Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 31;66(Pt 11):o2975. doi: 10.1107/S160053681004362X

Dimethyl 4,4′-(pyridine-2,6-diyl)dibenzoate

Yue Cui a, Qian Gao a, Huan-Huan Wang a, Lin Wang a, Ya-Bo Xie a,*
PMCID: PMC3009199  PMID: 21589141

Abstract

The title mol­ecule, C21H17NO4, reveals axial symmetry, with the pyridine N atom located on a crystallographic twofold axis. The mol­ecule is dish-shaped, with dihedral angles between the benzene and pyridine rings of 24.643 (1) and 24.797 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar [dihedral angle = 5.286 (1)°].

Related literature

For applications of the title compound, see: Boyle et al. (2010). For the synthesis, see: Li & Zhou (2009).graphic file with name e-66-o2975-scheme1.jpg

Experimental

Crystal data

  • C21H17NO4

  • M r = 347.36

  • Orthorhombic, Inline graphic

  • a = 34.296 (10) Å

  • b = 7.401 (2) Å

  • c = 6.623 (2) Å

  • V = 1681.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.60 × 0.40 × 0.36 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.945, T max = 0.966

  • 7265 measured reflections

  • 2264 independent reflections

  • 2151 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.109

  • S = 1.05

  • 2264 reflections

  • 122 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004362X/kp2283sup1.cif

e-66-o2975-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004362X/kp2283Isup2.hkl

e-66-o2975-Isup2.hkl (111.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 21075114), the Science and Technology Development Project of Beijing Education Committee (grant No. KM200910005025) and the Special Environmental Protection Fund for Public Welfare (project No. 201009015).

supplementary crystallographic information

Comment

Pyridine-type compounds and their derivatives have been extensively investigated because of their wide application for the synthesis of various complex compounds (Boyle et al., 2010). Herein, we report the crystal structure of the title compound (Fig. 1), dimethyl 4,4'-pyridine-2,6-diyldibenzoate.

The title compound, C21H17NO4, was synthesised by the reaction of 2,6-dibromopyridine and 4-methoxycarbonylphenylboronic acid. The molecule reveals a crystallographic twofold axis with the N atom lying on a special position - the rotation twofold axis. The dihedral angles between the benzene ring and the pyridine ring are 24.643 (1)° and 24.797 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar, and the dihedral angles are 5.363 (1)° and 4.794 (1)°, respectively.

Experimental

The title compound was synthesised according to the reported procedure (Li & Zhou, 2009). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallisation from a solvents mixture of ethyl acetate and hexane.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level, H atoms are shown as small circles of arbitrary radius. Symmetry code: A = -x, y, z.

Crystal data

C21H17NO4 F(000) = 728
Mr = 347.36 Dx = 1.372 Mg m3
Orthorhombic, Cmc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2 Cell parameters from 4869 reflections
a = 34.296 (10) Å θ = 2.4–30.5°
b = 7.401 (2) Å µ = 0.10 mm1
c = 6.623 (2) Å T = 296 K
V = 1681.1 (9) Å3 Block, colourless
Z = 4 0.60 × 0.40 × 0.36 mm

Data collection

Bruker APEXII CCD diffractometer 2264 independent reflections
Radiation source: fine-focus sealed tube 2151 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −48→44
Tmin = 0.945, Tmax = 0.966 k = −10→10
7265 measured reflections l = −9→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.069P)2 + 0.231P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2264 reflections Δρmax = 0.25 e Å3
122 parameters Δρmin = −0.16 e Å3
1 restraint Absolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methods Flack parameter: 1.2 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20583 (3) 0.17226 (19) 0.8336 (2) 0.0693 (4)
N1 0.0000 0.24751 (18) 0.5426 (2) 0.0316 (3)
C1 0.17708 (3) 0.24851 (18) 0.8930 (2) 0.0429 (3)
O2 0.17487 (3) 0.32976 (15) 1.0717 (2) 0.0535 (3)
C2 0.13992 (3) 0.25470 (16) 0.77804 (19) 0.0360 (3)
C3 0.13855 (4) 0.16771 (18) 0.5923 (2) 0.0424 (3)
H3 0.1609 0.1139 0.5408 0.051*
C4 0.10431 (4) 0.16036 (18) 0.4834 (2) 0.0416 (3)
H4 0.1038 0.1010 0.3597 0.050*
C5 0.07037 (3) 0.24139 (14) 0.55745 (17) 0.0323 (2)
C6 0.07197 (3) 0.33053 (14) 0.74267 (19) 0.0328 (2)
H6 0.0496 0.3854 0.7936 0.039*
C7 0.10641 (3) 0.33846 (14) 0.8520 (2) 0.0343 (2)
H7 0.1072 0.3996 0.9746 0.041*
C8 0.03362 (3) 0.23143 (15) 0.44012 (18) 0.0330 (3)
C9 0.03455 (4) 0.20276 (19) 0.2306 (2) 0.0405 (3)
H9 0.0583 0.1927 0.1634 0.049*
C10 0.0000 0.1898 (3) 0.1258 (3) 0.0439 (4)
H10 0.0000 0.1725 −0.0133 0.053*
C11 0.21015 (5) 0.3231 (3) 1.1922 (3) 0.0644 (5)
H11A 0.2192 0.2006 1.2007 0.097*
H11B 0.2048 0.3677 1.3254 0.097*
H11C 0.2299 0.3967 1.1303 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0334 (4) 0.0929 (10) 0.0817 (9) 0.0119 (5) 0.0066 (5) −0.0199 (8)
N1 0.0386 (6) 0.0284 (6) 0.0279 (7) 0.000 0.000 −0.0001 (5)
C1 0.0309 (5) 0.0434 (7) 0.0545 (9) −0.0021 (4) 0.0080 (5) −0.0022 (5)
O2 0.0386 (4) 0.0624 (7) 0.0597 (7) 0.0080 (4) −0.0070 (5) −0.0122 (5)
C2 0.0305 (4) 0.0341 (6) 0.0435 (7) −0.0025 (4) 0.0093 (4) −0.0004 (4)
C3 0.0374 (5) 0.0446 (7) 0.0453 (8) 0.0031 (5) 0.0150 (5) −0.0053 (5)
C4 0.0450 (6) 0.0423 (6) 0.0374 (7) 0.0019 (5) 0.0111 (5) −0.0080 (5)
C5 0.0371 (5) 0.0294 (5) 0.0305 (6) −0.0024 (4) 0.0065 (5) 0.0006 (4)
C6 0.0316 (5) 0.0340 (5) 0.0328 (6) 0.0008 (4) 0.0076 (4) −0.0022 (4)
C7 0.0329 (5) 0.0356 (5) 0.0344 (6) −0.0004 (4) 0.0060 (5) −0.0053 (4)
C8 0.0419 (6) 0.0275 (5) 0.0298 (6) −0.0016 (4) 0.0034 (4) 0.0001 (4)
C9 0.0513 (7) 0.0404 (6) 0.0297 (6) −0.0019 (5) 0.0072 (5) −0.0001 (5)
C10 0.0669 (12) 0.0405 (9) 0.0244 (8) 0.000 0.000 −0.0014 (7)
C11 0.0470 (7) 0.0742 (11) 0.0722 (13) 0.0074 (8) −0.0192 (8) −0.0093 (9)

