decline on List Learning. The Delayed Recall outcome model showed sensitivity
of 81% and specificity of 100% for predicting decline on Delayed Recall.

These results are interesting for several reasons. Most intriguing is the finding that language
lateralization, whether measured by fMRI or the Wada test, is a better predictor of verbal
memory outcome than Wada memory testing. The explanation for this apparent paradox
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rests on two hypotheses. One, mentioned above, is that verbal memory encoding processes
tend to co-lateralize with language processes. The second hypothesis is that many tests of
memory lateralization do not specifically assess verbal memory encoding. That is, visual
stimuli such as objects and pictures can be dually encoded using both verbal and visual
codes. Wada memory procedures that use such stimuli (including the Wada test used by
Binder et al.) therefore do not provide a measure of verbal memory lateralization, but rather
a measure of overall memory lateralization that includes both verbal and nonverbal encoding
processes. Together, these two hypotheses suggest that language asymmetry may be a better
indicator of verbal memory lateralization than Wada memory asymmetry (Figure 3). In
particular, some patients with left temporal seizures show right-lateralized memory on the
Wada test due to a strong nonverbal memory component in the right hemisphere, but are
nevertheless at high risk for verbal memory decline because their verbal memory remains
strongly lateralized to the left (Figure 3B).

These data also have direct implications for clinical practice. First, they confirm the utility
of fMRI for predicting verbal memory outcome in patients undergoing left ATL resection.
The fMRI language LI is a safe, noninvasive measure that improves prediction accuracy
relative to other noninvasive measures. The finding that Wada memory lateralization is not a
strong predictor of verbal memory outcome and adds no predictive value beyond these
noninvasive measures confirms several previous studies that also examined multivariate
prediction models [42,45,93-95]. Although Binder et al. found that Wada language
asymmetry is a stronger predictor of verbal memory outcome than Wada memory
lateralization, even the addition of both Wada tests together did not contribute additional
predictive power after inclusion of available noninvasive data (including fMRI). These
results call into question the routine use of the Wada test for predicting material-specific
verbal memory outcome, particularly if a validated fMRI measure of language lateralization
is available. Some practitioners value the Wada test as an indicator of risk for severe
“global” amnesia, such as is known to occur after bilateral MTL damage [91,139-141].
According to this theory, anesthetization of the to-be-resected MTL is necessary to discover
whether the contralateral hemisphere is healthy enough to support memory on its own.
Empirical observations, however, provide little support for such an approach. Cases of
global amnesia following unilateral temporal lobe resection --especially modern, well-
documented cases -- appear to be rare in the extreme [96,97,99,100,142,143]. Furthermore,
there is ample evidence that contralateral hemisphere “memory failure” on the Wada test
suffers from poor test-retest reliability and does not reliably predict amnesia [96-102]. Given
the availability of fMRI for predicting material-specific verbal memory outcome, perhaps
use of the Wada test should be reserved only for those patients at greatest risk for global
amnesia, i.e. patients undergoing unilateral ATL resection who have structural or functional
evidence of damage to the contralateral MTL. Because it is noninvasive and requires fewer
personnel, fMRI is also likely to be substantially less costly than the Wada test [144].

Conclusions
Recent studies demonstrate that preoperative fMRI can be used to predict postoperative
naming and verbal memory changes in patients undergoing left ATL resection. Most
importantly, two studies showed that fMRI significantly improves prediction accuracy when
combined with other noninvasive measures, and that Wada testing does not add significant
additional predictive power [37,46]. Thus, fMRI provides patients and practitioners with a
tool for making better-informed decisions based on a quantitative assessment of cognitive
risk. The quantitative nature of these predictions represents something of a paradigm shift, in
that traditional predictive models using the Wada test tended to be implemented as a
dichotomous “pass or fail” judgment. The alternative approach followed in many recent
studies involves the development of multivariate models that compute predicted change
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scores (Figure 4). These quantitative predictions provide a much more realistic picture of the
actual outcomes, which are not dichotomous, but vary smoothly along a continuum.
Ultimately, of course, the decision whether to undergo surgery is a categorical one, but the
categorical nature of the decision does not obviate the need for precision regarding the
factors that enter into the decision. A patient disabled by frequent seizures may be willing to
tolerate a substantial decline in naming or verbal memory, whereas a patient who depends
on such cognitive abilities for her livelihood may be willing to risk a small decline but not a
large one.

In practice, implementation of fMRI methods for predicting outcome in epilepsy surgery
will depend on the availability of a validated fMRI protocol and involvement of clinicians
with the necessary clinical expertise. Fast T2*-weighted imaging capabilities necessary for
fMRI are a standard feature on currently marketed clinical MRI systems, and fMRI is now
available in some form at most medical centers. Implementation of fMRI protocols requires
only installation of relatively low-cost audiovisual stimulation and response monitoring
systems. Of course, fMRI is not suitable for all epilepsy patients. The largest outcome
studies cited above [37,46] included all patients with full-scale IQ >70, but those with more
severe cognitive impairments may not be able to comply with task requirements. Wada
testing will continue to play a role in determining language dominance in such patients, as
well as in younger children who are unable to comply with tasks or to refrain from large
movements during scanning. In the author's experience, even many cognitively disabled
patients can be scanned successfully when given clear instruction and feedback by a
professional with expertise in cognitive assessment. Similarly, the experience at many
centers suggests that successful fMRI studies can be conducted in most children over age 10
given adequate instruction, encouragement, and feedback.

Research Highlights

• The probability of naming and verbal memory deficits after anterior temporal
lobectomy increases with the degree of language lateralization to the operated
hemisphere.

• Preoperative fMRI language lateralization improves the accuracy of outcome
prediction relative to other noninvasive indicators alone.

• The addition of Wada language and memory test results does not improve
accuracy relative to using fMRI alone.
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Figure 1.
fMRI data from 26 healthy volunteers performing two language mapping paradigms. The
activation maps are displayed as serial sagittal sections through the brain at 9-mm intervals.
X-axis locations for each slice are given in the top panel. Both maps are thresholded at a
whole-brain corrected p < 0.05 using voxel-wise p < 0.0001 and cluster extent > 200 mm3.
The three steps in each color continuum represent voxel-wise p thresholds of 10-4, 10-5, and
10-6. Top: Semantic Decision relative to Resting. Middle: Semantic Decision relative to
Tone Decision. Blue arrows in the middle image indicate left hemisphere language areas
that are active during the resting state and thus visible only when an active nonlinguistic task
is used as the baseline. The graph at bottom left shows the mean volume of activation in left
and right hemispheres for each task contrast. The graph at bottom right shows the mean LI
for each task contrast. Error bars represent standard error. (Adapted from [28])
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Figure 2.
Relationship between fMRI lateralization indexes and individual change scores on a word-
list learning verbal memory test (Continuous Long-Term Recall from the Selective
Reminding Test) in 60 left ATL surgery patients (r = -.432, p <.001). (Adapted from [46])
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Figure 3.
Schematic diagram of a hypothetical model of memory and language representation in
temporal lobe epilepsy (TLE). The yellow ovals represent language systems, red rectangles
represent verbal episodic memory encoding systems in the MTL, and green rectangles
represent non-verbal episodic memory encoding systems in the MTL. (A) Typical state in
healthy subjects and patients with late-onset epilepsy. Language and verbal memory
processes are strongly left-lateralized, placing the patient at high risk for verbal memory
decline. (B) Chronic left TLE without shift. The left MTL is dysfunctional, causing Wada
memory lateralization to the right, but verbal memory has not shifted, leaving the patient at
high risk for verbal memory decline. (C) Chronic left TLE with shift. Both language and
verbal memory functions have shifted partially to the right, lowering the risk for verbal
memory decline. Note the partial lack of correspondence, across patient types, between
Wada memory asymmetry and level of risk. (Adapted from [46])
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Figure 4.
Predicted vs. observed individual memory change scores in 60 left ATL surgery patients on
tests of word list learning and delayed recall. Predicted list learning change scores were
computed from the formula: 17.67 - 0.704(Preoperative Score) - 0.280(Age at Onset) -
12.19(fMRI LI). Predicted delayed recall change scores were computed from the formula:
3.76 - 0.688(Preoperative Score) - 0.093(Age at Onset) - 2.14(fMRI LI). (Adapted from
[46])
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Table 2

Preoperative predictors of verbal memory outcome in 60 left ATL surgery patients. List Learning and Delayed
Recall refer to the Consistent Long-Term Recall and Delayed Recall subtests of the Selective Reminding Test.
Simple correlation values and P values for each correlation are shown.

Predictor Variable List Learning P Delayed Recall P

Preoperative Score -.662 <.0001 -.654 <.0001

FMRI Language LI -.432 <.001 -.316 <.05

Wada Language Asymmetry -.398 <.01 -.363 <.01

Age at Epilepsy Onset -.341 <.01 -.390 <.01

Wada Memory Asymmetry -.331 <.05 -.135 n.s.
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