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Abstract

Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the
mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood
and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early
changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as
animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of
200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC
at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas
discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-
fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold
increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph
node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was
reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and
progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are
mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in
progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We
suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to
AIDS pathogenesis.
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Introduction

Myeloid dendritic cells (mDC) are professional antigen-present-

ing cells that are critical for the induction of acquired immune

responses to pathogens [1]. Depletion of mDC from blood in

human immunodeficiency virus (HIV) infection has been well

described and shown to be inversely correlated with virus load and

absent from long-term non-progressors, suggesting a relationship

between mDC and disease control [2–8]. A proposed mechanism to

account for mDC loss from blood is their activation and subsequent

recruitment to inflamed lymph nodes [9]. Increased expression of

costimulatory molecules on blood mDC indicative of activation has

been reported in HIV-infected individuals [3,5,10], as has

accumulation of mDC in peripheral lymph nodes during acute

infection [11]. However, findings relating to mDC in lymph nodes

during chronic HIV infection are inconsistent, with both accumu-

lation [12,13] and substantial loss of mDC [14] being reported.

mDC are depleted from both blood and lymph nodes of simian

immunodeficiency virus (SIV)-infected rhesus macaques during

AIDS [15] but data are lacking from earlier stages of infection. Few

studies have evaluated mDC dynamics in both blood and lymph

node in the same individuals [12,15] and no longitudinal studies of

mDC kinetics in both compartments have been reported. As such,

the relationship between mDC loss and recruitment in infection

remains ill-defined, and whether differences in mDC dynamics

predict disease outcome is not known.

The impact of antiretroviral therapy (ART) on mDC loss and

recovery in HIV infection is also unclear, as several studies

indicate that ART is not effective at increasing blood mDC

[6,7,16] while others suggest that ART significantly restores blood

mDC numbers [3,8,17,18]. ART rapidly resolves immune

activation in lymphoid tissues [19] and may have beneficial effects

on lymph node mDC activation and function [13], although this

has not been well characterized.

PLoS Pathogens | www.plospathogens.org 1 December 2010 | Volume 6 | Issue 12 | e1001235



In the present study we followed the mDC response in blood

and lymph nodes over time in two cohorts of SIV-infected animals

that received ART and adenovirus (Ad)-based immunotherapy

with different disease outcomes. We find that loss of blood mDC at

virus set-point is predictive of disease progression, whereas an

increase in blood mDC is predictive of long-term absence of

disease, and that even relatively short periods of ART are

beneficial to mDC homeostasis. In animals that progress to AIDS

the early loss of mDC from blood is associated with evidence of

increased CCR7-CCL19-mediated recruitment to lymph nodes

and increased apoptosis within these tissues.

Results

Disease progression is independent of Ad-based
immunotherapy

Animals in this study were enrolled in an immunotherapy

protocol using Ad-based vectors the majority of which has been

previously described [20]. Animals were infected with the

pathogenic isolate SIVmac251 by intravenous inoculation and

received ART consisting of a combination of two reverse

transcriptase inhibitors, 9-[2-(phosphonyl-methoxy)propyl]ade-

nine (PMPA) and 29-deoxy-5-fluoro-39-thia-cytidine (FTC), from

weeks 12 to 24 and weeks 32 to 44, depending on survival.

Immunotherapy consisted of priming with Ad serotype 5 (Ad5)-

based vectors expressing SIV Gag, Env and Nef with or without

IL-15 at weeks 16 and 22 followed by boosting with Ad35-based

vectors expressing the same transgenes at weeks 36 and 42.

Control-treated animals were given the same regimen of Ad5-y5

and Ad35-y5 vectors that lacked transgenes [20]. Ad-based

immunotherapy boosted T cell responses to SIV but had no effect

on virus load, progression to disease or survival [20](and data not

shown). However, when analyzed independent of immunotherapy,

animals in the cohort could be readily separated into two groups

based on disease progression, with one group remaining healthy

until elective sacrifice at a mean of 60 weeks post infection (n = 11,

‘stable’ group), and the other succumbing to AIDS with a mean

survival time of 32 weeks (n = 10, ‘progressor’ group, Table 1).

AIDS was defined clinically by lymphadenopathy, persistent

weight loss and anorexia, with or without opportunistic infections

[15]. Equal numbers of animals in the stable and progressor

groups received Ad-based immunotherapy with the remainder

receiving control vectors or no treatment, confirming the lack of

association between immunotherapy and disease outcome

(Table 1). The MHC class I molecule Mamu-A*01 was expressed

by 3/11 and 0/10 animals in the stable and progressor groups,

respectively, consistent with an association of this molecule with

control of SIV infection (Table 1) [21].