Geometric parameters (Å, °)

O1—C1 1.2025 (16) C5—C8 1.4823 (15)
N1—C8i 1.3433 (13) C6—C7 1.3866 (17)
N1—C8 1.3433 (13) C6—H6 0.9300
C1—O2 1.3294 (19) C7—H7 0.9300
C1—C2 1.4854 (17) C8—C9 1.4041 (18)
O2—C11 1.4503 (18) C9—C10 1.3768 (17)
C2—C3 1.3895 (19) C9—H9 0.9300
C2—C7 1.3945 (14) C10—C9i 1.3768 (17)
C3—C4 1.379 (2) C10—H10 0.9300
C3—H3 0.9300 C11—H11A 0.9600
C4—C5 1.3981 (16) C11—H11B 0.9600
C4—H4 0.9300 C11—H11C 0.9600
C5—C6 1.3940 (17)
C8i—N1—C8 118.29 (15) C5—C6—H6 119.6
O1—C1—O2 123.39 (14) C6—C7—C2 119.98 (11)
O1—C1—C2 123.39 (14) C6—C7—H7 120.0
O2—C1—C2 113.18 (10) C2—C7—H7 120.0
C1—O2—C11 115.28 (12) N1—C8—C9 122.14 (12)
C3—C2—C7 119.28 (11) N1—C8—C5 117.42 (11)
C3—C2—C1 117.95 (11) C9—C8—C5 120.42 (11)
C7—C2—C1 122.73 (12) C10—C9—C8 119.31 (13)
C4—C3—C2 120.65 (11) C10—C9—H9 120.3
C4—C3—H3 119.7 C8—C9—H9 120.3
C2—C3—H3 119.7 C9i—C10—C9 118.78 (17)
C3—C4—C5 120.59 (12) C9i—C10—H10 120.6
C3—C4—H4 119.7 C9—C10—H10 120.6
C5—C4—H4 119.7 O2—C11—H11A 109.5
C6—C5—C4 118.59 (11) O2—C11—H11B 109.5
C6—C5—C8 121.23 (9) H11A—C11—H11B 109.5
C4—C5—C8 120.18 (10) O2—C11—H11C 109.5
C7—C6—C5 120.88 (10) H11A—C11—H11C 109.5
C7—C6—H6 119.6 H11B—C11—H11C 109.5
O1—C1—O2—C11 0.9 (2) C5—C6—C7—C2 −0.78 (16)
C2—C1—O2—C11 178.41 (13) C3—C2—C7—C6 1.58 (17)
O1—C1—C2—C3 0.0 (2) C1—C2—C7—C6 −176.21 (11)
O2—C1—C2—C3 −177.60 (12) C8i—N1—C8—C9 1.5 (2)
O1—C1—C2—C7 177.77 (15) C8i—N1—C8—C5 −177.32 (8)
O2—C1—C2—C7 0.22 (18) C6—C5—C8—N1 −24.37 (16)
C7—C2—C3—C4 −1.41 (18) C4—C5—C8—N1 155.51 (12)
C1—C2—C3—C4 176.48 (12) C6—C5—C8—C9 156.81 (12)
C2—C3—C4—C5 0.4 (2) C4—C5—C8—C9 −23.31 (16)
C3—C4—C5—C6 0.39 (18) N1—C8—C9—C10 −0.29 (19)
C3—C4—C5—C8 −179.49 (11) C5—C8—C9—C10 178.47 (14)
C4—C5—C6—C7 −0.21 (16) C8—C9—C10—C9i −0.9 (3)
C8—C5—C6—C7 179.67 (10)

Symmetry codes: (i) −x, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2283).

References

  1. Boyle, T. J., Ottley, L. M. & Raymond, R. (2010). J. Coord. Chem., 63, 545–557.
  2. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Li, J. R. & Zhou, H. C. (2009). Angew. Chem. Int. Ed. A48, 1–5.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004362X/kp2283sup1.cif

e-66-o2975-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004362X/kp2283Isup2.hkl

e-66-o2975-Isup2.hkl (111.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES