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Abstract
Due to the increasing number of structures of unknown function accumulated by ongoing
structural genomics projects, there is an urgent need for computational methods for characterizing
protein tertiary structures. As functions of many of these proteins are not easily predicted by
conventional sequence database searches, a legitimate strategy is to utilize structure information in
function characterization. Of a particular interest is prediction of ligand binding to a protein, as
ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a
ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand
interactions and the flexibility of both binding sites and ligand molecules. However, geometric and
physicochemical complementarity is observed between the ligand and its binding site in many
cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted
by finding similar local pockets of known binding ligands in the structure database. Here, we
present two representations of ligand binding pockets and utilize them for ligand binding
prediction by pocket shape comparison. These representations are based on mapping of surface
properties of binding pockets, which are compactly described either by the two dimensional
pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a
fast real-time pocket searching against a database. Thorough benchmark study employing two
different datasets show that our representations are competitive with the other existing methods.
Limitations and potentials of the shape-based methods as well as possible improvements are
discussed.
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Introduction
Characterization of protein function is one of the most important tasks in bioinformatics1–4.
Taking advantage of accumulated knowledge of gene functions stored in databases5;6,
computational function prediction methods typically search similar patterns in sequences or
structures of a query protein against databases of known proteins. Traditionally, methods for
sequence database searches7, including homology search8–10, functional domain
search11;12, and motif search13;14, have been widely used for function prediction, since
sequence information is almost always available for genes of unknown function. Recent
years have observed development of advanced approaches for sequence-based function
prediction15–19, which achieve an improved accuracy and coverage in genome-scale
function assignment. Moreover, many function prediction methods have been developed that
utilize other types of data, such as protein-protein interaction data20;21, gene expression
data22, and text mining23;24, or combination of such heterogeneous data25;26. Of recent
particular importance is functional characterization of proteins from their tertiary structures
since an increasing number of protein structures of unknown function have been solved by
ongoing structural genomics projects27;28. As of this writing, there are currently more than
3000 protein structures of unknown function in the Protein Data Bank (PDB)29 that are
awaiting functional characterization.

Roughly speaking, tertiary structure information can be used for function prediction either
by considering global fold or local structure of proteins. The former approach utilizes the
observation that the evolutionary relationships of proteins could be better tracked by
considering overall protein fold similarity to reach a further evolutionary distance where
proteins share barely detectable sequence similarity30–32. FINDSITE33 is one such method
that utilizes global structure information to predict function. It uses groups of template
structures of distant homologs of a target protein identified by threading. However, caution
is needed in inferring function from the global structure similarity since there are protein
folds which are adopted by many different proteins34. On the other hand, the latter
approaches aim to capture local geometry of known functional sites or small ligand
molecule binding sites. Since local methods directly search for geometrical and/or
physicochemical properties of functional sites, it could be possible to predict molecular
functions of proteins which lack homology to proteins of known function35.

Local structure-based function prediction can be logically divided into two parts: 1)
detection of characteristic local sites, such as pockets, in a given protein surface, and 2)
matching the local sites against a database of known functional site patterns. Of a particular
interest in the first step is to detect pocket regions since binding of small ligand molecules
occurs at pocket regions in many cases36. Therefore, if a protein is known to bind a ligand
molecule, the binding site itself can be well predicted by just identifying pockets 37;38. We
have shown in our previous work that ligand binding sites of proteins can be identified as
one of the three largest pockets in the protein surface in 95% of the cases36.

Toward the goal of identifying potential ligand binding sites in proteins, several methods
have been developed. SURFNET39 searches for a gap in a protein surface by fitting spheres
inside the convex hull. POCKET40 and PHECOM41 also use probe spheres. PocketPicker42

and LIGSITE43 locate a protein onto a three dimensional (3D) grid and scan it for protein-
void-protein events in many directions, whereas VisGrid36 uses the visibility of surface
points to find pockets. PocketDepth44 clusters grid cells using information of the depth of
the grid cells. CAST37 computes a Voronoi diagram of a protein and identifies pockets as
void tetrahedrons. Several methods consider additional information, such as sequence
conservation45–47 and energetics48–50, which are often combined while considering
geometrical shape.
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Algorithms used for matching local sites are closely interrelated with the representation of
the local sites. In Catalytic Site Atlas51, AFT52, and SURFACE53, where a local site is
represented as a set of few residue positions, the root mean square deviation (RMSD) of
equivalent amino acid residues is computed. In SitesBase54, atoms in ligand binding sites
are compared using geometric hashing. Another functional local site database, eF-site55,
represents protein surface as a graph with nodes characterized by local geometry and the
electrostatic potential, and hence uses a maximum subgraph algorithm for seeking similar
sites. Recently, Thornton and her colleagues explored the use of spherical harmonics in
representing and comparing protein pockets56;57. They compared ligand surface shape with
pocket sizes56 and also did pocket to pocket comparison. Garutti and Bock proposed a 2D
representation of binding sites by computing a collection of 2D histograms (spin-images)
associated to surface points58. Comparing two sites consists in finding highly-correlated
pairs of spin-images that also satisfy geometric criteria.

In this paper, we introduce two approaches for representation and comparison of properties
of ligand binding pockets. In the first approach, the shape and the electrostatic potential of a
binding pocket is mapped on a two dimensional (2D) picture, which is then represented as
the pseudo-Zernike moments. The pseudo-Zernike moments are series expansion of a 2D
function; hence a pocket is represented compactly by a vector of coefficients assigned to
terms in the series. This representation is conceptually very different from, for example, the
spin-image representation58: the spin-images require many 2D images per pocket, a simple
correlation coefficient to compare images and computationally expensive geometric
matching procedure, whereas our method only uses one 2D image, with mathematically
more elaborate descriptors and inexpensive pocket matching. In the second approach, we
employ the 3D Zernike descriptors59;60, a series expansion of a 3D function, to directly
represent 3D pocket surface properties. These two compact representations allow a fast real-
time search against a database of known pockets. For example, a search against all pockets
in PDB would take only a few seconds. Employing two different datasets of ligand binding
pockets, we compare performance of pocket retrieval by the 2D and 3D pocket
representations as well as the other existing methods. We also investigated how well our
methods perform when ligand-free binding pockets or predicted binding pockets are used as
queries. Limitations and possible improvements of the shape-based methods are discussed.

Materials and Methods
In this work, we propose two binding pocket description models. The first model uses 2D
moments to represent mapping of pocket surface properties on a 2D image. We compare
three different 2D moments, the pseudo-Zernike, 2D Zernike, and Legendre moments in
terms of invariance upon rotation of pockets and the accuracy of pocket retrieval from a
database. The second one uses the 3D Zernike descriptors, 3D moments-based descriptors
which represents 3D shape and properties of binding pockets.

2D pocket model using 2D moments
This binding pocket description model is based on ray-casting and 2D moments. Intuitively,
a binding pocket is represented as a spherical panoramic picture viewed from its center of
gravity. We then compute the pseudo-Zernike moments, 2D image descriptors, of the
panoramic picture. Throughout this paper, the surface of a protein refers to the
Connollysurface61, which is a commonly used definition in proteins surface visualization
and surface-related computations. Following the Interact Cleft Model used in Kahraman’s
work56, a ligand binding pocket (BP) is the surface of protein heavy atoms (i.e. atoms other
than hydrogen) which are within 8Å to any heavy atom of the bound ligand. We define G as
the center of gravity of BP, provided it does not lie inside the protein volume; otherwise, G
is defined as any of the closest points outside of BP. The opening of BP is defined as the set
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of rays starting at G and not intersecting BP. In total of 64800 (=180 × 360) rays are shot
from G to each (θ,φ) direction.

Ray-casting of outermost binding pocket surface
We now describe a ray-casting strategy62 to represent a BP as seen from G. A 3D Cartesian
coordinate system (x⃗, y⃗, z ⃗) specific to a BP is defined as follows (Figure 1): the point G is the
origin of the coordinate system and the unit vector of the x-axis x⃗ is defined as a collinear
vector to the average vector that define the opening of BP. In cases where the opening is
empty, the x-axis is arbitrary defined. In the first Kahraman dataset, 19 out of 100 pockets
have an empty opening. However, defining their x-axes arbitrarily still produces robust
descriptors: the mean AUC of shape-only descriptors of these pockets is only 0.7% lower
than the mean dataset AUC. We will later use 2D rotationally invariant moments on the (y⃗,
z ⃗) plane. Therefore, the remaining two vectors, y⃗ and z ⃗, can be defined arbitrarily, as long as
the basis (x⃗, y⃗, z ⃗) is orthogonal. This choice of coordinate system provides a good
approximation of rotation invariance for binding pockets descriptors, as seen in the section
of pseudo-Zernike moments below.

Using spherical coordinates, we define a spherical function f(θ,φ) that describes the
outermost surface of BP on [0,2π]×[0,π]:

(1)

In this equation, the subscript i is used in the event that a ray intersects BP multiple times,
but such situation is very rare. Figure 1 sketches the definition of f in two dimensions by
projecting the scene on a fictional plane containing G. The function f is a piecewise
continuous spherical function. Since it is only used to describe the shape of the pocket, f can
be normalized such that its highest value is 1. In order to compute 2D moments, the function
f has to be mapped to a 2D plane.

The protein surface electrostatic potential can also be mapped to the protein surface in the
same fashion by defining the value f(θ,φ) as the surface electrostatic potential at the
outermost intersection between the ray and the protein surface. We used the Finite
Difference Poisson Boltzman (FDPB) solver of the BALL library63 version 1.2
(http://www.ball-project.org/) for computing the electrostatic potential. The grid spacing set
to 0.8Å, solvent dielectric constant is 78.0, and the PARSE force field64 is used to assign
atomic charges and radii, all of which are the default parameters for calculating the
electrostatic potential with the FDPB solver in the BALL library.

Projection of 3D surface to 2D plane
Numerous methods exist for spherical function projection, because no construction
preserves the following three spherical properties altogether, the area, shape, and the
distance. We choose to use a scheme, which is a special case of the equi-rectangular
(distance preserving) projection named plate-carrée projection. This consists of mapping the
surface representation, f(θ,φ), to a 2D plane (Fig. 1). By this mapping, the opening of the
pocket corresponds to θ=0 and the bottom of the pocket (θ =π) is projected to the center of
the image. Hence, rotations around the x-axis of the pocket (changes to θ) correspond to
rotations around the center of the image, modulo distortions due to the projection.
Computing 2D moments that are invariant around the center of the image compensates for
the lack of reference for theta (i.e. arbitrary definition of the z-axis). Empirically, this
projection is satisfactory because it does not distort shapes of a binding pocket beyond
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recognition by image descriptors (see Results). Projected surfaces and electrostatics of
sample binding pockets are shown in Figure 2. The resolution of these pictures is 360×180,
since the coordinates are mapped to integer values of (θ, φ). In the followings we describe
the projections with 2D image descriptors, which we have examined in this study.

Pseudo-Zernike moments
The pseudo-Zernike (p-Z) moments65 are commonly used in optics and are shown to be less
sensitive to noise than conventional (two dimensional) Zernike moments66;67. The p-Z
moments use a set of complete and orthogonal basis functions defined over the unit circle
(x2+y2 ≤1) as follows:

(2)

where , θ= tan−1 (y/x), and n≥0, |m|≤n. Using the polynomials, the p-Z moments
of the order n and the repetition m for a 2D image f(x, y) are defined as:

(3)

The asterisk (*) denotes the complex conjugate. Please refer the previous papers65;67 for
more mathematical details. In this study, we used n = 5 for most of the computation. Among
some other moments used in image processing, we chose the p-Z moments for 2D binding
pocket representation because of the following reasons. First, they are orthogonal over the
unit circle, thus information is not redundant between moments. Second, from the
mathematical point of view these moments are rotationally invariant around the center of the
image, which is a required property of the coordinate system we used in the model of
binding pockets. Third, previous comparative studies show that these moments are one of
the most tolerant to noise for shape description67–69.

2D Zernike moments
For comparison with the p-Z moments, we also employ the 2D Zernike moments and the
Legendre moments, both of which are common alternative choices in the field of image
analysis. The difference of the 2D Zernike moments and the p-Z moments is the radial
function Rnm(r) in the Eqn. 2. The 2D Zernike moments use the following radial function in
the polynomials:

(4)

with |m|≤n and n − |m| = even.

Legendre moments
The Legendre moments of order (m+n) for an 2D image f(x, y) are defined as
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(5)

where m, n = 0, 1, 2, .. ∞. Pm(x) is the Legendre polynomials:

(6)

The 2D image function f(x, y) can be written as a series expansion in terms of the Legendre
polynomials over the square [−1 ≤ x, y ≤ 1]. For more mathematical details of the 2D
Zernike and the Legendre moments, refer elsewhere67. The 2D Zernike and the Legendre
moments are computed for the same 2D picture of pockets (Fig. 2).

3D pocket model using 3D Zernike descriptors
In this model, binding pockets are extracted in the same way as the previous 2D moments-
based pocket model and are represented by the 3D Zernike descriptors (3DZD). It was
previously shown by our group and others that the 3DZD are effective in comparing global
surface shape70–72, local surface regions73;74, and surface physicochemical properties75 of
proteins. Naturally, the 3DZD can be also applied for comparing shape of small ligand
molecule76. Recently we have developed surface shape-based protein docking prediction
method named LZerD which uses the 3DZD for detecting complementarity of surface
shapes77. In this work we examine how well the 3DZD perform in representing and
comparing local shapes (binding pockets) of proteins.

3D Zernike descriptors
3DZD is a series expansion of a 3D function, which allows a compact representation of a 3D
object (i.e. a 3D function). Mathematical foundation of the 3DZD was laid by Canterakis60

then Novotni and Klein59 have applied it to 3D shape retrieval. Below we provide brief
mathematical derivation of the 3DZD. See the two papers59;60 for more details.

Pocket surface is extracted in the same way as the 2D moments-based pocket models but
with a different distance threhosld value of 8Å to identify ligand binding atoms in the
protein, since 8Å gave better results for the 3DZD than 5Å. Then, the pocket surface are
placed on a 3D grid. To represent a surface shape, each grid cell (voxel) is assigned 1 if it is
on the surface and 0 otherwise. Values of other physicochemical properties, such as the
electrostatic potentials, are also assigned only to the surface voxels. The resulting voxels
with values on them are considered as a 3D function, f(x), which is expanded into a series in
terms of Zernike-Canterakis basis59 defined by the collection of functions

(7)

with −l < m < l, 0≤ l ≤ n, and (n− l) even. Spherical harmonics78, , is the angular
portion of an orthogonal set of solutions to Laplace’s equation, which is given by:

(8)
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where  is a normalization factor,

(9)

and  is the associated Legendre function. Rnl(r) are radial functions defined by
Canterakis, constructed so that  are polynomials when written in terms of
Cartesian coordinates. , which are currently written in spherical coordinates, are
converted into Cartesian coordinate functions  in the following three steps:

1. The conversion between spherical coordinates, (r, ϑ, ϕ), and Cartesian coordinates,
x = (x, y, z), is defined as

(10)

2. Using Eqn. 4, we define a function  in Cartesian coordinates, which is later used
for rewriting the 3D Zernike function (Eqn. 1) into Cartesian coordinates. The
harmonics polynomials  are defined as

(11)

where  are normalization factors

(12)

3. Using the harmonics polynomials , 3D Zernike functions (Eqn. 1) can be
rewritten in Cartesian coordinates:

(13)

where 2k = n − l and the coefficient  are determined as follows to guarantee the
orthonormality of the functions within the unit sphere,

(14)

Now 3D Zernike moments of f (x) are defined as the coefficients of the expansion in this
orthonormal basis, i.e. by the formula
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(15)

Finally, the moments are collected into (2l+1) dimensional vectors
 and the rotational invariance is obtained by defining

3DZD, Fnl, as norms of vectors Ωnl:

(16)

The parameter n is called the order of 3DZD. The order determines the resolution (i.e. the
number of terms in the series expansion) of the descriptor. n defines the range of l. And a
3DZD is a series of invariants (Eqn. 16) for each pair of n and l, where n ranges from 0 to
the specified order. We use n = 20, which yields a total of 121 invariants, because it is
shown to provide sufficient accuracy in a previous works of shape comparison59;70.

As for the surface electrostatic potentials, 3DZD is computed separately for the pattern of
positive values and for the negative values and later combined in the following way75: First,
voxels with a positive electrostatic potential value are kept but all the other voxels with a
negative electrostatic potential value are reset with a value of zero. Then 3DZD of the
pattern of the positive values in the cubic grid is computed. Next, similarly, voxels with a
negative electrostatic potential value are kept but all the other voxels are reset with a value
of zero. Then 3DZD of the pattern of the negative values is computed. Then, the two
3DZDs, one for voxels with a positive value and another one for voxels with a negative
value are combined, yielding a descriptor with 2×121= 242 invariants. This is because Eqn.
16 does not differentiate positive and negative values, but only a pattern of non-zero values
in the 3D space. Finally, we normalize numbers in a descriptor by the norm of the
descriptor. This normalization is found to reduce dependency of 3DZD on the number of
voxels used to represent a protein.

Scoring function for binding ligand prediction
The proposed binding pocket model is tested in terms of performance of retrieving pockets
of the same binding ligand type as a query pocket. For a given query protein pocket of a
protein, k “closest” pockets in a benchmark dataset (described below) are retrieved. The
closeness (i.e. distance) of two pockets is defined as either by the Manhattan distance, the
Euclidean distance, or the correlation coefficient-based metric of the descriptors of the two
pockets. The Manhattan distance of two pockets, Pa and Pb, is defined as:

(17)

The Euclidean distance:

(18)
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The correlation coefficient-based distance:

(19)

Here,  and  are the i-th value of the descriptors of pocket, Pa and Pb. N is the total
number of values of the descriptors. The correlation coefficient-based metric, dc, equals zero
when two descriptors correlate perfectly.

Using the k closest pockets to a query based on one of the distances (Eqns. 17, 18, 19)
described above, the scoring function for a binding pocket of a ligand type F is defined as

(20)

where l(i) denotes the ligand type (AMP, FAD, etc.) of the i-th closest pocket to the query, n
is the number of pockets of the type F in the database, and the function δX,Y equals to 1 if X
is of type Y, and is null otherwise. The first term is to consider top k closest pockets to the
query, with a higher score assigned to a pocket with a higher rank. The second term is to
normalize the score by the number of pockets of the same type F included in the database.
The ligand with the highest Pocket_score is predicted to bind to the query pocket.