Peak plasma virus loads in stable and progressor animals at 2

weeks post infection were similar at around 26107 RNA copies/

ml plasma; however virus loads began to diverge by week 4 and at

virus set point virus loads differed by ,1 log between groups

(Table 1 and Figure 1). Survival time was inversely correlated with

virus load at set-point (Table 1 and Figure 1B), consistent with

previous reports [22,23]. ART beginning at week 12 had parallel

although modest effects on virus load in both groups, with an

immediate decrease of ,1.5 logs that fluctuated over the course of

therapy (Figure 1). Virus load persisted at ,0.5 logs below set-

point levels after discontinuation of ART and then decreased by

,1.5 logs with initiation of the second cycle of ART at week 32,

again with fluctuations over the course of therapy (Figure 1). Only

animals in the stable group survived beyond the second cycle of

ART and in these animals virus load remained at ,1.5 logs below

set-point until sacrifice (Table 1 and Figure 1). These data show

that disease progression and survival in this cohort of animals

correlated with virus load at set-point prior to initiation of ART

and not with Ad-based immunotherapy, and that ART was

effective at inducing modest but similar decreases in virus load in

both groups.

Disease progression correlates with a divergent mDC
response in SIV-infected macaques

The characteristics of this cohort allowed us to ask whether

differences in eventual disease outcome were reflected in earlier

changes in the mDC response and whether short-term exposure to

ART was beneficial to this response. Blood mDC were identified

in peripheral blood mononuclear cells (PBMC) as CD45+ lineage2

HLA-DR+ CD11c+ cells (Figure 2A) and were enumerated based

on the ratio of mDC to CD4+ T cells [20,24]. Staining of blood

cells with antibody to CD11c was inconsistent in animals R487

(stable group) and M5406 (progressor group) making it difficult to

delineate mDC at all time points (data not shown), and as a result

these animals were not studied further. The median number of

blood mDC in the remaining 19 animals prior to infection was

51 cells/ul with a relatively large range from 16 to 202 cells/ul,

consistent with our previous findings (Figure 2C, D) [24]. Blood

mDC were reduced at 2 weeks post infection relative to baseline

levels when all animals were analyzed together (P = .03), although

when each group was analyzed separately this decrease was not

significant. However, in the post-acute period the mDC response

diverged, as mDC in progressor animals continued to decline to

week 12 when they were significantly reduced in number relative

to preinfection time points. In contrast, mDC in stable animals

significantly increased from weeks 2 to 12 (Figure 2B–D). The

relative change in the number of blood mDC in individual animals

over the first 12 weeks of infection was significant, as mDC

dropped to around 30% of preinfection levels in some progressor

animals (mean for the group 60%) but increased to nearly 500% in

some stable animals (mean for the group 206%) (Figure 2E). This

change was inversely correlated with virus load at week 12 post

infection, revealing a relationship between viral burden and mDC

homeostasis (Figure 2E). Exposure to the first round of ART in

progressor animals resulted in an increase in mDC number from

weeks 12 to 20, when virus load was near its lowest point, and

Author Summary

Myeloid dendritic cells (mDC) are essential innate immune
system cells that are lost from blood in human immuno-
deficiency virus infection through an ill-defined mecha-
nism. We studied the kinetics of the mDC response in
blood and lymph nodes of rhesus macaques infected with
the closely related simian immunodeficiency virus. We
found that differences in the number of blood mDC
correlated with eventual disease outcome, as at virus set-
point mDC were increased in blood in animals remaining
disease free but lost from blood in animals that progressed
rapidly to AIDS. mDC loss was linked to an increase in the
chemokine axis responsible for mDC recruitment to lymph
nodes; however, mDC did not accumulate in tissues but
rather died from apoptosis. Lymph node mDC remained
responsive to stimulation with a TLR7/8 agonist during
infection. Importantly, mDC dysregulation was partially
reversed by antiretroviral therapy. These data indicate
that chronic mDC recruitment, activation and death
within lymph nodes precede development of disease in
SIV infected monkeys and may play a role in AIDS
pathogenesis.

Dendritic Cell Dysregulation in SIV Infection
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appeared to stabilize the number of blood mDC in the stable

group (Figure 2B–D). However, after ART was discontinued at

week 24 the number of mDC in stable but not progressor animals

rose markedly reaching a mean increase of 3.5 fold over baseline

at week 32, with individual increases approaching 10-fold in some

animals (Figure 2B–D). The magnitude of the mDC response after

ART was not influenced by the vaccination regimen received

during ART, as a comparison of mean mDC counts for all animals

from weeks 28 to 32 (the period of greatest response) based on the

type of immunotherapy received revealed no statistically signifi-

cant differences (data not shown, Kruskal-Wallis test, P = 0.3).

Initiation of the second round of ART again reduced mDC

number in the majority of stable animals, concurrent with the

reduction in virus load, after which the number of mDC remained

relatively constant (Figure 2B, D). The divergent mDC response

contrasted with changes in CD4+ T cells, which did not statistically

differ between groups at any time before or after infection

(Figure 2F). These data indicate that differences in eventual disease

outcome in SIV infection are reflected by differences in the blood

mDC response that are apparent relatively early in infection. They

also indicate that short-term ART may be effective at transiently

restoring blood mDC in animals with the most severe disease.

Blood mDC are rapidly and differentially activated in SIV
infection

We next asked whether differences in disease progression were

reflected in earlier differences in activation of circulating mDC in

SIV-infected macaques. For these and subsequent analyses we

focused on the first 32 weeks of infection incorporating one 12-

week cycle of ART and one 8-week period of treatment

interruption, as after this time the number of animals surviving

in the progressor group rapidly diminished (Table 1). Expression

of the costimulatory molecules CD80 and CD86 was markedly

increased in all animals at 2 weeks post infection indicative of

rapid mDC activation (Figure 3A–D). However, by 12 weeks post

infection differences in mDC activation were evident between

groups particularly with respect to the chemokine receptor CCR7,

which was expressed by a significantly greater proportion of mDC

in animals that progressed to AIDS relative to animals with stable

infection (Figure 3A). A majority of CCR7+ mDC in progressor

Table 1. Characteristics of animal cohort.

Animal ID Mamu type* Immunotherapy"
Set point virus load
(RNA copies/mL){

Time of sacrifice
(weeks PI) {

Disease status at
sacrifice

Stable

R478 A-02/A-08/B-01 Control 3,376,666 56 Healthy

R479 A-01 Ad-SIV 410,333 62 Healthy

R480 A-01 Control 796,666 56 Healthy

R481 ND Ad-SIV/IL-15 189,333 63 Healthy

R484 A-11 Control 2,396,666 62 Healthy

R486 ND Ad-SIV 121,666 62 Healthy

R487 A-01/B-01 Ad-SIV/IL-15 5,833,333 61 Healthy

R489 A-08/B-17 Ad-SIV 1,316,666 62 Healthy

M5306 ND Control 99,000 63 Healthy

M5506 A-08 Ad-SIV/IL-15 3,126,666 56 Healthy

M5606 A-08 Ad-SIV/IL-15 7,300,000 60 Healthy

Mean 2,269,727 60

Progressor

R180 B-01 Ad-SIV 671,000 43 AIDS

R183 B-17 Ad-SIV/IL-15 706,666 43 AIDS

R189 A-02 None 47,500,000 11 AIDS

R477 ND Ad-SIV 14,300,000 32 AIDS

R482 B-01 Control 12,733,333 27 AIDS

R483 ND Ad-SIV 6,700,000 40 AIDS

R485 ND Ad-SIV/IL-15 1,870,000 33 AIDS

R488 B-01 Ad-SIV/IL-15 82,000,000 18 AIDS

M5206 A-02 Ad-SIV 11,333,333 36 AIDS

M5406 ND Control 15,700,000 42 AIDS

Mean 19,351,433 32

P 0.01 ,0.0001

*Expression of known MHC class I Mamu alleles. ND = none of the 8 alleles tested was expressed.
"Immunotherapy was administered at weeks 16 and 22 for Ad5-based vectors and weeks 36 and 42 for Ad35-based vectors. Control = Ad-y5; Ad-SIV = separate vectors

expressing SIV Env, Gag and Nef; Ad-SIV/IL-15 = separate vectors expressing SIV Env, Gag, Nef and IL-15.
{Mean values from week 8–12 post infection.
{Animals in the stable group were electively sacrificed at or after 56 weeks post infection (PI). Animals in the progressor group were sacrificed due to development of
AIDS at the indicated times.

doi:10.1371/journal.ppat.1001235.t001
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animals also expressed CD86 with a smaller proportion expressing

CD80, consistent with activation (Figure 3E). The 12-week course

ART was effective at reducing blood mDC activation, particularly

with respect to CD80, and in animals in the stable group

expression of all markers of activation returned to preinfection

levels during ART (Figure 3A–C). The increase in CD80 at week

32 suggested mDC were again activated during the period of ART

discontinuation, although no increase in CCR7 or CD86

expression was noted at this time (Figure 3A–C). These findings

indicate that during chronic infection animals that progress to

AIDS have increased blood mDC activation relative to animals

with stable infection. They also confirm that ART has the

beneficial effect of reducing mDC activation, consistent with

findings in HIV-infected humans [3,12].

mDC do not accumulate in lymph nodes despite
increased tissue CCL19 expression

The finding that loss of blood mDC in progressor animals

occurs as the proportion of mDC expressing CCR7 increases is

consistent with excessive mDC recruitment to lymph nodes via the

CCR7/CCL19/CCL21 pathway, as has been suggested by in

vitro studies [9]. To examine this potential in vivo, we used flow

cytometry to identify mDC in lymph node cell suspensions taken

prior to infection and at intervals after infection in our two groups

of animals. mDC were defined as lineage2 HLA-DR+ CD11c+

cells (Figure 4A) and enumerated as a proportion of all cells in the

lineage2 HLA-DR+ gate, which we have previously shown to be

an accurate indicator of the absolute number of mDC per unit of

weight [15]. Surprisingly, we found no significant difference in the

number of lymph node mDC as a result of SIV infection regardless

of disease progression, indicating a lack of mDC accumulation

(Figure 4B). However, the phenotype of mDC within lymph nodes

was significantly different as a function of disease, as animals with

stable but not progressive infection had a lower percentage of

mDC expressing CCR7, CD40 and CD86 and reduced mDC

expression of MHC class II at 12 weeks relative to preinfection

time points, reflecting reduced mDC activation (Figure 4C, D). To

address the issue of mDC recruitment further, we next used real

Figure 1. Relationship between virus load and disease progression in SIV infected macaques. (A) Mean virus load in plasma for SIV-
infected animals that progress rapidly to disease (progressor, n = 10) or remain disease free for more than one year (stable, n = 11). *P,0.05, **P,0.01
(week 26). (B) Correlation between survival time and virus load at set-point, taken as the mean virus load from weeks 8 to 12 post infection, for all
animals. Data points for animals R180 and R183, which died at week 43 with very similar virus loads, appear as a single data point. (C, D) Individual
virus load measurements for progressor (C) and stable animals (D). ART = intervals of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g001

Dendritic Cell Dysregulation in SIV Infection
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time PCR to determine the relative expression of CCR7 ligands in

lymph node tissues. We found that CCL19 but not CCL21 mRNA

was increased 8-fold in lymph nodes at 12 weeks post infection, but

only in animals that progressed to AIDS (Figure 4E). Together

with our findings in blood, these data suggest that mDC are

recruited to lymph nodes in progressive disease via an enhanced

CCR7/CCL19 pathway, but that expanded mDC recruitment

fails to result in mDC accumulation.

Increased mDC apoptosis in lymph nodes during
progressive SIV infection

The lack of mDC accumulation in lymph nodes despite

evidence for enhanced CCR7/CCL19-mediated recruitment in

progressive infection led us to suspect that lymph node mDC were

dying at an increased rate in these tissues. To examine this

possibility we identified live mDC in lymph node cell suspensions

as being lineage2 HLA-DR+ CD11c+ cells that lacked staining

Figure 2. Divergent mDC response in blood correlates with virus load and disease progression. (A) Representative flow cytometry plots
showing the gating strategy used to define CD11c+ mDC within the Lineage2 HLA-DR+ fraction of PBMC. (B) Changes in the absolute number of mDC
in blood over the course of SIV infection in animals with stable (n = 10) and progressive (n = 9) infection. Shown are mean 6 SEM. **P,0.01 between
groups; #P,0.05; ##P,0.01 within groups relative to week 12 post infection. (C, D) Individual mDC counts in blood for progressor animals (C, n = 9)
and stable animals (D, n = 10). (E) Correlation between percent change of mDC in blood from week 0 to 12 and virus load at week 12 (n = 18, R189
died at week 11 and is not included). (F) Change in absolute number of CD4 T cells in blood over the course of SIV infection in animals with stable
(n = 10) and progressive (n = 9) infection. Shown are mean 6 SEM. ART = intervals of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g002

Dendritic Cell Dysregulation in SIV Infection
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with a fixable dead-cell dye, and then identified cells undergoing

early apoptosis within this gate using an antibody to active

caspase-3 (Figure 5A). At week 12 post infection, 15% of lymph

node mDC in animals that eventually progressed to AIDS were

entering apoptosis, representing a 3-fold increase from preinfec-

tion levels, whereas lymph node mDC from animals with stable

infection had no significant change in apoptosis (Figure 5B). ART

given from week 12 to 24 post infection decreased the frequency of

apoptotic mDC in progressor animals, although this did not reach

statistical significance (Figure 5B). To determine whether apoptosis

was mediated by extrinsic or intrinsic pathways we exposed lymph

node cells from progressor animals taken at week 12 post infection

to small molecule inhibitors of caspase-8 or caspase-9, respectively.

The presence of caspase-8 inhibitor Z-IETD-FMK reduced

apoptosis by more than 50% relative to a control peptide whereas

the caspase-9 inhibitor had minimal effect (Figure 5C), suggesting

that cell-extrinsic mediators of apoptosis were predominant.

Consistent with this finding, lymph node mDC taken from

progressor but not stable animals at week 12 post infection showed

a significant increase in the proportion of mDC expressing CD95

relative to preinfection samples (Figure 5D). Together, these data

suggest that increased mDC apoptosis in lymph nodes during

Figure 3. Differential activation of blood mDC in stable and progressive SIV infection. The proportion of blood mDC expressing CCR7 (A),
CD80 (B) and CD86 (C) relative to staining with a control antibody before and at various times after SIV infection. Shown are mean 6 SEM for naı̈ve
(n = 19), progressor (n = 8) and stable animals (n = 10). (D) Representative flow cytometry plots of the gating strategy to identify positive populations.
(E) Flow cytometry plots of CCR7+ mDC from progressor animal R180 at 12 weeks post infection labeled with antibodies to CD80 and CD86. Numbers
represent the percentage of cells that co-express both markers relative to staining with a control antibody. Data are representative of three
experiments on separate animals. *P,0.05, **P,0.01, ***P,0.005 between groups; #P,0.05, ##P,0.01, ###P,0.005 within groups relative to
week 0. ART = interval of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g003

Dendritic Cell Dysregulation in SIV Infection
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Figure 4. Differential mDC activation and tissue chemokine expression in lymph nodes correlates with disease progression. (A)
Representative flow cytometry plots showing the gating strategy used to define CD11c+ mDC within the Lineage2 HLA-DR+ fraction of peripheral
lymph node cell suspensions. (B) The number of mDC in lymph nodes as a proportion of Lineage2 HLA-DR+ cells at intervals before and after SIV
infection. Shown are mean 6 SEM for naı̈ve (T = 0, n = 18), progressor (n = 7) and stable animals (n = 10). (C) The proportion of lymph node mDC
expressing CCR7, CD40, CD80 and CD86 relative to staining with a control antibody before and 12 weeks after SIV infection (left) and the mean
fluorescence intensity of HLA-DR expression on lymph node mDC at week 12 post infection (right). Shown are mean 6 SEM for naı̈ve (n = 8),
progressor (n = 6) and stable animals (n = 6). (D) Representative flow cytometry plots showing gating strategy to identify positive cell populations. (E)

Dendritic Cell Dysregulation in SIV Infection
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chronic infection in animals that progress to AIDS offsets the

increase in mDC recruitment from blood, resulting in no net

accumulation of mDC.

Evidence of increased responsiveness of lymph node
mDC to stimulation with TLR7/8 agonist during infection

Changes in mDC activation and apoptosis within lymph nodes

during SIV infection could impact the capacity of these cells to

respond to microbial stimuli and subsequently induce adaptive T

cell immune responses. To investigate the functional capacity of

mDC following SIV infection in our two groups of animals we

stimulated lymph node cell suspensions taken at intervals before

and after infection with 3M-007, a small molecule synthetic

agonist of TLR7/8, which, like HIV and SIV RNA, activates

mDC through their engagement of TLR8 [25–27]. We analyzed

mDC for expression of two key immunoregulatory cytokines,

TNF-a and IL-12 (p40/p70). Interestingly, lymph node mDC

taken prior to infection responded relatively poorly to short-term

stimulation with a small proportion of cells producing TNF-a and

IL-12 (Figure 6). In contrast, stimulation of mDC taken at 12

weeks post infection resulted in 20 to 30% of cells producing TNF-

a and a smaller but significant percentage producing IL-12,

representing a 4- to 5-fold increase above preinfection levels

regardless of disease outcome (Figure 6). ART reduced mDC

responsiveness to TLR8 stimulation although this did not reach

statistical significance (Figure 6B). These data indicate that mDC

resident in lymph nodes of SIV-infected rhesus macaques are

functional capable of responding to stimulation, and may even be

hyperresponsive as a consequence of SIV infection.

Discussion

In this study we examined the relationship between mDC

dynamics and disease progression over time in pathogenic SIV

infection of rhesus macaques. We show for the first time that mDC

are preferentially lost from blood in animals that progress to AIDS

but are increased in blood of animals with long-term stable

infection. This divergent mDC response was apparent at virus set-

point, indicating that changes in blood mDC number over the first

3 months of infection are predictive of eventual disease

progression.

mDC are recruited from blood to lymphoid tissues through

upregulation of CCR7, the ligand for chemokines CCL19 and

CCL21 that are expressed in the lymph node paracortex [28]. In

animals with progressive infection, mDC loss from blood was

associated with an increase in the frequency of blood mDC

expressing CCR7 and an increase in expression of CCL19 in

lymph nodes, consistent with increased extravasation to lymph

nodes that exceeded the rate of mDC production from bone

marrow. Expression of CCL19 has been shown previously to be

markedly increased in lymph nodes during the acute phase of SIV

infection [29], and our data suggest that expression in lymph

nodes remains high into chronic infection as a function of virus

load. Indeed, recent studies have shown that increased levels of

CCL19 and CCL21 in blood correlate with higher virus loads and

disease progression in HIV infected humans [30]. In vitro

exposure to CCL19 and CCL21 also promotes an inflammatory

response in PBMC from HIV-infected individuals with high virus

loads [31]. We now provide evidence of a functional link between

CCL19 upregulation in lymph nodes and increased expression of

CCR7 on circulating mDC that promotes mDC recruitment to

lymph nodes in progressive SIV infection. While not examined in

this study, the potential exists for proinflammatory factors to

promote differential emigration of mDC to lymph nodes in

progressive relative to stable SIV infection. In particular,

lipopolysaccharide is increased in the circulation during chronic

HIV and pathogenic SIV infection as a consequence of microbial

translocation through increased gut permeability [32]. Lipopoly-

saccharide activates mDC via engagement of TLR4 [33] and is a

potent activator of DC migration in vivo [34,35].

In contrast to progressive infection, we found that mDC in

animals that controlled SIV infection had significant increases in

blood mDC over time, with increases of up to 5-fold by virus set-

point and nearly 10-fold in some cases at 32 weeks of infection.

Studies in HIV infected individuals have indicated that mDC loss

is inversely proportional to virus load, as we have shown, and is

not observed in long-term non-progressors [2,5,8], but such cross

sectional studies have by design not revealed changes over time.

Increased blood mDC may arise from increased hematopoiesis in

bone marrow in response to inflammatory cytokines such as TNF-

a and IL-1 that are elevated during HIV infection and promote

DC generation [36,37]. The lack of an upregulated CCR7-CCL19

axis in this group would exacerbate the impact of enhanced DC

production and mobilization into blood by limiting mDC exodus

into tissues.

Paradoxically, there was no net increase in mDC within lymph

nodes in monkeys with progressive SIV infection, associated with

an increase in mDC apoptosis, suggesting that increased

recruitment to lymph nodes is offset by increased cell death in

severe infection. mDC apoptosis was caspase-8-dependent and

associated with increased CD95 expression, similar to the findings

for plasmacytoid DC in HIV and SIV infection [38,39], consistent

with a cell-extrinsic mechanism of apoptosis involving CD95

ligation. Apoptosis through virus infection of mDC is unlikely to be

a significant factor, as previous studies indicate that only a minor

fraction of lymph node mDC contain incorporated viral DNA

during peak viremia [38]. HIV and SIV clearly affect mDC in the

absence of productive infection, in particular through interactions

of viral RNA with endosomal TLR8; however this interaction

tends to promote cell survival rather than apoptosis [9,27]. While

the increase in mDC recruitment appears to keep pace with

apoptosis in tissues during the chronic stages of SIV infection

studied here it is clear that mDC are ultimately lost from lymph

nodes as AIDS is established, as previously reported [15]. This

eventual decline may be associated with a similar decline in lymph

node expression of CCL19 in the final stages of disease [29].

Several reports have described the presence of semimature

mDC with reduced expression of costimulatory molecules and/or

CD83 in lymph node and spleen of HIV-infected humans

[11,13,40] and SIV-infected macaques [41,42]. Our data now

suggest that these cells may have a beneficial function in vivo, as

lymph node mDC with significantly lower expression of CCR7

and costimulatory molecules consistent with a semimature state

were present only in animals with long-term stable infection. In

vitro, semimature DC with tolerogenic function are derived from

exposure to immunoregulatory cytokines including IL-10 and

Expression of CCL19 and CCL21 mRNA in lymph node cell suspensions prior to infection (naı̈ve) and at 12 weeks post infection for animals with stable
and progressive infection. mRNA expression levels were calculated using the 22DCT method using [beta]-GUS as the endogenous control. The fold
change in expression was calculated by normalizing to the mean 22DCT of the naı̈ve group. Shown are mean 6 SEM of 4 animals in each group.
*P,0.05, **P,0.01. ART = interval of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g004

Dendritic Cell Dysregulation in SIV Infection

PLoS Pathogens | www.plospathogens.org 8 December 2010 | Volume 6 | Issue 12 | e1001235



transforming growth factor-b [43], however whether these factors

modulate DC maturation and function in progressive versus stable

SIV and HIV infection is not known. Semimature mDC from

HIV-infected lymph nodes have been shown to promote

regulatory T cell function [13]. While we were not able to

examine the effect of these cells on regulatory T cells in this study,

the prevalence of semimature mDC in stable but not progressive

infection might suggest a role for enhanced regulatory T cell

responses in disease control. The role of regulatory T cells in

pathogenic and nonpathogenic SIV infection is currently contro-

versial [44–46], and the interplay between mDC and regulatory T

cells in control and progression to disease deserves attention. In

contrast to stable infection, mDC in lymph nodes of animals with

progressive infection showed essentially no difference in expression

of CCR7 and activation markers relative to naı̈ve animals,

although the proportion of cells expressing these markers was

substantially greater than in blood. It is possible that activated

mDC undergo apoptosis immediately upon entering lymph nodes,

Figure 5. Apoptosis of lymph node mDC increases in progressive but not stable SIV infection. (A) Representative flow cytometry plots
showing the gating strategy used to identify mDC expressing active caspase-3 (Cas-3). Live mDC were defined as Lineage2 HLA-DR+ CD11c+ cells that
lacked staining with a fixable dead-cell dye. (B) The proportion of lymph node mDC expressing active caspase-3 relative to staining with a control
antibody at intervals before and after SIV infection. Cells were cultured for 3 hours prior to analysis. Shown are mean 6 SEM for naı̈ve (T = 0, n = 14),
progressor (n = 8) and stable n = 10). (C) The proportion of lymph node mDC, taken at 12 weeks post infection from animals with progressive
infection, expressing active caspase-3 after 3 hours in the presence of caspase-8 inhibitor (Cas-8 inh), caspase-9 inhibitor (Cas-9 inh) or control
inhibitor (Control). Boxes represent 25th to 75th percentile and median values, and whiskers represent the minimum and maximum values, using data
from 6 animals. (D) Left: Representative dot plots showing expression of CD95 relative to isotype control antibody to define positively staining cells.
Right: The proportion of lymph node mDC at 12 weeks post infection that express CD95 in naı̈ve animals (n = 4) and animals with progressive (n = 5)
and stable infection (n = 5). Boxes represent 25th to 75th percentile and median values, and whiskers represent minimum and maximum values.
*P,0.05, **P,0.01 between groups; #P,0.05, ##P,0.01, within groups relative to week 0. ART = intervals of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g005
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or alternatively that other newly identified costimulatory molecules

from the CD28 and TNFR families not examined here may be

differentially expressed in progressively infected lymph nodes [47].

In our study the two short courses of ART had only modest

although similar effects on virus load in both groups of animals,

reducing virus levels in plasma by ,1.5 logs. This may be due to

the fact that ART was initiated in chronic as opposed to acute

infection and that therapy was limited to PMPA and FTC which

both target the same viral protein, reverse transcriptase. Similarly

limited effects of ART on virus load in SIV infection have been

reported by others [48,49]. Despite this, ART had noticeably

beneficial effects on mDC homeostasis. In blood, ART reduced

mDC activation and transiently restored mDC numbers in

monkeys with progressive infection, consistent with reports in

HIV-infected individuals [8,17,18]. Most strikingly, discontinua-

tion of ART in stable animals led to a marked increase in the

number of mDC in blood. In lymph nodes, ART resulted in a

decrease in mDC apoptosis in animals with progressive infection

and a reduction in mDC responsiveness overall. Consistent with

this finding, expression of proinflammatory factors and CD95L

that likely induce functional activation and apoptosis of mDC are

substantially reduced in SIV- and HIV-infected lymph nodes in

response to ART [19,50,51]. Animals in the progressive infection

group died at a median time of 34 weeks post infection and did not

receive the full second course of ART initiated at week 32. We do

not believe this difference in treatment interval was a determining

factor in survival, as disease status and time to sacrifice were

correlated with virus load at set-point, before initiation of any

therapy, and thus were independent of ART. HIV-infected

individuals with higher baseline virus loads and immune activation

have poorer reconstitution of innate immune cells in response to

ART [16,52]. In our study, differences in baseline virus load

influenced the response to ART, as animals with stable and

progressive infection had transient increases and decreases,

respectively, in the number of blood mDC, although this could

clearly be influenced by the differences in virus load in the two

groups while on ART. It will be important to determine the

impact of improved antiretroviral drug regimens on mDC

dynamics in SIV infection, including the orally available integrase

inhibitors that are highly active in monkeys [53].

Our data indicate that mDC present in lymph nodes in SIV

infected monkeys remain functionally responsive to exogenous

stimulation regardless of disease outcome. The finding that ex vivo

stimulation through TLR8 induced a five-fold increase in

expression of TNF-a relative to naı̈ve animals suggests that these

cells may in fact be hyperresponsive, although testing with a more

extensive panel of agonists targeting different TLR ligands is

needed to confirm this. CCL19 induces terminal activation of DC

and promotes DC production of proinflammatory cytokines within

lymph nodes [54], although this effect would not explain the

finding of increased responsiveness of mDC in animals with stable

infection that had normal levels of CCL19 in our study. It is

possible that other proinflammatory factors such as IFN-c that

induce DC activation [55] and are markedly increased in lymph

nodes during pathogenic SIV infection [56] are responsible for

mDC increased responsiveness in SIV infection.

An increasing emphasis in HIV and SIV pathogenesis is now

placed on the role of gut mucosa in disease, as this is a major site of

Figure 6. Lymph node mDC from SIV infected animals remain responsive to exogenous TLR8 stimulation. The proportion of lymph
node mDC before and after SIV infection that express (A) TNF-a (A) or IL-12 (B) following stimulation with the TLR7/8 agonist 3M-007 for 5 hours.
Shown are mean 6 SEM for naı̈ve (T = 0, n = 13), progressor (n = 7) and stable animals (n = 10). Also shown are representative flow cytometry plots of
the gating strategy to identify positive populations. #P,0.05, ##P,0.01 within groups relative to week 0. ART = interval of antiretroviral therapy.
doi:10.1371/journal.ppat.1001235.g006
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virus replication and CD4+ T cell depletion [57–59]. mDC are

recruited to inflamed respiratory mucosal surfaces in children with

respiratory viral infections [60], and it is likely mDC and other DC

subsets are similarly recruited to gut and vaginal mucosa in SIV

infection [61]. It will be important to evaluate the mDC response

in gut mucosa and its relationship to disease progression in SIV

infection. However, such quantitative studies are technically

difficult to perform as the DC is a relatively rare cell that can

only be isolated in sufficient numbers through gut resection

surgeries as opposed to the more commonly performed endoscopic

biopsies.

Collectively, these data suggest that the inflammatory response

associated with increased virus load during progressive SIV

infection leads to an increase in the CCR7-CCL19 chemokine

axis that serves to accelerate mDC recruitment to lymph nodes.

Apoptosis of mDC within tissues during this chronic phase, which

was found only in animals with progressive infection, would

compromise the innate and adaptive immune response to

opportunistic pathogens promoting disease progression. It is

currently not clear whether recently recruited and activated

mDC produce increased levels of proinflammatory cytokines in

vivo that may mediate immune activation characteristic of HIV

and pathogenic SIV infection [62]. Interestingly, increased

turnover of blood monocytes associated with apoptosis of tissue

macrophages has been shown to correlate with progression to

disease in SIV-infected macaques and is a better predictive marker

than viral load or lymphocyte activation [63,64]. This response is

not likely limited to lymph nodes, as evidenced by the fact that

increased monocyte turnover and recruitment to brain correlates

with the severity of SIV encephalitis [65]. These findings point to a

broad-based dysregulation of mDC and monocytes in blood and

tissues as a significant factor in the pathogenesis of AIDS.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee at the University of Pittsburgh (Assurance Number

A3187-01). Surgeries were performed under anesthesia induced

and maintained with ketamine hydrochloride and medetomi-

dine hydrochloride, and all efforts were made to minimize

suffering.

Animal manipulations
Twenty one Indian-origin rhesus macaques (Macaca mulatta)

used in this study were housed at the University of Pittsburgh

Primate Facility for Infectious Disease Research. All animals

were infected by intravenous inoculation with 1,000 TCID50 of

uncloned, pathogenic SIVmac251 (provided by Christopher J.

Miller, California National Primate Research Center). Virus

load in plasma was determined as described previously [66].

ART consisted of PMPA (20 mg/kg/d, subcutaneous injection)

and FTC (30 mg/kg/d, subcutaneous injection; both provided

by Michael Miller, Gilead Sciences) and was given from weeks

12–24 and from weeks 32–44 as described [20]. All animals

except R189 (sacrificed at week 11 post infection) received one or

more administrations of Ad-based vectors during the study

depending on survival. Priming injections of separate Ad5-based

vectors expressing codon-optimized SIVmac239 gag, env and nef

with and without rhesus IL-15.FLAG or empty Ad-y5 were given

by intramuscular injection at week 16 (561010 total viral

particles) and week 22 (161011 total viral particles), and boosting

injections of the same quantity of Ad35-based vectors expressing

the same transgenes were given at week 36 and 42. All Ad vectors

were E1/E3-deleted with the exception of Ad35 containing the

env gene which was E3 deleted. Lymph nodes were taken from

the axillary or inguinal regions prior to infection and at weeks 12,

24 and 32 post infection and single cell suspensions were

generated by disruption and digestion with collagenase D, as

described [67].

Cell identification and enumeration
Identification of mDC was performed as previously described

with some modifications [15,24]. Briefly, PBMC or lymph node

cell suspensions were stained with fluorescently-labeled antibodies

to Lineage markers [CD3 (clone SP34-2; all antibodies from BD

Bioscience unless otherwise noted), CD14 (M5E2), and CD20

(2H7)], HLA-DR (G46-6) and CD11c (S-HCL-3), with and

without antibodies to CD45 (D058-1283), CD80 (L307.4), CD86

(FUN-1), CCR7 (150503, R&D Systems), CD40 (5C3) and CD95

(DX2). An amine-reactive fixable dead-cell dye (Invitrogen) was

used to discriminate live from dead cells. mDC were defined as

Lineage2 HLA-DR+ cells expressing CD11c. In lymph nodes a

broad Lineage2 HLA-DR+/++ gate was used to include all mDC

as described previously The number of blood CD4+ T cells was

quantified using a precise volume of blood stained with antibodies

in the absence of any wash step in TruCOUNT tubes (BD

Biosciences) that contained a known number of fluorescent beads

to provide internal calibration, as previously reported [20]. The

number of blood mDC was then calculated based on the ratio of

mDC to CD4+ T cells in PBMCs at the same time point [24]. All

analyses were done on an LSR II flow cytometer with FACSDiva

software (BD Bioscience).

Cytokine expression and apoptosis
Intracellular cytokine production by lymph node mDC was

measured as described previously for plasmacytoid DC with minor

modifications [38]. Briefly, cell suspensions were cultured for

5 hours with 10 mM of the TLR7/8 agonist 3M-007 (3 M

Pharmaceuticals) with and without the addition of 10 mg/mL

brefeldin A (Sigma) after 1 hour. Cells were stained with surface-

labeling antibodies as above and fixed and permeabilized prior to

incubation with antibody to TNF-a (MAb11) and IL-12 (8.6,

Mitenyi Biotec) and analysis by flow cytometry. To detect

apoptosis in mDC, lymph node cell suspensions were cultured in

media for 3 hours with and without caspase-8 inhibitor Z-IETD-

FMK, caspase-9 inhibitor Z-LEHD-FMK or irrelevant peptide Z-

Fa-FMK (BD Biosciences). Cells were stained with surface-labeling

antibodies as above and fixed and permeabilized prior to

incubation with antibody to active caspase-3 (C92-605) and

analysis by flow cytometry.

Detection of chemokine mRNA expression
Total lymph node RNA was extracted and purified from cell

suspensions generated from biopsies taken prior to or 12 weeks

after infection using the RNAeasy kit (Qiagen) after treatment with

DNAse I (Invitrogen). cDNA was synthesized using random

primers and Superscript II reverse transcriptase (Invitrogen).

Primers and probes from Taqman human gene expression arrays

(Applied Biosystems, Foster City, CA) were utilized for real time

PCR analysis of CCL19, CCL21 and b-glucuronidase expression

as previously described [68]. mRNA expression levels for each

gene were calculated with the 22DCT method using b-glucuron-

idase as the endogenous control [69].
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Statistical analysis
Comparisons between two groups were carried out using the

Mann-Whitney U test. Comparison of DC numbers across

different time points was carried out using the Wilcoxon signed-

rank test. Correlations were determined using the non-parametric

Spearman rank test. Graphpad Prism 5 (Graphpad Software) was

used for statistical analysis. All P values are two-sided with

significance considered to be P,0.05.

Gene identification
The identification of genes analyzed in this paper as defined by

Entrez-Gene are 574386 (CCL19), 574183 (CCL21) and 677692

(b-glucuronidase).
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