Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 2;66(Pt 11):o2705–o2706. doi: 10.1107/S1600536810038535

N-(2,5-Dimeth­oxy­phen­yl)-N′-(4-hy­droxy­pheneth­yl)urea

Hyeong Choi a, Byung Hee Han a, Yong Suk Shim a, Sung Kwon Kang a,*, Chang Keun Sung b
PMCID: PMC3009132  PMID: 21588920

Abstract

In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the 2,5-dimeth­oxy­phenyl ring and the urea plane is 20.95 (8)°. The H atoms of the urea NH groups are positioned syn to each other. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to tyrosinase, see: Kubo et al. (2000); Perez-Gilbert & Garcia-Carmona (2001). For the development of tyrosinase inhibitors, see: Shiino et al. (2001); Khan et al. (2006); Garcia & Fulrton (1996); Kojima et al. (1995); Cabanes et al. (1994); Lemic-Stojcevic et al. 1995); Casanola-Martin et al. (2006); Thanigaimalai et al. (2010); Passi & Nazzaro-Porro (1981).graphic file with name e-66-o2705-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O4

  • M r = 316.35

  • Monoclinic, Inline graphic

  • a = 10.7275 (6) Å

  • b = 9.6016 (5) Å

  • c = 16.9388 (10) Å

  • β = 107.838 (2)°

  • V = 1660.84 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 13358 measured reflections

  • 3184 independent reflections

  • 2296 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.186

  • S = 1.06

  • 3184 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038535/jh2214sup1.cif

e-66-o2705-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038535/jh2214Isup2.hkl

e-66-o2705-Isup2.hkl (153.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O20 0.82 (3) 2.23 (2) 2.617 (3) 109 (2)
N7—H7⋯O19i 0.82 (3) 2.48 (3) 3.182 (3) 144 (2)
N10—H10⋯O19i 0.86 (3) 2.23 (3) 3.005 (3) 150 (2)
O19—H19⋯O9ii 0.86 (4) 1.80 (4) 2.654 (3) 172 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work is the result of a study performed under the ‘Human Resource Development Center for Economic Region Leading Industry’ Project, supported by the Ministry of Education, Science & Technology (MEST) and the National Research Foundation of Korea (NRF).

supplementary crystallographic information

Comment

Tyrosinase known as a polyphenol oxidase, is a multifunctional copper-containing enzyme widely distributed in nature. It is the key enzyme in the undesirable browning of fruits and vegetables, and coloring of skin, hair, and eyes in animals (Kubo et al., 2000; Perez-Gilbert & Garcia-Carmona, 2001). Nowadays, tyrosinase inhibitors are thought to be clinically useful for the treatment of some dermatological disorders associated with melanin hyperpigmentation (Shiino et al., 2001) and useful in cosmetic products and food industry (Khan et al., 2006). Recently, various tyrosinase inhibitors have been reported such as hydroquinone (Garcia & Fulrton, 1996), ascorbic acid derivatives (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), azelaic acid (Lemic-Stojcevic et al., 1995), arbutin (Casanola-Martin et al., 2006) and N-phenylthiourea (PTU) (Thanigaimalai et al., 2010). Most of the tyrosinase inhibitors are phenol/catechol derivatives, structurally similar to tyrosine or L-DOPA, which act as suicide substrates of tyrosinase (Passi & Nazzaro-Porro, 1981). However, most of them are not potent enough to put into practical use due to their weak individual activities or safety concerns. Undoubtedly, it is required to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. In continuing our research on the development of tyrosinase inhibitors for new whitening agents, we have synthesized the title compound, (I), from the reaction of 2-(4-hydroxyphenyl)ethyl amine and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, we report the crystal structure of the title compound, (I).

The 2,5-dimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the phenyl ring and the plane of urea moiety is 20.95 (8) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of urea are positioned syn to each other.

Experimental

The tyramine and 2,5-dimethoxyphenyl isocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and used without further purification. The title compound (I) was prepared from the reaction of 2-(4-hydroxyphenyl)ethyl amine (0.20 g, 1 mmol) with 2,5-dimethoxyphenyl isocyanate (0.18 g, 1.2 mmol) in acetonitrile (8 ml) and added 4-(dimethylamino)pyridine (0.06 g, 0.5 mmol) as a catalyst, with stirring. The reaction was completed within 5 h at room temperature. The solvents were removed under reduced pressure. The solids collected and washed with dichloromethane. Removal of the solvent gave a light yellow solid (69%, m.p. 436 K). Single crystals were obtained by slow evaporation of the ethanol at room temperature.

Refinement

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and metylene, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids. Intramolecular N—H···O bond is shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).

Crystal data

C17H20N2O4 F(000) = 672
Mr = 316.35 Dx = 1.265 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5519 reflections
a = 10.7275 (6) Å θ = 2.5–27.8°
b = 9.6016 (5) Å µ = 0.09 mm1
c = 16.9388 (10) Å T = 296 K
β = 107.838 (2)° Needle, colourless
V = 1660.84 (16) Å3 0.31 × 0.27 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.044
φ and ω scans θmax = 26.0°, θmin = 2.0°
13358 measured reflections h = −13→6
3184 independent reflections k = −11→9
2296 reflections with I > 2σ(I) l = −20→16

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0966P)2 + 0.4089P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.32 e Å3
3184 reflections Δρmin = −0.46 e Å3
218 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3898 (2) 0.5854 (2) 0.12845 (14) 0.0581 (5)
C2 0.5212 (2) 0.6136 (3) 0.13837 (16) 0.0698 (7)
C3 0.5565 (3) 0.6644 (3) 0.0720 (2) 0.0856 (8)
H3 0.644 0.6835 0.0783 0.103*
C4 0.4643 (3) 0.6869 (3) −0.00277 (19) 0.0845 (8)
H4 0.4896 0.7201 −0.0471 0.101*
C5 0.3347 (3) 0.6610 (3) −0.01298 (15) 0.0724 (7)
C6 0.2967 (2) 0.6085 (2) 0.05238 (14) 0.0636 (6)
H6 0.209 0.589 0.0452 0.076*
N7 0.35963 (18) 0.5297 (2) 0.19699 (12) 0.0639 (5)
H7 0.423 (3) 0.498 (3) 0.2325 (16) 0.068 (7)*
C8 0.24229 (19) 0.5317 (2) 0.21258 (12) 0.0540 (5)
O9 0.14248 (14) 0.58188 (19) 0.16417 (9) 0.0701 (5)
N10 0.24242 (19) 0.4718 (2) 0.28412 (11) 0.0638 (5)
H10 0.315 (3) 0.441 (3) 0.3168 (16) 0.075 (8)*
C11 0.1271 (2) 0.4629 (3) 0.31035 (13) 0.0683 (7)
H11A 0.1342 0.3814 0.3453 0.082*
H11B 0.0514 0.4501 0.2618 0.082*
C12 0.1046 (2) 0.5896 (3) 0.35756 (13) 0.0684 (7)
H12A 0.0949 0.6706 0.322 0.082*
H12B 0.0231 0.5774 0.3703 0.082*
C13 0.21277 (19) 0.6172 (2) 0.43716 (13) 0.0558 (5)
C14 0.2326 (3) 0.5296 (3) 0.50382 (15) 0.0820 (8)
H14 0.1792 0.4519 0.4992 0.098*
C15 0.3299 (3) 0.5540 (3) 0.57772 (16) 0.0874 (9)
H15 0.3413 0.4926 0.6219 0.105*
C16 0.40944 (19) 0.6679 (2) 0.58626 (13) 0.0597 (6)
C17 0.3892 (2) 0.7585 (2) 0.52187 (14) 0.0638 (6)
H17 0.4404 0.8383 0.5274 0.077*
C18 0.2917 (2) 0.7315 (2) 0.44770 (14) 0.0654 (6)
H18 0.2798 0.7935 0.4038 0.078*
O19 0.50449 (17) 0.6876 (2) 0.66089 (11) 0.0816 (6)
H19 0.552 (3) 0.759 (4) 0.658 (2) 0.122*
O20 0.60539 (16) 0.5880 (3) 0.21599 (12) 0.0954 (7)
C21 0.7414 (3) 0.6140 (7) 0.2294 (2) 0.1518 (19)
H21A 0.7898 0.5914 0.2857 0.228*
H21B 0.7541 0.7105 0.2192 0.228*
H21C 0.7719 0.5574 0.1923 0.228*
O22 0.2495 (2) 0.6902 (3) −0.08960 (12) 0.0991 (7)
C23 0.1155 (4) 0.6852 (3) −0.10046 (19) 0.1056 (11)
H23A 0.0681 0.7078 −0.1569 0.158*
H23B 0.094 0.7512 −0.064 0.158*
H23C 0.0919 0.5933 −0.0879 0.158*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0566 (11) 0.0614 (13) 0.0551 (12) 0.0002 (9) 0.0154 (10) −0.0068 (10)
C2 0.0567 (13) 0.0777 (16) 0.0735 (15) −0.0004 (11) 0.0175 (12) −0.0106 (12)
C3 0.0665 (15) 0.097 (2) 0.100 (2) −0.0084 (14) 0.0355 (15) −0.0010 (17)
C4 0.0879 (18) 0.0901 (19) 0.0855 (19) −0.0109 (15) 0.0411 (16) 0.0065 (15)
C5 0.0828 (16) 0.0724 (16) 0.0603 (14) −0.0089 (12) 0.0195 (12) 0.0028 (11)
C6 0.0610 (12) 0.0702 (15) 0.0565 (13) −0.0088 (10) 0.0135 (10) −0.0019 (11)
N7 0.0488 (10) 0.0852 (14) 0.0512 (11) 0.0095 (9) 0.0059 (8) 0.0050 (9)
C8 0.0531 (11) 0.0588 (12) 0.0426 (10) 0.0045 (9) 0.0037 (9) −0.0033 (9)
O9 0.0538 (8) 0.0941 (12) 0.0551 (9) 0.0151 (8) 0.0057 (7) 0.0144 (8)
N10 0.0603 (11) 0.0815 (13) 0.0453 (10) 0.0137 (9) 0.0100 (8) 0.0071 (9)
C11 0.0644 (13) 0.0858 (17) 0.0483 (12) −0.0152 (11) 0.0079 (10) −0.0045 (11)
C12 0.0465 (11) 0.1008 (18) 0.0511 (12) 0.0057 (11) 0.0050 (9) −0.0050 (12)
C13 0.0456 (10) 0.0698 (14) 0.0466 (11) 0.0055 (9) 0.0061 (8) −0.0026 (10)
C14 0.0843 (17) 0.0838 (17) 0.0614 (14) −0.0297 (14) −0.0020 (12) 0.0050 (13)
C15 0.1003 (19) 0.0795 (17) 0.0587 (14) −0.0219 (15) −0.0109 (13) 0.0176 (13)
C16 0.0501 (11) 0.0611 (13) 0.0541 (12) 0.0033 (9) −0.0044 (9) 0.0008 (10)
C17 0.0597 (12) 0.0574 (12) 0.0646 (13) −0.0045 (10) 0.0047 (10) 0.0023 (10)
C18 0.0679 (14) 0.0651 (14) 0.0544 (12) 0.0060 (11) 0.0056 (10) 0.0120 (10)
O19 0.0738 (11) 0.0760 (12) 0.0659 (10) −0.0059 (8) −0.0214 (8) 0.0041 (8)
O20 0.0496 (9) 0.1491 (19) 0.0801 (12) 0.0044 (10) 0.0088 (8) −0.0044 (12)
C21 0.0506 (16) 0.283 (6) 0.114 (3) −0.004 (2) 0.0139 (17) −0.020 (3)
O22 0.0948 (14) 0.1328 (18) 0.0650 (11) −0.0083 (12) 0.0173 (10) 0.0177 (11)
C23 0.136 (3) 0.073 0.0813 (19) −0.0271 (17) −0.0063 (19) 0.0146 (15)