Volumetric representation of pockets by spherical harmonics
In addition, our pocket representation is compared with a 3D volumetric representation of
pockets by spherical harmonics, which was developed by the authors of the benchmark
dataset of ligand pockets56 we use in this study. Among the three pocket shape
approximation models proposed in their paper56, we compare our results with the Interact
Cleft Model. The Interact Cleft Model defines the volume of a ligand binding pocket by
SURFNET39, which places trial spheres of a certain range of sizes within 0.3 Å of protein
atoms interacting with the bound ligand. The interacting atoms with the ligand are
determined by HBPLUS79. The model uses spherical harmonics functions for representing
the volume of a pocket. Since spherical harmonics are not invariant to rotation, a pocket
needs to be pose normalized (An alternative to the prior pose normalization is to store
amplitudes of frequencies of spherical harmonics to achieve rotation invariance 80). A
pocket volume is first shifted so that its center of gravity is placed at the origin of the
coordinate system. Then the pocket volume is rotated so that its moment of inertia tensor
becomes diagonal with maximal values in x followed by y then followed by z. Now the
outermost surface points of the surface volume is considered as a spherical function f(θ,φ)
on a unit sphere and it is expanded as a series of spherical harmonics:

(21)

where the order lmax is set to 16, Re[Ylm(θ,φ)] is the real part of the spherical harmonic
functions, and clm is the associated coefficients. The similarity of two pockets are measured
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by the Euclidean distance (Eqn. 18) of the vectors of coefficients clm of the two pockets. For
more details of the procedure, refer to their papers56;57.

Benchmark datasets of ligand binding pockets
We used two datasets for benchmarking pocket retrieval performance of the methods. The
first dataset compiled by Kahraman et al.56 is used to compare the performance of our
methods with the previous 3D volumetric representation of pockets by spherical harmonics
(the Kahraman set). This dataset consists of 100 proteins, each of which binds one of the
following nine different ligands: adenosine monophosphate (AMP), adenosine-5′-
triphosphate (ATP), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN),
glucose (GLC), heme (HEM), nicotinamide adenine dinucleotide (NAD), phosphate (PO4),
or steroid (STR). In the parentheses abbreviations of the ligand names are shown. The PDB
IDs of ligand binding proteins in the dataset are listed in Table 1A. The tertiary structures of
these proteins have been solved by X-ray crystallography and only structures which bind
their cognate ligand are used. The proteins are each selected from different homologous
families in the CATH database81 (i.e. H-level in CATH) so that they are not closely
evolutionary related.

The second dataset contains in total of 175 proteins, each of which binds one of the 12
ligand molecules (Table 1B). This dataset is constructed based on the ligand bound and
unbound protein pairs listed in Table 4 in the paper by Huang & Schroeder46. They used the
dataset for benchmarking pocket identification methods. Their original list can be found also
at http://kiharalab.org/visgrid_suppl/, as we have also used it in our previous study36. From
this list, first we discarded proteins which bind non-natural ligands. Then, we consulted the
PDBsum database82 and removed entries if they do not have sufficient number of the other
non homologous PDB entries (with a sequence identity of less than 30%) that bind the same
ligand molecule. This set is called the Huang dataset. The Kahrman set and the Huang set do
not have overlap neither in terms of proteins nor ligand types. The purpose of this dataset is
twofold: to test the proposed methods on another dataset and also to investigate the
performance of the methods when unbound pockets are used as queries.

Results
Effect of rotation to the three 2D moments

To begin with, we examine the effect of rotation of pockets to the 2D moments-based pocket
models, namely, the p-Z, the 2D Zernike, and the Legendre moments. In projecting the
pocket geometry to a 2D plane, a degree of freedom still exist around the x-axis, which is
defined as the direction from the center to the opening of the pocket (Fig. 1). It should be
also noted that the rotation invariance in the projected 2D space does not ensure rotation
invariance in the original 3D space. Thus, rotation should not alter the pocket descriptors to
the level that the recognition of pockets of the same ligand type becomes impractical.

Here, a ligand binding pocket is rotated arbitrarily and the difference of the moments caused
by the rotation (the rotation error) is evaluated. Concretely, the AMP binding pocket of
asparagine synthetase (PDB: 12AS) is rotated around the axis x⃗+ y⃗+ z ⃗ of an arbitrary
coordinate set locating its origin at the center of gravity of the pocket. We computed and
compared the moments of the pocket at each rotated position with and without pre-
alignment: Firstly, we simply computed the moments of the pocket at each rotated position
and compared them with the ones computed at the original position (i.e. without pre-
alignment of pockets). Secondly, for each rotated pocket, we aligned it with the pocket at the
original position before computing the moments (i.e. with pre-alignment). The pre-
alignment consists of the following steps. The x-axis of the two pockets are aligned, then the
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z-axis is defined such that its principle moment of inertia (PMI) is maximized over all
posisble directions on the plane orthogonal to the x-axis. From the mathematical point of
view, the 2D Zenrike and the p-Z moments are invariant upon rotation around the axis while
the Ledendre moments are not. Thus, it is expected that the comparison without pre-
alignment gives better results for the 2D Zernike and p-Z than the Legendre moments. The
comparison with the pre-alignment is performed to see whether the Ledendre moments
shows comparable performance with the other two moments. The error is defined as the
ratio of the Euclidean distance between the moments of the pocket at a rotated position and
at the original position relative to the average Euclidean distance of the pocket (at the
original position) to the other types pockets in the Kahraman dataset.

In Figure 3, the rotation error of the three moments is plotted with and without the pre-
alignment of the pockets. First, as expected, the p-Z and 2D Zernike moments show lower
error than the Legendre moments when pockets are not pre-aligned. Next, when pockets are
pre-aligned, the error of all three moments is reduced remarkably. However, still the p-Z and
2D Zernike show a smaller error than the Legendre moments. A closer look at the results of
the three moments with pre-alignment by computing the sum of the error values at each
rotation angle (X-axis) shows that the p-Z has the smallest error with the value of 3.49,
while the values of the 2D Zernike and the Legendre moments are 4.47 and 10.47,
respectively.

Pocket retrieval performance by the three 2D moments and the 3DZD
Next, we compare the 2D pocket models using the three 2D moments and the 3D pocket
model using the 3DZD in terms of actual performance of identifying binding pockets of the
same ligand. Note that ligands are pre-aligned for computing the Legendre moments. Figure
4 shows the Receiver Operating Characteristic (ROC) curve of the three 2D moments and
the 3DZD averaged over searching results of different ligand binding pockets in the
benchmark dataset. Concretely, given a query pocket, pockets in the database which are
within a threshold Euclidean distance (Eqn. 5) are retrieved, and are then subject to
evaluation by computing the false positive (x-axis) and the true positive (y-axis) rate.
Varying the threshold value from strict to more permissive values yields the ROC curve.
The false positive rate of a set of retrieved pockets for a query is defined as the ratio of the
number of retrieved pockets of a different ligand (i.e. false positives) relative to the total
number of pockets of a different ligand (i.e. false positives and true negatives) in the dataset.
The true positive rate is the ratio of the number of correctly retrieved pockets (i.e. true
positives) relative to the total number of pockets of the same type in the dataset.

The results are shown in Figure 4. Firstly, all the four moments perform better than random
retrieval. Secondly, the p-Z and the 2D Zernike moments show almost identical performance
on this plot, which is significantly better than the Legendre moments with the pre-alignment
of the pockets. The 3D pocket model with the 3DZD has slightly higher AUC values than
the p-Z and 2D Zernike when the false positive rate is small (0 to around 0.5) and has lower
values for the latter half of the false positive rate (around 0.5 to 1.0). Quantitative
computation of the Area Under the Curve (AUC) of the ROC curve (upper half of Table 2,
results using the “Pocket shape only” descriptor) shows that the p-Z, the 2D Zernike
moments, and 3DZD have an identical AUC value of 0.66 when the Euclidean distance is
used. Note that this value is larger than the results by the spherical harmonics (0.64). The p-
Z moments perform slightly better than the 2D Zernike moments and the 3DZD when the
Manhattan distance (dM) is used. Since the p-Z moments show a better performance among
the three 2D moments (Legendre, p-Z, and 2D Zernike), we decided to use the p-Z moments
with the Euclidean distance in the subsequent experiments, and further compared the
performance with the 3D pocket model using the 3DZD. We have also tested the p-Z
moments with the pocket pre-alignment but the improvement was not significant (0.75%
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improvement in the AUC value). Therefore, the pocket pre-alignment is not used in the
following experiments.

Combining pocket size information
Kahraman et al. reported that pocket retrieval accuracy improves when the shape descriptor
by spherical harmonics is combined with pocket volume information56. Inspired by their
idea, we explore combinations of pocket shape by the p-Z moments or the 3DZD and the
pocket size using a weighting factor, w. These two pieces of information are combined in the
descriptor of a pocket, Pa, as the following vector:

(22)

where SPa is the size of the pocket Pa, Ak
Pa is the k-th value of the moments of the pocket

Pa (the pseudo-Zernike, the 2D Zernike, the Legendre, or the 3DZD), and N is the total
number of values of the moments. Thus, using the vector above, the Euclidean distance
between the descriptors of two pockets, Pa and Pb, becomes:

(23)

where Sa and Sb are the size of the two pockets. As the size of a pocket, we use the average
distance from the center of gravity G of the pocket to the pocket surface. Table 3 shows the
size of the nine different types of pockets in the Kahraman set and twelve ligand types in the
Huang set. The average distance has a significant correlation coefficient of 0.853 to the
molecular mass of ligands (g/mol).

In Figure 5, the weighting factor w of the pocket size term (Eqn. 23) is searched from 1.0 to
8.0(with an interval of 0.5) for the p-Z moments and 0.01 to 0.08 (with an interval of 0.01)
for the 3DZD and the average AUC value over different pocket types is computed. In
addition to the value for weighting factor w, we also examined different resolution of the p-
Z moments and the 3DZD, i.e. the number of terms in the moments (x-axis).
Mathematically, a target function is perfectly described by an infinite number of terms in the
moments. However, practically using too many terms is inefficient and may even be harmful
for our purpose, because the primary goal of this work is to compare and retrieve pockets of
the same type that are not exactly identical in shape, rather than to describe a pocket’s shape
as accurately as possible.

For the p-Z moments (Fig. 5A), we find that fifteen terms (which correspond to the order of
up to n = 4 in Eqn. 2) give a sufficient AUC value and using more terms does not improve
the results. In terms of the weight w, 4.5 gives the highest AUC value. For the 3DZD (Fig.
6A), the order of 20 with the weight of 0.04 gave the highest AUC value. The optimal
weight is much smaller for the 3DZD because the average norm of 3DZD is two orders of
magnitude lower than the p-Z moments.

The bottom half of Table 2 summarizes the effect of adding the pocket size information
using the weight of 4.5 for the three 2D moments and 0.04 for the 3DZD. It is shown that
the AUC value increases consistently by adding the pocket size in all the combinations of
different moments and the distance metrics tested. Among all tested in Table 2, the best
AUC value, 0.81, is achieved by the 3DZD with the pocket size using the Euclidean
distance. The descriptor with the p-Z moments comes to the second with 0.79 followed by
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the 2D Zernike (0.78) and Legendre moments (0.77). The values of the 3DZD, the p-Z and
the 2D Zernike moments are higher than the AUC value achieved by a spherical harmonics-
based descriptor combined with the pocket volume proposed by Kahraman et al.56 (the right
most column).

The number of top scoring pockets to consider in the Pocket_score
For a given query pocket, the Euclidean distance is computed against all pockets in the
dataset and then the final prediction of the binding ligand is made using Pocket_score (Eqn.
7). Since the final prediction depends on the number of closest pockets (the parameter k in
Eqn. 20) to consider, we examined the effect of the value of k on the resulting success rate.
In Figure 6, the average success rate of the nine ligands in the Kahraman set for k = 1 to 35
is plotted. The plot in Fig 6A is the results of the 2D pocket model with the p-Z moments
while Fig 6B shows results by the 3DZD. Three pocket descriptors are tested: either the
surface shape (G in Fig. 6) or the surface electrostatic potential (E) combined with the
pocket size (w = 4.5 for the p-Z and 0.04 for the 3DZD as determined in Fig. 5) and the
average distance of those by the two descriptors (G+E). In the Top1 results, the rate is
measured with the highest scoring ligand being the correct one, while the Top3 allows the
correct answer to lie in the first three highest scoring ligands.

When the top scoring ligand is counted (curves of TOP1 in Fig. 6), increasing the number of
closest pockets to consider in the scoring function does not help much to improve the
accuracy. However, it does make dramatic improvement when top three ligands are
considered (TOP3). In the case of TOP3 prediction, the success rate of sharply improves by
roughly over forty to fifty percentage points when k is set to 10 or higher as compared with
the results with k = 1. The improvement is more significant in the 3DZD as compared with
the p-Z 2D pocket model. In all three pocket descriptors, the success rate gradually increases
until k is from about 15 to 25. We decided to use k = 24 for both p-Z and 3DZD for the
subsequent analysis, because it gives the second best success rate by the pocket shape
descriptor (G) in the TOP3 prediction (82.0% for the p-Z and 90.0% for the 3DZD) and also
gives good performance by the combination of the shape and the electrostatic potential
descriptor (G+E).

Retrieval accuracy of individual pocket types in the Kahraman dataset
Up to the previous sections, we examined the pocket retrieval performance of three different
2D moments and a 3D pocket model using the 3DZD and determined the parameters for the
pocket retrieval. Here we further discuss the retrieval accuracy of individual pocket types.
We first show the results on the Kahraman dataset as it was used to examine the types of
moments and the parameters. Then, later we show the results on the Huang dataset, which is
an independent dataset from the Kahraman set. For the both datasets, performance of the p-Z
moments and the 3DZD are compared.

Table 4 gives the success rate of retrieving individual binding ligands using k = 4.5 for the
p-Z moments (Table 4A) and k = 0.04 for the 3DZD (Table 4B). For both p-Z and the
3DZD, all the three pocket descriptors (G, E, G+E) perform far better than the random
retrieval. The pocket shape descriptor (G) shows the best average success rate in the TOP3
prediction consistently for the p-Z (76.3%) and for the 3DZD (82.7%). Adding the
electrostatic information to the shape information, i.e. G+E descriptor, makes a small
improvement in the TOP1 prediction in the case of the p-Z moments (Table 4A, from G:
41.2% to G+E: 41.4%), but give the same success rate for the 3DZD (Table 4B, both G and
G+E give 36.1%). In terms of the TOP3 prediction, adding the electrostatic information
slightly deteriorates the success rate for both p-Z moments and the 3DZD. This is consistent
with a recent observation by Thornton group which reports that the electrostatic potential in
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ligand binding pockets are highly variable within families83. Comparing the performance of
the p-Z moments and the 3DZD, the p-Z moments show slightly higher success rate in the
TOP1 prediction while the 3DZD show higher value in the TOP3 prediction success rate.
The success rate differs from ligand to ligand and these trends are quite consistent for both
for the p-Z moments and the 3DZD. For example, in TOP3 with the shape and the size
descriptor (G), ATP, GLC, and FAD performs well while FMN and STR show poorer
results. This implies that the difference in performance for each ligand is attributed not to
the characteristics of our 2D/3D pocket models but to the actual similarity or divergence of
pocket shapes of particular ligand types. The low retrieval accuracy of FMN can be
explained by two main factors: Among the three smallest ligand types (GLC, FMN and
STR), FMN is the most flexible one with an average RMSD of 1.08 Angstrom. Also, it is
the third under-represented ligand type in the Kahraman dataset (6 structures), hence random
retrieval will be relatively less accurate.

Table 4A also gives the retrieval results by solely using the pocket size (given in Table 3). It
turned out that PO4 can be perfectly retrieved by just using the size, as it is the smallest
ligand in the Kahraman set. The overall retrieval accuracy with the pocket size is 50.6 for
the Top3 value, which might seem relatively high. But this is qualitatively consistent with
the observation by Kahraman et al.56, who made the dataset and reported that the AUC
value by using size information is as high as 0.73 as compared with 0.77 achieved by
combining the pocket shape and the size information (Table 2). In comparison with the
performance by the pocket shape and size descriptor (G) of the p-Z moments (Table 4A) and
the 3DZD (Table 4B), the addition of the shape information makes improvement or tie in all
the cases of Top1 and Top3 values expect for three cases (the TOP1 value for NAD, the Top
3 value for HEM by the p-Z moments and the Top 1 value for AMP by the 3DZD). Thus
overall the pocket shape information makes effective contribution to improving the retrieval
accuracy.

The pocket retrieval success rate in Table 4 roughly agrees with the distance of all against
all pockets shown in Figure 7, which visualizes the Euclidean distance of all the pocket
pairs. Figure 7A and 7B show the distance by the p-Z moments and the 3DZD, respectively.
It can be seen that all the ligand binding pockets have a close distance to the other pockets of
the same type (i.e. diagonal squares are in darker gray), however, ligands with a poor
retrieval success rate also show similarity to the other ligand types. For example, AMP
binding pockets seem to be close to some of ATP binding pockets, and FMN binding
pockets have a close distance to ATP binding pockets. HEM and NAD binding pockets also
seem to be similar. Figure 8 examines mutual distance of four individual ligand binding
pockets, AMP, ATP, FMN, and STR. In all the ligand cases, binding pockets which are
relatively distant from the other members of the same ligand type tend to fail in binding
ligand prediction. For example, in the case of AMP binding pockets with the 3DZD, 8gpbA
and 1c0aA failed in the TOP3 results.

To have a better understanding of the pocket prediction process, we closely examined
examples of search results for individual cases of FAD binding pockets by the p-Z moments
as examples (Table 5). Table 5 shows two successful and two failed cases. 1eviB is a very
successful case where five other FAD binding pockets are retrieved within top 5 ranks. In
the case of 1e8gB, the search retrieved three FAD binding pockets contaminated with HEM
binding pockets, which resulted in the second rank in the final prediction. On the other hand,
1cqxA did retrieve FAD binding sites within top 25 but the top hits are dominated by four
other ligand types. No FAD binding pocket is retrieved within the top 25 in the case of
1jr8B.
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Retrieval Accuracy on the Huang dataset
We further tested the pocket models with the p-Z moments and the 3DZD on another
independent dataset using the same parameters determined based on the Kahraman dataset
(Table 6). This dataset, the Huang dataset, which consists of 175 proteins which bind one of
the twelve ligands, have no overlap in the proteins and ligand types with Kaharaman set.

On this dataset, both p-Z moments and the 3DZD show lower success rate by the pocket
shape descriptor (G) as compared to the results for the Kahraman set (Table 4). For example,
the Top3 success rate by the pocket shape descriptor of the p-Z moments is 75.6%, which is
a small decrease from 76.3% shown for the Kahraman set, while the shape descriptor of the
3DZD shows a larger decrease, from 82.7% (on the Kahraman set) to 59.8%. On the other
hand, we observe higher success rate of the electrostatic potential descriptor (E) on this
dataset relative to the Kahraman set both by the p-Z moments and the 3DZD. Of course both
of our pocket models consistently show significantly better performance than random
retrieval. In the case of the 3DZD (Table 6B), the combination of the shape and the
electrostatic potential descriptors (G+E) shows improvement over the shape descriptor (G)
due to the aforementioned two reasons, i.e. descrease in the success rate by the shape
descriptor (G) and the good performance by the electrostatic potential descriptor (E) on this
dataset.

Comparison with existing methods
Next, we compare the pocket retrieval performance of our methods with two other existing
methods, eF-Seek84 (http://ef-site.hgc.jp/eF-seek/) and SitesBase54

(http://www.modelling.leeds.ac.uk/sb/). Both methods mainly use geometrical shape
information for quantifying similarty of pockets: eF-Seek represents protein surface as
triangle meshes and employs a graph matching algorithm to seek similar local sites stored in
the eF-Site database55. On the other hand, SitesBase uses geometric hashing algorithm to
identify equivalent atom constellations between pairs of ligand binding sites. Readers should
be reminded that in principle an entirely fair comparison of existing servers is not possible,
as each method has been trained on a different dataset and currently contains a different set
of binding pockets in its own database. Hence this comparison is meant only to provide
rough ideas of how our methods perform in comparison with others.

Since the databases used by these methods are different, we first identified proteins in the
Tables 1A and 1B that are commonly included both in the databases of eF-Seek and
SitesBase. Then, among the 21 ligand types in total in Table 1(nine in Table 1A and twelve
in Table 1B), we selected twelve ligands for which most of the listed proteins are included in
the eF-Seek and SitesBase databases. They are AMP, ATP, FAD, FMN, GLC, HEM, NAD,
F6P, GAL, GUN, MMA, and PLM. The proteins for these ligands which are also found in
eF-Seek and SitesBase are underlined with single or double line. For each of these ligands,
randomly selected three proteins are used as queries (those underlined with double line in
Table 1). eF-Seek and SitesBase return different number of pockets in a result file. Out of
the proteins they return, we only selected underlined proteins and computed the evaluation
values, i.e. Top1, Top3, and AUC values. The query protein which appear as the top hit is
discarded in the evaluation. For eF-Seek results, we sorted the retrieved proteins by the
distance from the ideal score, which we define as

(24)
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We ranked the eF-Seek results in this way because eF-Seek does not rank the retrieved
proteins but only provides a 2D plot of the Z-score and the coverage. The maximum Z-score
value for the queries is 13.4 and the maximum coverage value is 1.0. The AUC value of the
two methods is computed by randomly adding missing proteins from the selected proteins in
Table 1 to the end of the list of retrieved proteins, assuming that these proteins are retrieved
in that order. The AUC curve was computed ten times for eF-Seek and SitesBase and the
average and the standard deviations are recorded.

The results are summarized in Table 7. The 3DZD pocket model shows the best
performance among all in terms of all the metrics, i.e. Top1, Top3, and AUC. The p-Z
pocket model comes to the second in terms of the AUC and ranked the third following
SitesBase in the Top1 and Top3 value. Overall, our 2D and 3D pocket models show better
or comparable performance to the two methods compared.

Performance with ligand-free pockets
Shape of a ligand binding pocket will be slightly changed upon binding of the ligand
molecule. To investigate how well our pocket models perform for ligand-free pockets, here
we searched the Huang set (Table 1B) with ligand-free pocket shapes. The Huang set is very
suitable for this type of testing since it orginates from a list of pairs of ligand-bound and
ligand-free form of binding sites 46. Ligand binding amino acid residues in the ligand-free
proteins are identified by the sequence and structural alignment between the ligand-bound
proteins. The RMSD value of ligand-bound and ligand-free proteins ranges from 0.19Å to
2.48Å with an average value of 0.86Å. This is consistent with a through survey by Brylinski
and Skolnick 85, which reports that the average RMSD of ligand-bound and ligand-free form
is 0.74Å.

Figure 9 shows the AUC values of the ligand-bound pockets (filled dots) and ligand-free
pockets (open squares) of the twelve ligand types using the shape desctriptor (G in Tables 4
and 5). Figure 9A is the results by the p-Z moments and 9B is those by the 3DZD. It is
shown that the AUC values of ligand-free pockets are not particularly worse as compared
with ligand-bound pockets. This may be because the shape of most of the ligand-free
pockets do not differ too much as compared with the variation of shapes of the ligand-bound
pockets (the largest average RMSD over all the pairs of ligand-binding pockets within the
same ligand type is 3.19Å, which is in the case of RTL). In many cases, the AUC value of
the ligand-free pockets is similar to the value of the closest ligand-bound pockets (shown in
open circles).

Perfomance with predicted pockets
In the actual situation of binding ligand prediction, binding pockets may not be known
beforehand and hence binding pockets need to be predicted. To simulate the actual scenario,
we examined the retrieval accuracy by using a predicted pocket in a query protein. A pocket
in a query protein is predicted by LIGSITE43, which identifies pocket regions solely by
geometrical information. Table 8 shows the retrieval accuracy by the p-Z moments and the
3DZD on the Kahraman dataset. Compared to Tables 4A and 4B, the TOP3 value dropped
to almost half both for the p-Z moments and the 3DZD. The AUC value also show a large
decrease from 0.79 to 0.52 for the p-Z moments and 0.81 to 0.53 for the 3DZD. We have
also constructed a database of predicted pockets by LIGSITE and queried against it by the
predicted pockets, but this procedure did not improve the results (data not shown). The
retrieval performance with predicted binding pockets largely relies on the accuracy of
binding pocket predictions. We can expect that the results will improve by employing recent
more accurate binding pocket prediction methods45;86, which combine geometrical
information with sequence information.
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Implementation and computational speed of the algorithm
The programs for computing the pocket models and those for performing the pocket
comparison were written in C. We implemented the program, named Pocket-Surfer, on a
web page, http://kiharalab.org/pocket-surfer/. In the demo version, searches within the
benchmark dataset by using the p-Z moments can be performed by specifying a PDB ID in
Table 1 as a query, so that readers can experience how the method works and reproduce the
results reported in this paper. In addition, we have also implemented an alpha version, from
which a user-specified PDB entry can be used as a query. In this version, a pocket is
detected by LIGSITE43 in a query protein and the detected pocket is scanned against the
benchmark dataset of the 100 pockets. In both versions, pockets are compared in terms of
shape and size.

The running speed of each subtask of the programs is shown in Table 9. These numbers are
the average of five executions on a Linux computer with a Pentium 4 3.0 GHz processor.
Here, the largest pocket on the surface of a protein, 1h2h, is extracted by LIGSITE43. Next,
the p-Z moments and the 3DZD are computed for the pocket, which is then compared with
the 100 pockets in the database used in this study and finally the 100 pockets are sorted by
the distance to the query pocket of 1h2h to make binding ligand prediction for the query. It
should be noted that the database search can be performed very rapidly with our method
once the descriptor of the query pocket is computed. Searching against the database of the
100 pockets only took 0.0125 seconds for the p-Z moments and 0.023 seconds for the
3DZD. We also measured the search speed for a database of 200 pockets (by doubling the
number of pockets in the dataset), which resulted in 0.014 and 0.034 seconds, respectively
for the p-Z moments and the 3DZD. Extrapolating these two measured search speeds, a
search against a larger database of 62200 pockets, which is the number of entries in the
whole PDB database as of the writing of the paper, would take only 0.94 and 6.85 seconds
by the p-Z moments and the 3DZD, respectively. Recall that pocket descriptors to be stored
in the database can be pre-computed just once, as our pocket comparison method does not
need pose normalization of pockets for comparison. Note that this speed is much faster than
eF-Seek where a search on the website takes for at least a couple of hours and often a couple
of days.

Discussion
In this paper, we have compared two methods for describing ligand binding pockets, one
that uses the two dimensional p-Z moments and another one using the 3DZD. Our pocket
representations are quite versatile in the sense that many different properties of pockets, not
only the geometrical shape but also various physicochemical properties can be naturally
represented and combined. The 2D pocket model with the p-Z moments and the 3D model
with the 3DZD successfully retrieve pockets with the same binding ligand molecule in
76.3% and 82.7% of the cases within the top 3 closest hits (Tables 4A & 4B). The
performance of our methods are favorably compared with similar methods including the
spherical harmonics56-based method, eF-Seek, and SitesBase in terms of the pocket retrieval
success rate.

A significant advantage of our method is its very fast computational speed for a database
search. Using Pocket-Surfer, searching a binding pocket within the whole PDB database
could be performed on a desktop computer in 1 second using the 2D pocket model and about
7 seconds by the 3D pocket model. Note that the aforementioned spherical harmonics-based
method needs pose normalization of pockets as a preprocessing step of shape comparison,
since the spherical harmonics vary when an object is placed in different orientations. Pose
normalization does not only add more computational cost but could also errors in
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comparison of protein shapes, since they are almost globular and determining the principle
axes may not be robust.

As discussed in Introduction, local structure-based function prediction procedure includes
two steps, detection of a potential ligand binding pocket in a query protein followed by
matching the query pocket against a database of known binding pockets. This study is
focusing on the second step of database searching. We showed that the two pocket models
we introduced, one using the p-Z moments and another one using the 3DZD, perform
reasonably well and preferably compared with the other existing methods. However, the
experiment with predicted pockets by LIGSITE (Table 8) indicates that performance also
depends largely on the accuracy of binding pocket detection step. Therefore, establishing a
well coordinated procedure of detecting (predicting) and searching binding pockets is left as
an important future direction of this work. Another key development for the improment is to
investigate combinations of other features of pockets into the descriptor, such as
hydrophobicity, flexibility or the degree of residue conservation. An intrinsic weakness of
any shape-based method is that it is sensitive to the change of pocket shape due to any
reasons including flexible nature of pockets, prediction, and binding of water molecules.
Thus combining other features is aimed to compensate the limitation of shape information.

The urgency and the importance of computational characterization of protein structures has
become clear as an increasing number of solved protein structures have been remaining of
unknown function. However, computational protein structure analysis significantly lags
behind sequence analysis7 in a practical sense, since almost no methods for global/local
structure comparison have been developed until recently that concern conveniently fast
running speed for handling large scale data. In contrast, real-time sequence database search
has been realized more than a decade ago by BLAST8 and FASTA10, and most of existing
sequence analysis methods7 for homology, domain12;87, and motif searches14;88, can be
performed in a real-time manner. As a solution for fast protein structure database search, we
have recently proposed to represent proteins with their surface shape73;89 and employed the
3D Zernike descriptors that achieve real-time global protein structure database
search70;71;75. Along the same line, here we developed a method for real-time protein local
pocket shape search. We believe that the fast protein local shape comparison method
together with the global shape comparison methods have paved the way for further
developments of fast and convenient protein structure analysis methods.

Acknowledgments
This work was supported by grants from the National Institutes of Health (R01GM075004, U24 GM077905) and
National Science Foundation (DMS0604776, DMS0800568, EF0850009, IIS0915801). The authors are grateful to
Gregg Thomas for proof reading the manuscript.

Reference List
1. Hawkins T, Kihara D. Function prediction of uncharacterized proteins. J Bioinform Comput Biol.

2007; 5:1–30. [PubMed: 17477489]
2. Hawkins T, Chitale M, Kihara D. New paradigm in protein function prediction for large scale omics

analysis. Mol Biosyst. 2008; 4:223–231. [PubMed: 18437265]
3. Watson JD, Laskowski RA, Thornton JM. Predicting protein function from sequence and structural

data. Curr Opin Struct Biol. 2005; 15:275–284. [PubMed: 15963890]
4. Valencia A. Automatic annotation of protein function. Curr Opin Struct Biol. 2005; 15:267–274.

[PubMed: 15922590]
5. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda

S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic
Acids Res. 2008; 36:D480–D484. [PubMed: 18077471]

Chikhi et al. Page 18

Proteins. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 2009; 37:D169–D174.
[PubMed: 18836194]

7. Chitale, M.; Hawkins, T.; Kihara, D. Automated prediction of protein function from sequence. In:
Bujnicki, J., editor. Prediction of Protein Strucutre, Functions, and Interactions. John Wiley & Sons
Ltd; 2009. p. 63-86.

8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
Biol. 1990; 215:403–410. [PubMed: 2231712]

9. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST
and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;
25:3389–3402. [PubMed: 9254694]

10. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci
U S A. 1988; 85:2444–2448. [PubMed: 3162770]

11. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher
P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N,
Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M,
Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon
E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH. InterPro, progress
and status in 2005. Nucleic Acids Res. 2005; 33:D201–D205. [PubMed: 15608177]

12. Coggill P, Finn RD, Bateman A. Identifying protein domains with the Pfam database. Curr Protoc
Bioinformatics. 2008; Chapter 2:Unit. [PubMed: 18819075]

13. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin
DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F,
Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski
L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ. ELM server: A new
resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res.
2003; 31:3625–3630. [PubMed: 12824381]

14. Hulo N, Bairoch A, Bulliard V, Cerutti L, De CE, Langendijk-Genevaux PS, Pagni M, Sigrist CJ.
The PROSITE database. Nucleic Acids Res. 2006; 34:D227–D230. [PubMed: 16381852]

15. Hawkins T, Luban S, Kihara D. Enhanced automated function prediction using distantly related
sequences and contextual association by PFP. Protein Sci. 2006; 15:1550–1556. [PubMed:
16672240]

16. Hawkins T, Chitale M, Luban S, Kihara D. PFP: Automated prediction of gene ontology functional
annotations with confidence scores using protein sequence data. Proteins. 2009; 74:566–582.
[PubMed: 18655063]

17. Vinayagam A, del VC, Schubert F, Eils R, Glatting KH, Suhai S, Konig R. GOPET: a tool for
automated predictions of Gene Ontology terms. BMC Bioinformatics. 2006; 7:161. [PubMed:
16549020]

18. Wass MN, Sternberg MJ. ConFunc--functional annotation in the twilight zone. Bioinformatics.
2008; 24:798–806. [PubMed: 18263643]

19. Chitale M, Hawkins T, Park C, Kihara D. ESG: Extended similarity group method for automated
protein function prediction. Bioinformatics. 2009; 25:1739–1745. [PubMed: 19435743]

20. Chua HN, Sung WK, Wong L. Using indirect protein interactions for the prediction of Gene
Ontology functions. BMC Bioinformatics. 2007; 8(Suppl 4):S8. [PubMed: 17570151]

21. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol. 2007;
3:88. [PubMed: 17353930]

22. Troyanskaya OG. Integrated analysis of microarray results. Methods Mol Biol. 2007; 382:429–
437. [PubMed: 18220247]

23. Si L, Yu D, Kihara D, Yi F. Combining sequence similarity scores and textual information for gene
function annotation in the literature. Information Retrieval. 2008; 11:389–404.

24. Rzhetsky A, Seringhaus M, Gerstein M. Seeking a new biology through text mining. Cell. 2008;
134:9–13. [PubMed: 18614002]

25. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. A Bayesian framework for
combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae).
Proc Natl Acad Sci U S A. 2003; 100:8348–8353. [PubMed: 12826619]

Chikhi et al. Page 19

Proteins. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



26. Zhao XM, Chen L, Aihara K. Protein function prediction with high-throughput data. Amino Acids.
2008; 35:517–530. [PubMed: 18427717]

27. Chandonia JM, Brenner SE. The impact of structural genomics: expectations and outcomes.
Science. 2006; 311:347–351. [PubMed: 16424331]

28. Saqi MA, Wild DL. Expectations from structural genomics revisited: an analysis of structural
genomics targets. Am J Pharmacogenomics. 2005; 5:339–342. [PubMed: 16196503]

29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.
The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. [PubMed: 10592235]

30. Orengo CA, Thornton JM. Protein families and their evolution-a structural perspective. Annu Rev
Biochem. 2005; 74:867–900. [PubMed: 15954844]

31. Kihara D, Skolnick J. Microbial Genomes have over 72% structure assignment by the threading
algorithm PROSPECTOR_Q. Proteins. 2004; 55:464–473. [PubMed: 15048836]

32. Pal D, Eisenberg D. Inference of protein function from protein structure. Structure (Camb). 2005;
13:121–130. [PubMed: 15642267]

33. Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction
and functional annotation. Proc Natl Acad Sci U S A. 2008; 105:129–134. [PubMed: 18165317]

34. Orengo CA, Jones DT, Thornton JM. Protein superfamilies and domain superfolds. Nature. 1994;
372:631–634. [PubMed: 7990952]

35. Ausiello G, Peluso D, Via A, Helmer-Citterich M. Local comparison of protein structures
highlights cases of convergent evolution in analogous functional sites. BMC Bioinformatics. 2007;
8(Suppl 1):S24. [PubMed: 17430569]

36. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D. Characterization of local geometry of
protein surfaces with the visibility criterion. Proteins. 2007; 71:670–683. [PubMed: 17975834]

37. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of
binding site geometry and implications for ligand design. Protein Sci. 1998; 7:1884–1897.
[PubMed: 9761470]

38. Laskowski RA, Luscombe NM, Swindells MB, Thornton JM. Protein clefts in molecular
recognition and function. Protein Sci. 1996; 5:2438–2452. [PubMed: 8976552]

39. Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and
intermolecular interactions. J Mol Graph. 1995; 13:323–328. [PubMed: 8603061]

40. Levitt DG, Banaszak LJ. POCKET: a computer graphics method for identifying and displaying
protein cavities and their surrounding amino acids. J Mol Graph. 1992; 10:229–234. [PubMed:
1476996]

41. Kawabata T, Go N. Detection of pockets on protein surfaces using small and large probe spheres to
find putative ligand binding sites. Proteins. 2007; 68:516–529. [PubMed: 17444522]

42. Weisel M, Proschak E, Schneider G. PocketPicker: analysis of ligand binding-sites with shape
descriptors. Chem Cent J. 2007; 1:7. [PubMed: 17880740]

43. Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and efficient detection of potential
small molecule-binding sites in proteins. J Mol Graph Model. 1997; 15:359–63. 389. [PubMed:
9704298]

44. Kalidas Y, Chandra N. PocketDepth: a new depth based algorithm for identification of ligand
binding sites in proteins. J Struct Biol. 2008; 161:31–42. [PubMed: 17949996]

45. Tseng YY, Dundas J, Liang J. Predicting Protein Function and Binding Profile via Matching of
Local Evolutionary and Geometric Surface Patterns. J Mol Biol. 2009; 387:451–464. [PubMed:
19154742]

46. Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites using the Connolly surface
and degree of conservation. BMC Struct Biol. 2006; 6:19. [PubMed: 16995956]

47. Ota M, Kinoshita K, Nishikawa K. Prediction of catalytic residues in enzymes based on known
tertiary structure, stability profile, and sequence conservation. J Mol Biol. 2003; 327:1053–1064.
[PubMed: 12662930]

48. Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-
ligand binding sites. Bioinformatics. 2005; 21:1908–1916. [PubMed: 15701681]

Chikhi et al. Page 20

Proteins. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



49. Elcock AH. Prediction of functionally important residues based solely on the computed energetics
of protein structure. J Mol Biol. 2001; 312:885–896. [PubMed: 11575940]

50. An J, Totrov M, Abagyan R. Pocketome via comprehensive identification and classification of
ligand binding envelopes. Mol Cell Proteomics. 2005; 4:752–761. [PubMed: 15757999]

51. Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and
residues identified in enzymes using structural data. Nucleic Acids Res. 2004; 32:D129–D133.
[PubMed: 14681376]

52. Arakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein
structures for biochemical function assignment. Bioinformatics. 2004; 20:1087–1096. [PubMed:
14764543]

53. Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M. SURFACE: a database of protein surface
regions for functional annotation. Nucleic Acids Res. 2004; 32:D240–D244. [PubMed: 14681403]

54. Gold ND, Jackson RM. Fold independent structural comparisons of protein-ligand binding sites for
exploring functional relationships. J Mol Biol. 2006; 355:1112–1124. [PubMed: 16359705]

55. Kinoshita K, Nakamura H. Identification of protein biochemical functions by similarity search
using the molecular surface database eF-site. Protein Sci. 2003; 12:1589–1595. [PubMed:
12876308]

56. Kahraman A, Morris RJ, Laskowski RA, Thornton JM. Shape variation in protein binding pockets
and their ligands. J Mol Biol. 2007; 368:283–301. [PubMed: 17337005]

57. Morris RJ, Najmanovich RJ, Kahraman A, Thornton JM. Real spherical harmonic expansion
coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons.
Bioinformatics. 2005; 21:2347–2355. [PubMed: 15728116]

58. Bock ME, Garutti C, Guerra C. Cavity detection and matching for binding site recognition. Theor
Comput Sci. 2008; 408:151–162.

59. Novotni, M.; Klein, R. 3D Zernike descriptors for content based shape retrieval. ACM Symposium
on Solid and Physical Modeling, Proceedings of the eighth ACM symposium on Solid modeling
and applications; 2003. p. 216-225.

60. Canterakis, N. 3D Zernike moments and Zernike affine invariants for 3D image analysis and
recognition. Proc 11th Scandinavian Conference on Image Analysis; 1999. p. 85-93.

61. Connolly ML. Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface.
Biopolymers. 1986; 25:1229–1247. [PubMed: 3741993]

62. Roth SD. Ray Casting for Modeling Solids. Computer Graphics and Image Processing. 1982;
18:109–144.

63. Moll A, Hildebrandt A, Lenhof HP, Kohlbacher O. BALLView: a tool for research and education
in molecular modeling. Bioinformatics. 2006; 22:365–366. [PubMed: 16332707]

64. Sitkoff D, Sharp K, Honig B. Accurate calculation of hydration free energies using macroscopic
solvent models. J Phys Chem. 1994; 98:1978–1988.

65. Bhatia AB, Wolf E. On the Circle Polynomials of Zernike and Related Orthogonal Sets.
Proceedings of the Cambridge Philosophical Society. 1954; 50:40–48.

66. Zernike F. Beungungsthoerie des Schneiden-verfahrens und seiner verbesserten Form. Physica.
1934; 1:689–701.

67. Teh CH, Chin RT. On Image-Analysis by the Methods of Moments. Ieee Transactions on Pattern
Analysis and Machine Intelligence. 1988; 10:496–513.

68. Zhang D, Lu G. Content-based shape retrieval using different shape descriptors: A comparative
study. ICME. 2001:1139–1142.

69. Mehtre BM, Kankanhalli MS, Lee WF. Shape measures for content based image retrieval: A
comparison. Information Processing & Management. 1997; 33:319–337.

70. Sael L, Li B, La D, Fang Y, Ramani K, Rustamov R, Kihara D. Fast protein tertiary structure
retrieval based on global surface shape similarity. Proteins. 2008; 72:1259–1273. [PubMed:
18361455]

71. La D, Esquivel-Rodriguez J, Venkatraman V, Li B, Sael L, Ueng S, Ahrendt S, Kihara D. 3D-
SURFER: software for high-throughput protein surface comparison and analysis. Bioinformatics.
2009; 25:2843–2844. [PubMed: 19759195]

Chikhi et al. Page 21

Proteins. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



72. Mak L, Grandison S, Morris RJ. An extension of spherical harmonics to region-based rotationally
invariant descriptors for molecular shape description and comparison. J Mol Graph Model. 2007;
26:1035–1045. [PubMed: 17905617]

73. Venkatraman V, Sael L, Kihara D. Potential for protein surface shape analysis using spherical
harmonics and 3D Zernike descriptors. Cell Biochem Biophys. 2009; 54:23–32. [PubMed:
19521674]

74. Sael L, Kihara D. Characterization and classification of local protein surfaces using self-organizing
map. International Journal of Knowledge Discovery in Bioinformatics (IJKDB). 2010 In press.

75. Sael L, La D, Li B, Rustamov R, Kihara D. Rapid comparison of properties on protein surface.
Proteins. 2008; 73:1–10. [PubMed: 18618695]

76. Venkatraman V, Chakravarthy PR, Kihara D. Application of 3D Zernike descriptors to shape-
based ligand similarity searching. J Cheminformatics. 2009; 1:19.

77. Venkatraman V, Yang YD, Sael L, Kihara D. Protein-protein docking using region-based 3D
Zernike descriptors. BMC Bioinformatics. 2009; 10:407. [PubMed: 20003235]

78. Dym, H.; McKean, H. Fourier series and integrals. San Diego: Academic Press; 1972.
79. McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994;

238:777–793. [PubMed: 8182748]
80. Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation

of 3D shape descriptors. Proc of the 2003 Eurographics/ACM SIGGRAPH symposium on
Geometry processing. 2003; 43:156–164.

81. Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J, Orengo CA. The CATH
classification revisited--architectures reviewed and new ways to characterize structural divergence
in superfamilies. Nucleic Acids Res. 2009; 37:D310–D314. [PubMed: 18996897]

82. Laskowski RA. PDBsum new things. Nucleic Acids Res. 2009; 37:D355–D359. [PubMed:
18996896]

83. Kahraman A, Morris RJ, Laskowski RA, Favia AD, Thornton JM. On the diversity of
physicochemical environments experienced by identical ligands in binding pockets of unrelated
proteins. Proteins. 2009 in press.

84. Kinoshita K, Murakami Y, Nakamura H. eF-seek: prediction of the functional sites of proteins by
searching for similar electrostatic potential and molecular surface shape. Nucleic Acids Res. 2007;
35:W398–W402. [PubMed: 17567616]

85. Brylinski M, Skolnick J. What is the relationship between the global structures of apo and holo
proteins? Proteins. 2008; 70:363–377. [PubMed: 17680687]

86. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. Predicting protein ligand
binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput
Biol. 2009; 5:e1000585. [PubMed: 19997483]

87. Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D. The ProDom database of protein
domain families: more emphasis on 3D. Nucleic Acids Res. 2005; 33:D212–D215. [PubMed:
15608179]

88. Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and
comparison. Methods Mol Biol. 2007; 396:59–70. [PubMed: 18025686]

89. Sael, L.; Kihara, D. Protein surface representation and comparison: New approaches in structural
proteomics. In: Chen, J.; Lonardi, S., editors. Biological Data Mining. Boca Raton, Florida, USA:
Chapman & Hall/CRC Press; 2009. p. 89-109.

Chikhi et al. Page 22

Proteins. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Mapping of a ligand binding pocket (shown in bold line) from its center of gravity. The x-
axis is aligned with the center of the pocket opening, and the X-Y plane is arbitrarily
oriented.
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Figure 2.
Examples of the binding pocket representation by the 2D pocket model. The ligand binding
pocket of a protein is sphere-mapped from its center of gravity and projected to a two
dimensional plane. Blue to black colors indicate the Euclidean distance from the center to
the pocket surface of that direction, and purple shows aperture. A, AMP binding site of
12AS; B, 1ESQ (ATP); C, 1HSK (FAD); D, 1P4M (FMN); E, 1K1W (GLC); F, 1NP4
(HEM); G, 1OG3 (NAD); H, 1GYP (PO4); I, 1E3R (STR).
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Figure 3.
Quantification of rotation invariance of the descriptors. The AMP binding pocket of 12AS is
rotated around the axis x⃗ + y⃗ + z ⃗ of an arbitrary coordinate set from the pocket geometric
center. The angle of rotation is shown on the x axis and the y axis shows the rotation error as
compared with the pocket at the original orientation. The rotation error is defined as the L2
distance of a rotated binding pocket divided by the average distance to the other pockets in
the benchmark dataset.
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Figure 4.
The ROC for the three moments, the Legendre, the 2D Zernike, the pseudo-Zernike
moments, and the 3D Zernike descriptors. The Euclidean distance is used. The average
value of nine different ligand types is plotted.
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Figure 5.
The Area Under the Curve value relative to the number of Zernike coefficients (the x axis)
and the pocket volume weight (the y axis). A, the pseudo-Zernike moments; B, the 3DZD.
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Figure 6.
The success rate of binding ligand prediction as a function of the number of closest pockets
considered in the scoring function. The x-axis is the parameter k in the Pocket_score (Eqn.
7). The success rate in the TOP1 and TOP3 by the three pocket descriptors, the shape (G),
the electrostatic potential (E), and the shape and the electrostatic potential combined (G+E),
are plotted. A, the pseudo-Zernike moments; B, the 3DZD.
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Figure 7.
The Euclidean distance of all-against-all pocket pairs using the pseudo-Zernike descriptors.
The gray scale represents log-transformed distance with a darker color indicating a closer
distance. Distances by the three pocket descriptors, the shape (G), the electrostatic potential
(E), and the shape and the electrostatic potential combined (G+E) are shown. A, the pseudo-
Zernike moments; B, the 3DZD.
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Figure 8.
Complete linkage clustering of ligand binding pockets. The Euclidean distance of the pocket
shape descriptor (G) is used. The PDB IDs underlined are those for which its binding ligand
is not correctly predicted within the TOP1 but within the TOP3 while those surrounded by a
rectangle are those for which its ligand is not correctly predicted even within the TOP3.
Pockets of four ligands are shown, AMP; ATP; FMN; STR. A, the pseudo-Zernike
moments; B, the 3DZD.
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Figure 9.
The AUC values by querying with ligand-bound and ligand-free form of pockets. The
Huang dataset is used. Filled circles, ligand-bound pockets; open squares, ligand-free
pockets; open circles, ligand-bound pocket which has the smallest RMSD to the ligand-free
pocket of the ligand type. A, the pseudo-Zernike moments; B, the 3DZD.
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Table 1A

The ligand pocket benchmark dataset from Kahraman et al.

Binding ligand molecule
Number of PDB
entries PDB entries

AMP 9 12asA, 1amuA, 1c0aA, 1ct9A, 1jp4A, 1khtB, 1qb8A, 1tb7B, 8gpbA

ATP 14 1a0iA, 1a49A, 1aylA, 1b8aA, 1dv2A, 1dy3A, 1e2qA, 1e8xA, 1esqA, 1gn8B, 1kvkA,
1o9tA, 1rdqE, 1tidA

FAD 10 1cqxA, 1e8gB, 1eviB, 1h69A, 1hskA, 1jqiA, 1jr8B, 1k87A, 1poxA, 3grsA

FMN 6 1dnlA, 1f6vA, 1ja1A, 1mvlA, 1p4cA, 1p4mA

GLC 5 1bdgA, 1cq1A, 1k1wA, 1nf5C, 2gbpA

HEM 16 1d0cA, 1d7cA, 1dk0A, 1eqgA, 1ew0A, 1gweA, 1iqcA, 1nazE, 1np4B, 1po5A, 1pp9C,
1qhuA, 1qlaC, 1qpaB, 1soxA, 2cpoA

NAD 15 1ej2B, 1hexA, 1ib0A, 1jq5A, 1mewA, 1mi3A, 1o04A, 1og3A, 1qaxA, 1rlzA, 1s7gB,
1t2dA, 1toxA, 2a5fB, 2npxA

PO4 20 1a6q, 1b8oC, 1brwA, 1cqjB, 1d1qB, 1dakA, 1e9gA, 1ejdC, 1eucA, 1ew2A, 1fbtB, 1gypA,
1h6lA, 1ho5B, 1l5wA, 1l7mA, 1lbyA, 1lyvA, 1qf5A, 1tcoA

STR 5 1e3rB, 1fdsA, 1j99A, 1lhuA, 1qktA

The list of the proteins are compiled by Kahraman et al.55 and shown as Table 1 in their paper with detailed information of the proteins. Here only
PDB IDs are provided for readers’ convenience. Underlined entries in Tables 1A and 1B are used in the performance comparison with eF-Seek and
SiteBase, as these are commonly included in the database of the two methods. The entries with double underline are used as queries.
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Table 1B

The bound and unbound pocket benchmark dataset (Huang dataset).

Ligand molecule a) Number of
PDB entries

PDB entries Unbound Structure

ADN 11 1bx4A, 1fmoE, 1pg2A, 1vhwA, 2evaA, 2fqyA, 2pgfA, 2pkmA, 2zgwA,
3ce6A, 3fuuA

1lioA

BTN 12 1bdoA, 1hxdA, 1stpA, 1swgA, 2b8gA, 2c4iA, 2f01A, 2jgsA, 2zscA, 3d9lA,
3ew2A, 3g8cA

1swb

F6P 12 1lbyA, 1nuyA, 1tipA, 1uxrA, 2axnA, 2bifA, 2cxsA, 2r66A, 3bxhA, 3h1yA,
3iv8A, 4pfkA

2fbpA

FUC 14 1k12A, 1lfgA, 1lslA, 1onqA, 1uzvA, 2a2qL, 2bs6A, 2ha2A, 2j1tA, 2nzyA,
2volA, 3cigA, 3cqoA, 3kmb1

1nna

GAL 36 1axzA, 1gcaA, 1hwmB, 1iszA, 1jz7A, 1kwkA, 1muqA, 1nsxA, 1okoA,
1r47A, 1rdk1, 1rvtJ, 1s5dD, 1tlgA, 1v3mA, 1w8nA, 1xc6A, 1z45A, 1zizA,
2b3fA, 2dqvA, 2e9mA, 2ehnB, 2eukA, 2galA, 2j1aA, 2j5zA, 2rjoA, 2v72A,
2vjjA, 2vnoB, 2zgnB, 3a23A, 3c69A, 3dh4A, 5abpA

1gcg

GUN 12 1a95C, 1d6aA, 1it7A, 1sqlA, 1wetA, 1xe7A, 2i9uA, 2o74A, 2oodA, 2pucA,
2pufA, 3bp1B

1ula

MAN 18 1bvwA, 1bxoA, 1g12A, 1jndA, 1js8A, 1kdgA, 1kza1, 1m3yA, 1nhcA,
1qmoA, 1rinA, 1xxrB, 2duqA, 2e3bA, 2vn4A, 3c6eC, 3d2uF, 3d87D

3app

MMA 10 1kiuB, 1kwuA, 1lobA, 1msaA, 1mvqA, 1rdl1, 1s4pA, 2bv4A, 2g93A,
3g81A

2ctvA

PIM 5 1e9xA, 1f4tA, 1phdA, 1s1fA, 2d0tA 1phc

PLM 26 1e7hA, 1eh5A, 1gxaA, 1hxs1, 1lv2A, 1m66A, 1mzmA, 1pz4A, 1sz7A,
1u19A, 2debA, 2dt8A, 2e9lA, 2fikA, 2go3A, 2jafA, 2nnjA, 2qztA, 2uwhA,
2w3yA, 2z73A, 3bfhA, 3bkrA, 3cueE, 3eglA, 3epyA

1ifb

RTL 5 1fbmA, 1fmjA, 1gx8A, 1kt6A, 2rctA 1brq

UMP 13 1f7nA, 1o26A, 1ouqB, 1q3uB, 1q3vB, 1r2zA, 1sehA, 2bsyA, 2g8oA, 2jarA,
2qchA, 3cl9A, 3dl5A

3tms

a)
Abbreviations of hetero atoms used in PDB: ADN, adenosine; BTN, biotin; F6P, fructose 6-phosphate; FUC, fucose; GAL, galactose; GUN,

guanine; MAN, mannose; MMA, O1-methyl mannose; PIM, 2-phenylimidazole; PLM, palmitic acid; RTL, retinol; UMP, 2′-deoxyuridine 5-
monophosphate.
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Table 7

Comparison with eF-Seek and SitesBase.

Methods Top1 (%) Top3 (%) AUC

Pseudo-Zernike 25.0 52.7 0.746

3D Zernike 47.2 75.0 0.860

eF-Seek 19.4 36.1 0.502 (0.001) a)

SitesBase 32.2 60.0 0.598 (0.014)

Entries with double underline in Tables 1A and 1B are used as queries and evaluation values, AUC, Top1, and Top3, are computed by examining if
entries with single or double underline are retrieved or not.

a)
The AUC values are computed by appending missing pockets in the retrieved pocket list in random order to the end of the list. The AUC values

are computed 10 times and the average value is shown with the standard deviation shown in the parenthesis.
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Table 8

Retrieval accuracy with predicted pocket regions.

Pocket model AUC Top1 (%) Top3 (%)

Pseudo-Zernike 0.52 13.6 38.9

3D Zernike 0.53 16.8 41.0

Benchmarked on the Kahraman dataset. The pocket region in a query protein is extracted (predicted) by the LIGSITE program. The shape
descriptor (G) is used. The average AUC, Top1, Top3 values across different ligands are shown.
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Table 9

Running speed of the programs.

Phase Task Duration (seconds)

Preparation Extracting a pocket (by LIGSITE) 4.3

p-Z moments: Projecting the pocket with ray-tracing 9.1

3DZD: surface voxelization 24.0

p-Z moments: Computing the pseudo-Zernike moments 1.1

3DZD: Computing 3DZD 16

Database Search Computing the distance against pockets in the database p-Z moments: 0.0075

3DZD: 0.018

Sorting and scoring p-Z moments: 0.005

3DZD: 0.005

The speed of each task is the average of 5 executions on a Linux machine with a Pentium 4, 3.0GHz processor. The protein PDB entry 1h2h is
scanned by LIGSITE to identify its largest pocket. Then the p-Z moments and the 3DZD for the largest pocket is computed. The database scanned
is the same as used in the benchmark of this study (i.e. the 100 pockets).
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