Geometric parameters (Å, °)

C1—C6 1.385 (3) C12—H12A 0.97
C1—C2 1.394 (3) C12—H12B 0.97
C1—N7 1.403 (3) C13—C18 1.364 (3)
C2—O20 1.370 (3) C13—C14 1.371 (3)
C2—C3 1.381 (4) C14—C15 1.382 (3)
C3—C4 1.364 (4) C14—H14 0.93
C3—H3 0.93 C15—C16 1.367 (3)
C4—C5 1.370 (4) C15—H15 0.93
C4—H4 0.93 C16—C17 1.360 (3)
C5—O22 1.368 (3) C16—O19 1.373 (2)
C5—C6 1.387 (3) C17—C18 1.391 (3)
C6—H6 0.93 C17—H17 0.93
N7—C8 1.363 (3) C18—H18 0.93
N7—H7 0.82 (3) O19—H19 0.86 (4)
C8—O9 1.230 (2) O20—C21 1.429 (3)
C8—N10 1.341 (3) C21—H21A 0.96
N10—C11 1.440 (3) C21—H21B 0.96
N10—H10 0.86 (3) C21—H21C 0.96
C11—C12 1.515 (4) O22—C23 1.394 (4)
C11—H11A 0.97 C23—H23A 0.96
C11—H11B 0.97 C23—H23B 0.96
C12—C13 1.509 (3) C23—H23C 0.96
C6—C1—C2 119.7 (2) C13—C12—H12B 108.7
C6—C1—N7 123.2 (2) C11—C12—H12B 108.7
C2—C1—N7 117.1 (2) H12A—C12—H12B 107.6
O20—C2—C3 125.5 (2) C18—C13—C14 116.88 (19)
O20—C2—C1 115.2 (2) C18—C13—C12 122.3 (2)
C3—C2—C1 119.3 (2) C14—C13—C12 120.8 (2)
C4—C3—C2 120.7 (2) C13—C14—C15 121.7 (2)
C4—C3—H3 119.7 C13—C14—H14 119.1
C2—C3—H3 119.7 C15—C14—H14 119.1
C3—C4—C5 120.5 (3) C16—C15—C14 120.3 (2)
C3—C4—H4 119.7 C16—C15—H15 119.8
C5—C4—H4 119.7 C14—C15—H15 119.8
O22—C5—C4 116.1 (2) C17—C16—C15 119.08 (19)
O22—C5—C6 123.9 (2) C17—C16—O19 122.8 (2)
C4—C5—C6 120.0 (2) C15—C16—O19 118.1 (2)
C1—C6—C5 119.8 (2) C16—C17—C18 119.7 (2)
C1—C6—H6 120.1 C16—C17—H17 120.1
C5—C6—H6 120.1 C18—C17—H17 120.1
C8—N7—C1 127.99 (19) C13—C18—C17 122.2 (2)
C8—N7—H7 118.4 (18) C13—C18—H18 118.9
C1—N7—H7 113.4 (18) C17—C18—H18 118.9
O9—C8—N10 122.0 (2) C16—O19—H19 110 (2)
O9—C8—N7 122.9 (2) C2—O20—C21 117.5 (3)
N10—C8—N7 115.05 (18) O20—C21—H21A 109.5
C8—N10—C11 122.76 (19) O20—C21—H21B 109.5
C8—N10—H10 118.8 (17) H21A—C21—H21B 109.5
C11—N10—H10 118.4 (17) O20—C21—H21C 109.5
N10—C11—C12 114.0 (2) H21A—C21—H21C 109.5
N10—C11—H11A 108.8 H21B—C21—H21C 109.5
C12—C11—H11A 108.8 C5—O22—C23 118.7 (2)
N10—C11—H11B 108.8 O22—C23—H23A 109.5
C12—C11—H11B 108.8 O22—C23—H23B 109.5
H11A—C11—H11B 107.7 H23A—C23—H23B 109.5
C13—C12—C11 114.19 (19) O22—C23—H23C 109.5
C13—C12—H12A 108.7 H23A—C23—H23C 109.5
C11—C12—H12A 108.7 H23B—C23—H23C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7···O20 0.82 (3) 2.23 (2) 2.617 (3) 109 (2)
N7—H7···O19i 0.82 (3) 2.48 (3) 3.182 (3) 144 (2)
N10—H10···O19i 0.86 (3) 2.23 (3) 3.005 (3) 150 (2)
O19—H19···O9ii 0.86 (4) 1.80 (4) 2.654 (3) 172 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2214).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol.46, 982–985. [DOI] [PubMed]
  4. Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett.16, 324–330. [DOI] [PubMed]
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Garcia, A. & Fulrton, J. E. (1996). Dermatol. Surg.22, 443–447. [DOI] [PubMed]
  7. Khan, K. M., Maharvi, G. M., Khan, M. T. H., Shaikh, A. J., Perveen, S., Begum, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem.14, 344–351. [DOI] [PubMed]
  8. Kojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull.18, 1076–1080. [DOI] [PubMed]
  9. Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem.8, 1749–1755. [DOI] [PubMed]
  10. Lemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol.4, 79–81. [DOI] [PubMed]
  11. Passi, S. & Nazzaro-Porro, M. (1981). Br. J. Dermatol.104, 659–665. [DOI] [PubMed]
  12. Perez-Gilbert, M. & Garcia-Carmona, F. (2001). Biochem. Biophys. Res. Commun.285, 257–261. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem.9, 1233–1240. [DOI] [PubMed]
  15. Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett.20, 2991–2993. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038535/jh2214sup1.cif

e-66-o2705-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038535/jh2214Isup2.hkl

e-66-o2705-Isup2.hkl (153.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES