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Abstract

The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability
to form tumors in xenograft models. To directly assess ATF2’s role in melanoma development, we crossed a mouse
melanoma model (NrasQ61K::Ink4a2/2) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In
contrast to 7/21 of the NrasQ61K::Ink4a2/2 mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed
melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally
inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf22/2 mice, in primary human melanocytes, and
in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB–
dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)–dependent focus formation of
melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On
melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic
disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma
development through fine-tuning of MITF expression.
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Introduction

Malignant melanoma is one of the most highly invasive and

metastatic tumors [1], and its incidence has been increasing at a

higher rate than other cancers in recent years [2]. Significant

advances in understanding melanoma biology have been made

over the past few years, thanks to identification of genetic changes

along the MAPK signaling pathway. Those include mutations in

BRAF, NRAS, KIT and GNAQ, all of which result in a constitutively

active MAPK pathway [3–5]. Consequently, corresponding

transcription factor targets such as microphthalmia-associated

transcription factor (MITF) [6], AP2 [7], and C-JUN [8] and its

heterodimeric partner ATF2 [9] are activated and induce changes

in cellular growth, motility and resistance to external stress

[10,11]. In addition, constitutively active MAPK/ERK causes

rewiring of other signaling pathways [4]. Among examples of

rewired signaling is upregulation of C-JUN expression and activity

[8], which potentiates other pathways, including PDK1, AKT and

PKC, and plays a critical role in melanoma development [12].

Activating transcription factor 2 (ATF2), a member of the bZIP

family, is activated by stress kinases including JNK and p38 and is

implicated in transcriptional regulation of immediate early genes

regulating stress and DNA damage responses [13–15] and

expression of cell cycle control proteins [16]. To activate

transcription, ATF2 heterodimerizes with bZIP proteins, including

C-JUN and CREB [17,18], both of which are constitutively

upregulated in melanomas [8]. ATF2 is also implicated in the DNA

damage response through phosphorylation by ATM/ATR [19].

Knock-in mice expressing a form of ATF2 that cannot be

phosphorylated by ATM are more susceptible to tumor develop-

ment [20]. Nuclear localization of ATF2 in melanoma tumor cells is

associated with poor prognosis [21], likely due to transcriptional

activity of constitutively active ATF2. Indeed, expression of

transcriptionally inactive ATF2 or peptides that attenuate endog-

enous ATF2 activity inhibits melanoma development and progres-

sion in xenograft models [22–26]. These studies suggest that ATF2

is required for melanoma development and progression.

The transcription factor MITF has been shown to play a central

role in melanocyte biology and in melanoma progression [27,28].

Yet, the role of MITF in early stages of melanoma development

remains largely unexplored. Factors controlling MITF transcrip-

tion have been well documented and include transcriptional
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activators, such as SOX10, CREB, PAX3, lymphoid enhancer-

binding factor 1 (LEF1, also known as TCF), onecut domain 2

(ONECUT-2) and MITF itself [29–33], as well as factors that

repress MITF transcription, including BRN2 and FOXD3

[34,35]. In addition, MITF is subject to several post translational

modifications which affect its availability and activity, including

acetylation, sumoylation and ubiquitination [27,28].

To directly assess the importance of ATF2 in melanoma

development, we employed a mouse melanoma model in which

ATF2 is selectively inactivated in melanocytes. We demonstrate

that melanoma development is markedly attenuated in mice

expressing a transcriptionally inactive form of ATF2 in melano-

cytes. Surprisingly, ATF2 control of melanoma development was

mediated, in part, through its negative regulation of SOX10 and

consequently of MITF transcription. Inhibition of ATF2 abolished

mutant BRAF-expressing melanocytes’ ability to form foci on soft

agar, which was partially rescued when expression of MITF was

attenuated. The significance of these findings is underscored by

our observation of human melanoma tumors, in which high ratio

of nuclear ATF2 to MITF expression was associated with poor

prognosis. These findings identify a novel mechanism underlying

melanocyte transformation and melanoma development.

Results

Generation of melanocyte-specific ATF2 mutant mice
Global Atf2 knockout in mice leads to early post-natal death

[36]. Therefore, the Cre-loxP system was utilized to disrupt Atf2 in

melanocytes. Deletion of its DNA binding domain and a portion of

the leucine zipper motif results in a transcriptionally inactive form

of ATF2 (Figure 1a; [36]). To generate loss-of-function mutants,

we established mice that would allow CRE-dependent deletion of

these domains. Mice homozygous for the loxP-flanked (floxed) Atf2

gene (Atf2f/f) were born at the expected Mendelian ratios and

presented no apparent abnormalities. In addition, in several tissues

analyzed, ATF2 expression levels were comparable between WT

and Atf2f/f mice (data not shown).

To elucidate the role of ATF2 in melanoma, Atf2f/f mice were

crossed with mice harboring a 4-hydroxytamoxifen (OHT)-

inducible Cre recombinase-estrogen receptor fusion transgene

under the control of the melanocyte-specific tyrosinase promoter,

designated Tyr::CreER(T2). Upon administration of OHT, we

predicted that CRE-mediated recombination would be induced in

a spatially and temporally controlled manner in embryonic

melanoblasts, melanocytes, and in putative melanocyte stem cells

[37]. The resulting Atf2f/f/Tyr-CreER(T2) mice, designated mela-

nocyte-deleted (md) Atf2md), indeed expressed the gene encoding

the ATF2 transcriptional mutant in melanocytes. Immunoblot

analysis of ATF2 protein confirmed that melanocytes prepared

from wild-type TyrCre+::Atf2+/+::Nras+::Ink4a2/2 (WT) mice

express a 70 kDa band corresponding to full length ATF2,

whereas melanocytes of TyrCre+::Atf2md::Nras+::Ink4a2/2 mice

express only a 55 kDa band, corresponding to the size of ATF2

lacking the DNA binding and leucine zipper domains (Figure 1b).

Disruption of ATF2 in melanocytes inhibits melanoma
formation

To address the role of ATF2 in de novo melanoma formation

Tyr::CreER::NrasQ61K::Ink4a2/2 (KO of exon 2–3 of Cdkn2a locus,

which encodes for both p16Ink4a and p19Arf; [38]) mice, which

develop spontaneous melanoma (Lynda Chin, unpublished obser-

vations), were crossed with Atf2md mice. Similar to findings reported

by Ackermann et al. [39], mutant N-Ras/Ink4a2/2 mice developed

melanoma within 8–12 weeks with metastatic lesions often seen in

the lymph nodes. However, the incidence of melanoma was lower in

Tyr::CreER::NrasQ61K::Ink4a2/2 mice used in the present study (50%

penetrance, of which 50% of the tumors were confirmed to be

melanoma), probably because expression of mutant NRAS was

induced only after birth, as opposed to activation of NRAS during

embryogenesis, as reported in [39]). Thus, Atf2md::N-RasQ61K::

Ink4a2/2 mice were used to assess changes in melanoma incidence

in the absence of functional ATF2 over a period of up to 8 months.

In all cases, mouse skin was treated with Tamoxifen within 3–5 days

after birth to inactivate ATF2 (Figure 1b) and with doxycycline in

their drinking water to induce expression of the NRAS mutant

transgene (See Materials and Methods for details; Figure 1c). In the

control group (Tyr::CreER::Atf2+/+::NrasQ61K::Ink4a2/2), 11/21 mice

(52%) developed tumors within 8–16 weeks (Table 1). In ATF2

heterozygotes (Tyr::CreER::Atf22/+::NrasQ61K::Ink4a2/2), 18/44 mice

(41%) developed tumors within 8–16 weeks, and in the Tyr::CreER::

Atf2md::NrasQ61K::Ink4a2/2 group only 3 of 21 animals (15%)

developed tumors within 24–36 weeks (Figure 1d and Table 1).

To evaluate tumor type, we examined melanoma markers including

DCT and S100 in all tumors (Figure 1e, Figure S1). This analysis

identified 55–63% of tumors as melanomas in both the Atf2+/+ (7/

11) and Atf2+/2 (10/18) groups (Table 2). Only one of the three

tumors observed in the Atf2md group was identified as a melanoma.

Kaplan Meier curve did not reveal significant differences in survival

among the different genotypes, probably since this study was

primarily designed to follow tumor incidence. Common to all

genotypes, most tumors that were not identified as melanomas were

fibrosarcomas and lymphomas, consistent with previous reports

[38]. These data suggest that transcriptionally active ATF2 is

required for melanoma development in the NrasQ61K::Ink4a2/2

mouse melanoma model.

Identification of MITF as an ATF2-regulated gene
To assess the mechanism underlying ATF2’s contribution to

melanoma development, we conducted gene profiling array

Author Summary

Understanding mechanisms underlying early stages in
melanoma development is of major interest and impor-
tance. Recent studies indicate a role for MITF, a master
regulator of melanocyte development and biogenesis, in
melanoma progression. Here we demonstrate that the
transcription factor ATF2 negatively regulates MITF tran-
scription in melanocytes and in about 50% of melanoma
cell lines. Increased MITF expression, seen upon inhibition
of ATF2, effectively attenuated the ability of BRAFV600E-
expressing melanocytes to exhibit a transformed pheno-
type, an effect partially rescued when MITF expression was
also blocked. Significantly, the development of melanoma
in mice carrying genetic changes seen in human tumors
was inhibited upon inactivation of ATF2 in melanocytes.
Melanocytes from mice lacking active ATF2 expressed
increased levels of MITF, confirming that ATF2 negatively
regulates MITF and implicating this newly discovered
regulatory link in melanoma development. Primary mela-
noma specimens that exhibit a high nuclear ATF2-to-MITF
ratio were found to be associated with metastatic disease
and poor prognosis, further substantiating the significance
of MITF control by ATF2. In all, these findings provide
genetic evidence for the role of ATF2 in melanoma
development and indicate an ATF2 function in fine-tuning
MITF expression, which is central to understanding MITF
control at the early phases of melanocyte transformation.

ATF2 Regulates MITF and Melanoma Development
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analysis of primary melanocytes prepared from Tyr::Cre+::Atf2+/+::

NrasQ61K::Ink4a2/2 and Tyr::Cre+::Atf2md::NrasQ61K::Ink4a2/2 mice.

Analysis was limited to melanocytes, since, as reported above, only

one melanoma formed in the ATF2 mutant group. In all cases,

ATF2 was inactivated and NRAS was induced in culture within

48h of plating cells, as monitored by western blots (Figure 1b, 1c

and data not shown). Melanocytes were enriched, and immuno-

staining with appropriate markers confirmed that samples were

free of keratinocytes and fibroblasts (data not shown; see Materials

and Methods for details). RNA was prepared from cultures and

two biological and technical replicates were used for data analysis.

As shown in Table 3, among transcripts differentially expressed in

ATF2 WT and mutant cultures were several factors that play an

important role in melanocyte pigmentation, including Mitf, Silver,

Tyrp1 and Dct. qPCR analysis, performed on independently

prepared RNA samples from melanocytes expressing WT

(Tyr::Cre+::Atf2+/+::NrasQ61K::Ink4a2/2) or mutant ATF2 (Tyr::

Cre+::Atf2md::NrasQ61K::Ink4a2/2), confirmed altered expression of

pigmentation genes (Table 3). These data provide the initial

indication that ATF2 negatively regulates Mitf and several other

important pigmentation genes. As the pigmentation genes

identified in this array are known to be regulated by MITF [27],

we focused on regulation of MITF by ATF2.

MITF is negatively regulated by ATF2 in mouse and
human melanocytes

To confirm that ATF2 negatively regulates Mitf expression, we

assessed MITF transcription in primary mouse melanocytes

harboring WT (Tyr::Cre2::Atf2+/+) or mutant (Tyr::Cre+::Atf2md)

forms of ATF2. RNA prepared from whole skin of these mice (3

mice per group) was subjected qPCR analysis. Significantly, Mitf

expression was inversely correlated to the presence of functional

ATF2; samples obtained from ATF2 mutant skin exhibited a

greater than 2-fold increase in MITF expression compared with

those obtained from WT ATF2 mice (Figure 2a). Likewise, we

found that genes transcriptionally regulated by MITF, such as Dct,

Silver and Tyrp1, were upregulated in the skin of mutant ATF2

mice (Figure 2a). The degree of altered expression of pigmentation

genes was less pronounced in whole skin samples than in cultured

melanocytes (Table 3), probably due to confounding effects of in

vitro cell culture. To confirm the qPCR data, we performed

immunostaining of skin tissue samples obtained from 4 days old

WT or ATF2 mutant mice and observed increased MITF

expression in melanocytes from Atf2md mice relative to their WT

counterparts (Figure 2b). Quantification of MITF staining

revealed an approximate 2-fold increase in nuclear MITF

expression in Atf2md compared to WT mice (Figure 2c). Of note,

the level of S100 staining in the hair matrix was markedly reduced

in the skin of Atf2md mice. At a later time point (2 weeks)

representing an advanced stage of melanocyte development, S100

staining was similar in both genotypes, while MITF expression

remained upregulated in Atf2md mice (not shown). In all, these data

confirm our initial observations in primary mouse melanocytes

that MITF levels are elevated in ATF2 mutant-expressing cells.

Additional assessment was performed in melan-Ink4a-Arf1 mela-

nocytes, a line derived from black Ink4a-Arf null mice [40], and in

primary human melanocytes. In both, ATF2 expression was

inhibited by viral infection with the corresponding mouse or human

shRNA (shATF2). Infection of either primary human (Figure 3a) or

melan-Ink4a-Arf1 melanocytes (Figure 3b) with shATF2 markedly

increased MITF transcription and protein expression (Figure 3a,

3b). These findings show that loss of transcriptionally active ATF2

allows higher expression of MITF and strongly suggest that ATF2

negatively regulates MITF expression in melanocytes.

MITF transcription is negatively regulated by ATF2 in
about 50% of human melanoma cells

Given that ATF2 negatively regulates MITF in melanocytes of

mouse and human tissues and in related melanocyte cell lines, we

asked whether ATF2 also regulates MITF in human melanoma cells.

Initially, we assessed changes in MITF expression in six human

Table 1. Tumor incidence in mixed genetic backgrounds.

Genotype No of mice Tumor Incidence

ATF2+/+TyrCre+Nras+Ink4a2/2 21 11/21 (52%)

ATF2+/2TyrCre+Nras+Ink4a2/2 44 18/44 (41%)

ATF22/2TyrCre+Nras+Ink4a2/2 21 3/21 (15%)

Shown is the tumor incidence in the different genotypes.
doi:10.1371/journal.pgen.1001258.t001

Table 2. Tumors positive for melanoma markers S100 and
DCT.

Genotype Melanomas Non melanomas

ATF2+/+TyrCre+Nras+Ink4a2/2 7/21 (33%) 4/21 (19%)

ATF2+/2TyrCre+Nras+Ink4a2/2 10/44 (22%) 8/44 (18%)

ATF22/2TyrCre+Nras+Ink4a2/2 1/21 (5%) 2/21 (10%)

In order to distinguish melanoma from non-melanoma tumors were subjected
to staining with S100 and DCT (see Figure 1E, Figure S1). Only those stained
positive for both markers were considered as melanomas. Number of positive
stained out of total melanomas is shown (percent positive) for each of the
genotypes. Statistical analysis using Chi-square assay revealed that the
differences between # of melanomas between the ATF22/2 and ATF2+/+

genotypes are significant (p = 0.018). Differences among the other groups were
not significant (differences between # of melanomas between the ATF22/+ and
ATF2+/+ p = 0.36; differences between # of non-melanomas between the
ATF22/2 and ATF2+/+ groups p = 0.37. differences between # of non-
melanomas between the ATF22/2 and ATF22/+ p = 0.92).
doi:10.1371/journal.pgen.1001258.t002

Figure 1. Melanoma development is inhibited in Nras/Ink4a mice expressing a melanocyte-specific ATF2 mutation. A. Targeting
strategy shows wild-type allele of Atf2 encompassing exons 8 and 9 (boxes) and flanking loxP sequences (arrowheads). B. Expression of ATF2 assessed
by immunoblot in melanocytes derived from TyrCre+::Atf2+/+::NrasQ61K::Ink4a2/2 and TyrCre+::Atf2md::NrasQ61K::Ink4a2/2 mice and treated with 4-OHT,
enabling expression of a mutant lacking the DNA binding and leucine zipper domains. b-actin served as a loading control. C. Induction of mutant
NRAS in melanocytes. Shown is RT-PCR analysis (20 cycles) of NRASQ61K transcript levels in melanocyte cultures treated with doxycycline (2mg/ml).
RNA from untreated melanocytes served as a control (right lane), and Cyclophilin A served as an internal control. D. Melanoma development is
inhibited in TyrCre+::Atf2md::NrasQ61K::Ink4a2/2 mice. Image represents animals of TyrCre+::Atf2+/+::NrasQ61K::Ink4a2/2 or TyrCre+::Atf2md::NrasQ61-

K::Ink4a2/2 genotype that were analyzed for tumor formation within 8–32 weeks. E. Representative staining of melanoma tumors from mice of the
TyrCre+::Atf2+/+NrasQ61KInk4a2/2genotype for melanoma markers. Immunohistochemistry was performed on 5 mM paraffin-embedded samples.
Sections were incubated with S-100 and DCT antibody (Ab) or control secondary antibody (Cont) and counterstained with hematoxylin. Scale
bar = 50 micron. Slides were scanned by scanscope at 206 (IHC) and 406 (H&E).
doi:10.1371/journal.pgen.1001258.g001
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melanoma lines harboring oncogenic mutations in BRAF or NRAS,

and in which ATF2 expression was effectively inhibited by

corresponding shRNA (shATF2). In all cases, shRNA specificity

was confirmed using three independent sequences (data not shown).

Surprisingly, the six melanoma lines fell into two classes based on

distinct patterns of regulation of MITF by ATF2 (Table 4). The first

class comprised four of the six melanoma cultures (1205Lu, WM35,

WM793 and WM1361), in which MITF expression was elevated 3–

6-fold following inhibition of ATF2 expression (Figure 3c, S2a).

Conversely, a second class of cells, including MeWo and 501Mel

cells, exhibited decreased MITF expression after ATF2 knockdown

(KD), suggesting positive regulation of MITF by ATF2 (Figure 3d,

S2b). Notably, this latter group showed high levels of basal MITF

expression [41,42], suggesting that regulation of MITF expression in

these cells differs mechanistically from that of the first group. Further,

in response to stress (UV or hypoxia) the MeWo and 501Mel lines

further reduced MITF expression (Figure 3d and data not shown),

providing further evidence for differential regulation of MITF in

these cells both prior to and in response to stress stimuli. Additional

analyses were performed, employing 12 more melanoma cell lines.

Inhibition of ATF2 expression revealed that 4/12 exhibited increase

in MITF expression, while 6/12 decreased MITF expression. Two of

the 12 lines did not exhibit change in MITF expression following

ATF2 KD (Table 4, S5). Collectively, out of 18 melanoma lines we

found that 8 (44%) retained similar negative regulation of MITF by

ATF2 as observed in the melanocytes. However, another 8 (44%)

exhibited positive regulation of MITF by ATF2, pointing to a

transcriptional switch that occurred in the course of melanocyte

transformation. MITF was not affected by altered ATF2 expression

in 2/18 cell lines (Table 4, Figure S5). In all, in about 50% of the

melanoma cell lines ATF2 elicits negative regulation of MITF, similar

to what was seen in human and mouse melanocytes.

ATF2 regulation of MITF is mediated by discrete
promoter elements

MITF transcription is regulated by complex positive and negative

cues [27]. For instance, while CREB and SOX10 positively regulate

MITF, BRN2 and FOXD3 have been shown to downregulate

MITF expression [29,30,34,35]. Hence we used melanocytes and

representative melanoma lines to assess mechanisms underlying

positive or negative regulation of MITF. Infection of the human

melanocyte line Hermes 3A with shATF2 effectively inhibited ATF2

expression, upregulated Mitf transcription and increased transcrip-

tion of SOX10 and FOXD3 (from 7- to 10-fold) and to a lesser

extent of Pax3 and Brn2 (from 1.5- to 2-fold) (Figure 4a, S3a).

Similarly, inhibition of ATF2 transcription in human melanoma

1361 cells increased SOX10 and FOXD3 transcription, albeit, to a

lesser degree (3- and 1.5-fold, respectively) compared with human

melanocytes (Figure S3b). Neither BRN2 nor PAX3 transcription

was elevated in melanoma cells in which ATF2 expression was

inhibited (Figure S3a). These observations suggest a role for ATF2

in FOXD3- and SOX10-mediated regulation of MITF transcrip-

tion in melanocytes and melanoma cells.

To assess the possible role of FOXD3 in regulation of MITF we

inhibited FOXD3 expression in melanocytes expressing control

shRNA and shATF2. Inhibition of FOXD3 expression increased

SOX10 transcription and protein expression, albeit to lower levels

compared with inhibition of ATF2 expression (Figure S4).

Concomitant increase of MITF RNA and protein levels was also

lower, compared with that seen upon inhibition of ATF2

expression. Notably, inhibition of both ATF2 and FOXD3

resulted in additive increase of SOX10 and MITF (Figure S4).

These data suggest that FOXD3 may also contribute to negative

regulation of MITF in melanocytes, independent of ATF2. Since

inhibition of FOXD3 elicited a less pronounced effect compared

with ATF2, and since the effect appeared ATF2-independent and

furthermore did not appear to mediate similar changes in human

melanoma cells (Figure S3b and data not shown), we focused on

assessment of direct mechanisms underlying ATF2 effect on MITF

transcription.

To this end we first analyzed MITF promoter sequences for

ATF2/CRE elements (Cyclic AMP response element), which can

be targeted by ATF2, as well as sequences recognized by BRN2

and SOX10 using a luciferase reporter construct (MITF-Luc) [43].

Using either a wild-type (WT) construct or one in which the BRN2

site was mutated, we observed increased luciferase activity

following inhibition of ATF2 transcription in WM1361 melanoma

(Figure 4b), as well as in LU1205 and WM35 melanoma cells (data

not shown). The relative increase in luciferase activity following

ATF2 inhibition was equivalent in both constructs, suggesting that

an ATF2 effect is not mediated by BRN2 (Figure 4b, left panel).

Similarly, MITF transcriptional activities were altered to a similar

degree following inactivation of the CRE element (Figure 4b, right

panel), suggesting that ATF2 down-regulation of the MITF

promoter is indirect. We therefore assessed whether SOX10,

which positively regulates MITF and whose transcription

markedly increases in melanocytes and melanoma cells in which

ATF2 expression is inhibited (Figure 4a, S3b), may mediate ATF2

effect on MITF transcription. Analysis of a MITF-Luc construct

harboring a mutant SOX10 binding site revealed that ATF2

inhibition no longer elicited increased MITF transcription in

human melanocytes or in melanoma cells (Figure 4c). In

agreement, inhibition of SOX10 expression by corresponding

siRNA attenuated the increase in MITF transcription seen in

shATF2-expressing human melanocytes (Figure 4d) or melanoma

cells (Figure 4e). These results suggest that ATF2 regulation of

MITF transcription is mediated by SOX10. In agreement,

chromatin immunoprecipitation (ChIP) assays confirmed in-

creased binding of SOX10 to the MITF promoter in melanoma

cells expressing shATF2 (Figure 5a).

A putative response element for AP1 (which can serve as an

ATF2 response element through ATF2 heterodimerization with

Table 3. Microarray analysis of ATF2+/+TyrCre+Nras+Ink4a2/2

and ATF22/2TyrCre+Nras+Ink4a2/2melanocytes and
confirmation by qPCR.

Gene name Microarray (ATF22/2/WT) qPCR confirmation

Cyclin D1 0.4 0.425

ESAM1 0.09 0.123

Angiopoietin 2 0.254 0.129

KIflc 0.419 0.56

MITF 7.3 1.91

PCDH7 0.46 0.225

Silver 45.27 74.88

DCT 9.0 18.9

Tyrp1 2.3 12.7

Tgfbi 0.34 0.49

Primary melanocytes were isolated and inactivation of ATF2+ induction of N-
Ras expression was performed in culture (see Materials and Methods for details).
RNA prepared from the cells was used for array analysis. Data shown represents
2 biological and 2 technical replicates for the array studies and 3 replicates for
the qPCR analyses (see Materials and Methods for details).
doi:10.1371/journal.pgen.1001258.t003
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Figure 2. ATF2 negatively regulates MITF in melanocytes. A. qPCR performed on RNA prepared from skin of 4-day-old ATF2 WT or Atf2md

mice (3 mice per sample; see Materials and Methods for details). Shown is representative analysis of 3 independent samples. B. IHC analysis of mouse
skin prepared from 4-day-old mice. Staining with corresponding antibodies was performed as indicated in Experimental Procedures. Magnifications

ATF2 Regulates MITF and Melanoma Development
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JUN family members; [9]) has been identified in upstream regions

of the Sox10 promoter [44]. We examined potential ATF2

binding to this element by ChIP and found that endogenous

ATF2, but not ATFa, binds to that AP1 sequence (24797–4791)

in both human melanocytes and melanoma cells (Figure 5b). We

next set to identify ATF2 heterodimeric partner, which could

mediate negative regulation of SOX10 transcription. Among

members of the JUN family implicated in transcriptional silencing

is JunB. Thus, further assessment was performed to determine if

JunB functions as an ATF2 heterodimerization partner to regulate

SOX10 transcription through the AP1 site. ChIP analysis

confirmed that JunB binds to the AP1 site found in SOX10

promoter sequences (Figure 5c). To confirm a possible role for

JunB in regulating MITF transcription we asked whether

expression of TAM67, a negative regulator of Jun family

members, could attenuate the binding and transcriptional

activities elicited by JunB. Expression of TAM67 indeed reduced

the degree of ATF2 and JunB binding to the AP1 site on SOX10

promoter. Further, KD of ATF2 expression abolished binding of

both ATF2 and JunB to the AP1 site on the SOX10 promoter

(Figure 5c). These data confirm the presence of ATF2-JunB

complex on Sox10 promoter and suggest that ATF2 recruits JunB

for binding to the AP1 site on SOX10 promoter. To assess the role

of JunB on SOX10 transcription we have monitored changes in

Sox10 expression at the protein and RNA levels. Expression of

TAM67 caused increased expression of SOX10 in both human

melanoma (,2 folds; Figure 5d) and melanocytes (,3 folds;

Figure 5e), indicating some relief of JunB inhibition. Co-expression

of TAM67 with Jun B attenuated this increase, reducing the level

of Sox10 expression to basal levels (Figure 5d, 5e). Over-expression

of JunB, but not Jun D, effectively inhibited Sox10 expression in

both the melanoma and melanocytes cells (Figure 5d, 5e). These

data suggest that JunB mediates inhibition of Sox10 expression.

To further reveal the role of ATF2 in this inhibition, we assessed

the effect of JunB on Sox10 expression in cells expressing control

shRNA or shATF2. While ectopic expression of JunB reduced the

expression of Sox10 in control shRNA-expressing cells, such

decrease was no longer seen in cells expressing shATF2 (Figure 5f).

Collectively, these findings suggest that ATF2, in concert with

JunB, is responsible for inhibition of Sox10 expression.

We next assessed the effect of ATF2 on SOX10 and MITF

expression in 12 additional human melanoma cell lines. In all cases

cells were infected with shATF2 and changes in SOX10 and

MITF were monitored at the level of RNA. Notably, about 4/12

melanoma lines revealed increase in both SOX10 and MITF

expression upon KD of ATF2 (Figure S5, Table 4). In contrast, 6/

12 melanoma lines revealed decrease in MITF expression, of

which 5 also shown decrease in SOX10 expression, pointing to

positive regulation of SOX10 and MITF in these melanoma cells.

In two out of the 12 melanoma lines ATF2 affected SOX10 but

not MITF transcription (Figure S5). Overall, our cohort of 18

melanoma lines revealed that about 50% of the melanomas

retained negative regulation of MITF by ATF2, as seen in the

melanocytes (primary and cell lines) (Table 4).

To further assess whether ATF2 regulation of MITF is SOX10-

dependent in melanocytes and melanoma cells, we coexpressed

SOX10 in shATF2-expressing cells. As seen in earlier analysis,

inhibition of ATF2 expression caused increase in MITF transcription

in the human melanocytes and 4 melanoma cell lines, (WM1361,

WM793, LU1205, WM35; Figure S6). Notably, the melanocytes and

2/4 melanoma cell lines revealed ATF2 effect on MITF expression is

SOX10-dependent (WM1361, WM793; Figure S6). Two of the four

melanoma cell lines did not reveal increased SOX10 expression,

although they retained increased MITF expression, upon inhibition

of ATF2 (Lu1205, WM35; Figure S6). These findings confirm that

while in melanocytes, expression of SOX10 and MITF is negatively

regulated by ATF2, this mechanism is conserved in approximately

half of melanomas surveyed.

Along these lines, the two melanoma lines (MeWo and 501 Mel)

that exhibit positive regulation of MITF by ATF2 also exhibited

positive regulation of SOX10 by ATF2 (Figure S7). Inhibition of

ATF2 expression reduced SOX10 and MITF RNA and protein

levels (Figure S7a–c). In order to determine whether JunB lost its

ability to elicit negative regulation of SOX10 and MITF in

melanoma cells where ATF2 no longer inhibited SOX10 or MITF

expression, we transfected those cell lines with TAM67 and JunB

alone and in combination. In these cells, whereas TAM67

effectively attenuated Sox10 and MITF expression, JunB did not

alter expression of these genes, suggesting that positive regulation

of MITF and SOX10 by ATF2 depends on other members of the

Jun family of transcription factors (Figure S7d). Conversely,

TAM67 or JunB had no effect on melanoma cells in which ATF2

inhibits MITF independently of SOX10, suggesting that in these

cases, ATF2 likely cooperates with transcription factors other than

JunB to elicit negative regulation of SOX10 and MITF (Figure

S7d). Consistent with this observation, ChIP assay confirmed

ATF2 and CREB, but not JunB, binding to the Sox10 promoter in

these cells (Figure S7e). These findings suggest that changes in

ATF2 heterodimeric partner (from JunB to CREB) are likely to

cause the switch from negative to positive regulation of SOX10,

and in turn, MITF (see below). The possibility that altered

expression of JunB may account for ATF2 positive or negative

regulation of Sox10 and MITF were excluded, as no clear

correlation between JunB expression and the ability of ATF2 to

elicit negative regulation of Sox10/MITF were seen (Figure S7f).

Among response elements potentially required to upregulate

MITF transcription is the CRE element, which is implicated in

CREB-mediated upregulation of MITF transcription [45].

Although transcriptional activity from a CRE mutant MITF

promoter was lower compared to the WT promoter (30%), it was

no longer responsive to inhibition of ATF2 expression in the

MeWo cells (Figure S8a). Pull-down assays using biotin-tagged

MITF promoter sequences harboring the CRE identified ATF2

and CREB as CRE-bound proteins in MeWo melanoma cells

(Figure S8b). In agreement, ChIP analysis confirmed occupancy of

the CRE site on MITF promoter by ATF2 (Figure S8c). These

findings are consistent with the fact that ATF2 heterodimerizes

with CREB [9] and with a report that p38/MAPK14 (which

phosphorylates ATF2) plays an important role in MITF

transcription dependent on the CRE site [46]. These results

establish that ATF2-dependent activation of MITF transcription

in these melanoma cells is mediated through the CRE site, likely in

cooperation with CREB. Notably, MeWo and 501Mel lines are

known to express high MITF levels compared to other melanoma

lines [41,42], suggesting these cells harbor distinct mechanisms

that preclude negative regulation of MITF by ATF2.

shown are 20 and 406. S100 staining reveals changes in the hair matrix (low magnification) and migrating melanoblasts (higher magnification) Scale
bar = 100 micron. C. Quantification of immunostaining was performed using the automated Aperio ScanScope CS system (see Materials and Methods
for details). The percentage (%) reflects the amount of positive signal in five selected fields representing longitudinal sections through the skin and
containing the entire length of hairs, from the bulb with the subcutis to the epidermis.
doi:10.1371/journal.pgen.1001258.g002
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Figure 3. ATF2 regulates MITF in melanocytes and melanoma cells. A. Upper panel, ATF2 was knocked down in primary human melanocytes
(one 10 cm plate each, 50% confluent) and cells were either untreated or kept under hypoxia (1%) for 16h. Cells were lysed and Western blotting was
carried out with the indicated antibodies. Lower panel, RNA was extracted from the above samples and qPCR was carried out using MITF primers.
Cyclophilin A was served as an internal control. B. Upper panel, ATF2 was knocked down in melan-Ink4a-Arf1 mouse melanocytes and Western
blotting was performed using the indicated antibodies. Lower panel, qPCR of the above samples was carried out using MITF primers. C. Left panel,
Lu1205 melanoma cells (one 10 cm plate each, 50% confluent) were transduced with either empty or shATF2 lentiviral vectors. Cells were left
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Inhibition of MITF expression rescues focus formation on
soft agar in shATF2-expressing melanocytes

To determine whether the contribution of ATF2 to melanocyte

transformation and development is MITF-dependent, we assessed

melanocytes’ ability to grow and form colonies in soft agar, which

is indicative of their transformed potential. Expression of mutant

BRAFV600E in immortal melanocytes is reportedly sufficient for

growth on soft agar [47]. Thus we infected melan-Ink4a-Arf1

melanocytes with mutant BRAF (Figure 6a) and confirmed their

ability to form colonies in soft agar. Mutant BRAF expression

effectively caused formation of about 1000 colonies per 5000 cells

(Figure 6b, 6c). In contrast, melanocytes infected with BRAF600E

and with shATF2 formed on average about 20 colonies, indicative

of loss of tumorigenicity (Figure 6b, 6c, 6d) and consistent with our

initial observation that the number of melanoma tumors

significantly decreases in the absence of transcriptionally function-

al ATF2 (Tables 1–2). To determine the importance of MITF at

this early stage of melanocyte transformation we inhibited MITF

expression (using shRNA) in melanocytes expressing mutant

BRAF alone or mutant BRAF+shATF2. Significantly, inhibition

of MITF expression decreased the number of BRAF-induced foci

(from 1000 to about 100 per well). Over-expression of MITF in

BRAF-expressing melanocytes also inhibited focus formation, to a

degree similar to that seen following inhibition of MITF expression

(Figure 6b, 6c, 6d). This observation implies that effective

inhibition or overexpression of MITF attenuates melanocyte

transformation, consistent with previous reports (52). Remarkably,

inhibition of MITF expression in melanocytes expressing both

mutant BRAF and shATF2 rescued, at least partially, melano-

cytes’ ability to form foci on soft agar (400 compared with 20 seen

in shATF2 cells; Figure 6b, 6c, 6d). These findings suggest that

inhibition of MITF expression in melanocytes lacking ATF2

expression can promote transformation. That MITF inhibition in

melanocytes expressing ATF2 WT can attenuate their ability to

form foci on soft agar is attributable to the relative expression of

MITF RNA and protein in each condition (Figure 6d). MITF

expression levels in ATF2 KD cells increased 7.5-fold compared

with control BRAF-expressing melanocytes. Inhibition of MITF

expression in ATF2 KD melanocytes reduced MITF expression

2.5-fold relative to controls, whereas MITF KD alone resulted in

lower MITF expression (5-fold; Figure 6d). Thus, complete

abrogation of MITF expression attenuates melanocyte transfor-

mation, whereas low to moderate levels of MITF expression are

sufficient to promote growth on soft agar. Higher MITF

expression levels, as seen in ATF2 KD cells, result in a total loss

of melanocytes’ ability to form foci on soft agar. These findings are

untreated, kept under hypoxia (1%), or treated with UV-B (21 mJ/cm2 for 6 h) irradiation. Proteins were prepared 6h after UV-B treatment or 16h after
growth under hypoxia. Proteins were immunoblotted using the indicated antibodies. Right panel, RNA was extracted from cells maintained under the
same conditions, and qPCR was performed using MITF primers. Cyclophilin A was served as an internal control for qPCR. D. The experiment was
carried out in MeWo melanoma cells as described in panel C.
doi:10.1371/journal.pgen.1001258.g003

Table 4. MITF and SOX10 mRNA levels in melanocytes and melanoma cell lines following ATF2 KD.

Melanocytes/Melanoma cells Relative change in MITF mRNA upon ATF2 KD* Level of SOX10 upon ATF2 KD**

Hermes 3A
Melanocytes

6–7 fold increase 6–8 fold increase

Melan-Ink4a-Arf1
Melanocytes

4–6 fold increase ND

Lu1205 2–3 fold increase unchanged

WM35 2.5–3.5 fold increase unchanged

WM1361 4–6 fold increase 3–3.5 fold increase

WM793 1.5–2 fold increase 1.5–2 fold increase

SbCl2 1.5 fold increase 1.5 fold increase

WM4 2 fold increase 2 fold increase

WM9 2 fold increase 1.5 fold increase

WM1650 1.7 fold increase 1.5 fold increase

WM1552 2 fold decrease unchanged

WM3629 2.5 fold decrease 1.7 fold decrease

501MEL 2.5–3 fold decrease 0.6 fold decrease

SK-MEL-2 2.5 fold decrease 2 fold decrease

SK-MEL-5 3 fold decrease 2 fold decrease

SK-MEL-8 2.5 fold decrease 1.5 fold decrease

MeWO 2–2.5 fold decrease 0.5 fold decrease

UACC903 4 fold decrease 1.5 fold decrease

A2068 unchanged 2.5 fold decrease

WM1366 unchanged 2.3 fold increase

*Relative changes in MITF upon ATF2 KD are shown as fold change at RNA level, determined by qPCR. Data shown represent triplicate analyses.
**Relative changes in SOX10 upon ATF2 knock down (KD) are also quantified by qPCR analysis. ND: not determined.
doi:10.1371/journal.pgen.1001258.t004

ATF2 Regulates MITF and Melanoma Development

PLoS Genetics | www.plosgenetics.org 9 December 2010 | Volume 6 | Issue 12 | e1001258



ATF2 Regulates MITF and Melanoma Development

PLoS Genetics | www.plosgenetics.org 10 December 2010 | Volume 6 | Issue 12 | e1001258



in line with the proposed rheostat model in which medium levels

of MITF are optimal for growth and melanoma development [48]

and in agreement with our observations in a mouse melanoma

model.

We next assessed whether inhibition of melanocyte growth on

soft agar by altered ATF2 and/or MITF expression can be

attributed to decreased proliferation or increased apoptosis.

Inhibition of ATF2 expression caused notable accumulation of

cells in G2 (60%), with significant cell death induction (22%)

compared to controls (4%), (Figure 6e, 6f). Interestingly, such

altered cell cycle distribution and cell death rate were associated

with a significant increase in MITF protein levels (Figure 6d). In

contrast, inhibition of MITF expression did not significantly

induce cell death (6.5%) but resulted in fewer cells in G2/M-phase

and more cells in G1, compared with inhibition of ATF2 alone.

These observations suggest that MITF inhibition is sufficient to

reduce the rate of cell cycle progression through G2/M phase and

that inhibited growth of BRAF600E-expressing melanocytes on soft

agar may be attributed to abrogation of distinct cell cycle-

regulatory mechanisms. Combined inhibition of ATF2 and MITF

restored cell cycle distribution to that seen in control melanocytes,

and reduced cell death from 22.4% to 12.9%. Of interest, MITF

overexpression promoted a similar degree of cell death (11.4%)

without altering cell cycle distribution, similar to combined

inhibition of ATF2 and MITF (Figure 6e, 6f). Together, these

observations suggest that simultaneous inhibition of ATF2 and

MITF averts cell cycle abrogation induced when expression of

either of these factors is perturbed individually, further substan-

tiating regulation of MITF by ATF2.

Low nuclear MITF expression in melanoma tumors that
exhibit strong nuclear ATF2 expression is associated with
poor prognosis

The availability of a melanoma TMA, consisting of over 500

melanoma samples and in which expression of both ATF2 and

MITF in the same tumors had been measured enabled us to assess

possible associations between ATF2 and MITF and their

correlation with survival and other clinical and pathological

factors. Our earlier studies revealed that ATF2 subcellular

localization in tumors is significantly correlated with prognosis:

nuclear localization, reflecting constitutively active ATF2, was

associated with metastasizing tumors and poor outcome [7]. Here

we quantitated immunofluorescent staining of TMAs for MITF

and ATF2 by employing our automated, quantitative (AQUA)

method. To normalize ATF2 and MITF levels, expression of each

of the two proteins in individual patients was divided by the

median expression level of the respective protein in all patients,

and the nuclear ATF2/MITF ratio was calculated and log-

transformed. By ANOVA analysis, the ratio was higher in

metastatic than in primary specimens (t value = 2.823,

P = 0.0051), as shown in Figure 7a. No association was found

between nuclear ATF2/MITF ratio and disease-specific survival

among patients with metastatic melanoma (not shown). Signifi-

cantly, a high nuclear ATF2/MITF ratio in primary melanoma

specimens was associated with decreased 10-year disease-specific

survival (P = 0.0014; Figure 7b). On Cox multivariable analysis,

this association with survival was independent of patient age,

Breslow thickness or the presence or absence of ulceration (data

not shown). Nuclear ATF2 alone in primary specimens was

associated with poor survival, but to a lesser degree than the ratio

of nuclear ATF2/MITF (P = 0.0118 for ATF2 as a single

discriminator versus P = 0.0014 for the ratio of nuclear ATF2/

MITF). Nuclear MITF as a single discriminator was not a

significant predictor of survival (P = 0.185), as was reported

previously using immunohistochemistry [49]. These observations

suggest that active (nuclear) ATF2 in melanoma can suppress

MITF expression, and that this phenomenon is associated with

poor prognosis.

Discussion

Identifying mechanisms underlying early phases of melanocyte

transformation and melanoma development is central to under-

standing the etiology of this devastating tumor, as well as for

developing novel treatment approaches. Previous studies indicate

the presence of mutant BRAF in melanocytic lesions, as well as its

effect on pigment gene expression [6,50,51]. The present study

enhances our understanding of early events contributing to

melanoma development. We demonstrate that loss of a transcrip-

tionally active form of ATF2 in melanocytes inhibits melanoma

development in an Nras/Ink4a model. Our quest to understand

mechanisms underlying ATF2 activity in this process led us to

identify an important role for ATF2 regulation of MITF, an

important regulator of melanocyte biogenesis and a factor

implicated in melanoma progression [49]. Surprisingly, ATF2

negatively regulated MITF expression in mouse and human

melanocytes, suggesting that ATF2 transcriptional activities limit

MITF expression. We demonstrate that such negative regulation is

elicited through downregulation of SOX10 by ATF2, in

cooperation with JunB. A putative AP1 response element has

been identified in SOX10 promoter sequences and ChIP analysis

of this domain showed ATF2 and JunB binding. Overexpression

of JunB efficiently suppressed SOX10 expression in an ATF2-

dependent manner and inhibition of Jun transcriptional activities

phenocopied the effect of shATF2, suggesting that negative

regulation of SOX10 by ATF2 is direct, and is mediated in

cooperation with JunB.

Importantly, ATF2-dependent negative regulation of Sox10 and

consequently of MITF seen in melanocytes, but only in about 50%

of the 18 melanoma cell lines studied here. Correspondingly,

JunB, which is required for ATF2-dependent inhibition of Sox10

transcription, is no longer found on the promoter of SOX10 in

melanoma cells (i.e. 501Mel) that exhibit positive regulation by

Figure 4. Negative regulation of MITF by ATF2 is mediated by SOX10. A. ATF2 was knocked down in human melanocytes (Hermes 3A) and
qPCR was carried out using primers for the indicated mRNAs. B. Melanoma cells (WM1361, one 10 cm plate each, 50% confluent) were transduced
with either empty or shATF2 lentiviral particles. Cells were selected for 3 days with puromycin treatment (1.5 mg/ml) and then transfected with either
a WT MITF-luciferase reporter or one with a mutant BRN2 site (0.5 mg) along with b-gal (0.1 mg) as an internal control. b-gal activity was normalized
for every sample and the relative fold change in reporter activity for control and shATF2 cells is shown. Right Panel- Analysis was performed in
WM1361 melanoma cells using a WT or CRE-mutated MITF promoter. C. Analysis was performed as in panel B using human melanocytes H3A (left
panel) or 1361 melanoma cells (right panel) and the WT MITF promoter or a construct in which the SOX10 site was mutated. D. Human melanocytes
(H3A; one 10 cm plate each, 50% confluent) were infected with control shRNA (SiSC) or shATF2. After puromycin selection for 3 days, control shRNA
cells and ATF2 knock down cells (26106) were transfected with either scrambled siRNA (SiSC) or siRNA against SOX10. After 72 h, Western analysis
was carried out using 50 mg of proteins and the indicated antibodies. E. The same analysis was performed in human melanoma cells. Right panel, RNA
was extracted from cells and used for qPCR analysis of MITF transcripts.
doi:10.1371/journal.pgen.1001258.g004
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ATF2. Rather, CREB and ATF2 are found on SOX10 and MITF

promoters, pointing to a switch in ATF2 heterodimeric partners to

enable positive regulation of these genes. Notably, melanoma cell

lines that exhibit positive regulation of SOX10 and MITF by

ATF2, also show high basal levels of MITF expression [41,42],

suggesting that additional genetic or epigenetic changes distinguish

these lines from melanocytes and the other melanoma lines in

which ATF2 elicits negative regulation of MITF.

Notably, ATF2 control of MITF expression affected the ability

of BRAF600E-expressing melanocytes to exhibit transformed

phenotype in culture, monitored by their ability to grow on soft

agar. Inhibition of ATF2 abolished soft agar growth of BRAF600E-

expressing melanocytes, which was partially rescued upon KD of

MITF. Interestingly, both the over expression or the KD of MITF

resulted in inhibition of melanocytes ability to grow on soft agar,

substantiating the notion that a fine balance of MITF expression

must be maintained in order to ensure its contribution to cellular

proliferation and transformation. We propose that excessively low

or high MITF levels block melanocyte transformation, whereas

intermediate levels allow transformation to occur. Overall, our

observations demonstrate that ATF2 plays an important role in

fine-tuning those levels and support the rheostat model proposed

for MITF’s role in melanoma development and progression [48].

Of importance, ATF2 and MITF affect the ability of BRAF600E-

expressing melanocytes to grow on soft agar via distinct

mechanisms. Whereas specific inhibition of ATF2 causes both

accumulation of cells in G2 and induction of cell death, specific

alteration of MITF protein levels—particularly depletion—

significantly affects cell proliferation and inhibit growth on soft

agar by non-lethally slowing cell cycle progression at G2/M.

These observations are consistent with a report from Wellbrock

and Marais [52], who showed that altered MITF expression

inhibits melanocyte proliferation.

Importantly, inhibiting MITF expression in ATF2 KD

melanocytes was sufficient to partially rescue melanocyte growth

on soft agar. While supportive of our finding in the Nras::Ink4a

mouse melanoma model, where expression of transcriptionally

inactive ATF2 inhibits melanoma formation, these observations

provide the foundation for a model in which ATF2 inhibition

causes increased MITF levels and concomitant inhibition of

melanocyte growth, possible induction of cell death and delayed

development. The latter is suggested by IHC analysis of mouse

skin from ATF2md mice, which shows notably reduced S100

staining indicative of delayed melanocyte development: ATF2 KO

melanocytes appear to represent anagen stage IV, whereas WT

represent anagen stage VI. This delay was seen at the 4- but not

the 14-day time point, suggesting that an ATF2 effect might be

limited to a specific subpopulation or phase of melanocyte

development. The early (4 day) time point is within the time

frame that allows induction of melanoma development by UV-

irradiation of c-Met or H-Ras mutant mice [53]. It is therefore

plausible that timely control of MITF expression by ATF2

determines melanocyte susceptibility to transformation.

Our analysis of genes whose expression is altered by ATF2 KD

in melanocytes identified a cluster of pigmentation genes, many

reportedly regulated by MITF [6,54]. Therefore, changes in

TYRP1, DCT and SILVER expression could be attributed to

altered MITF expression. However, initial analysis points to a

more complex mechanism since (i) the degree of changes in

expression of these genes was often greater than that seen for

MITF and (ii) expression of some pigmentation genes was found to

be independent of MITF in some melanoma and melanocyte

cultures. Hence, further studies are required to address mecha-

nisms underlying ATF2 regulation of these pigmentation genes

and the significance of such regulation to melanocyte transforma-

tion and melanoma development. While our present studies

focused on the ATF2-MITF axis, it is expected that additional

ATF2-regulated genes contribute to melanoma development [12].

In agreement, our earlier studies using both human and mouse

melanoma lines demonstrate that inhibition of ATF2 effectively

inhibits tumorigenesis and blocks metastasis [22–26].

Important for ATF2 function is its subcellular localization.

While findings presented here position ATF2 as an oncogene

functioning in melanocyte transformation and melanoma devel-

opment, earlier studies from our laboratory and others suggest that

in keratinocytes and mammary glands, ATF2 elicits a tumor

suppressor function [55,56]. Of interest, assessing the localization

of ATF2 in the melanoma cell lines studied here revealed that all

express nuclear ATF2. Interestingly, in most cases the nuclear

staining revealed a punctate staining, resembling the localization

of ATF2 to DNA repair foci following DNA damage (Figure S9). A

possible link between the presence of ATF2 in repair foci in most

melanoma cells points to the possible presence of activated DNA

damage response which may be associated with genomic

instability [19,20]—aspects that will be explored in future studies.

Significantly, the appearance of nuclear ATF2 is correlated with

poor prognosis in melanoma, whereas melanomas that exhibit

cytosolic ATF2 exhibit a better survival. Notably, cytosolic ATF2

is primarily seen in non-malignant skin tumors [55]. Here we

demonstrate that high nuclear ATF2/MITF ratios are associated

with poor prognosis in primary melanomas, but not with

metastatic melanomas. The latter finding attests for the important

role ATF2 plays to control MITF expression in the early phase of

melanocyte transformation and melanoma development.

Overall, using the mutant Nras/Ink4a melanoma model we

provide genetic evidence for a central role for ATF2 in melanoma

development. We demonstrate that in the absence of transcrip-

tionally active ATF2, melanoma formation is largely inhibited.

Furthermore, our data point to an unexpected role of ATF2 in

fine-tuning of MITF transcription through regulation of its positive

regulator SOX10. Mouse melanoma models and in vitro

transformation studies indicate that this newly identified regula-

tory pathway is required for early phases of melanocyte

transformation. Given that ATF2 affects activity of the oncogenes

N-Ras (mouse model) and BRAF (melanocyte growth on soft agar);

Figure 5. ATF2 and JunB negatively regulate SOX10 transcription, with concomitant effect on MITF. A. Chromatin immuno-precipitation
were performed using antibodies to SOX10 or CREB (or rabbit IgG as control) in WM1361 melanoma cells expressing either control shRNA or ATF2
shRNA. The MITF promoter sequence spanning 2300 to 2120 (180bp containing SOX10 binding sites and a CRE site) was amplified using MITF-
specific primers. GAPDH served as a control. B. ChIP was performed using the indicated antibodies followed by amplification of the SOX10 promoter
sequence containing AP-1 binding sites (24797 to 24791). GAPDH served as control. C. ChIP analysis was carried out using ATF2 or JunB antibodies
in cells that express either shcontrol, shATF2 or Jun DN construct TAM67. D. Expression of JunB or JunD (3 mg) alone or in combination with TAM67
(2 mg) was performed in WM1361 melanoma cells and expression of SOX10 protein was monitored in westerns and quantified using the LICOR
imaging system. Corresponding changes in level of MITF transcripts were assessed by qPCR (Lower panel). E. Experiment similar to shown in panel D
was performed in the melanocytes H3A cell line. F. The effect of JunB on SOX10 expression was assessed in melanoma WM1361 cells expressing
control or shATF2. The right panel shows the level of MITF transcripts quantified by qPCR.
doi:10.1371/journal.pgen.1001258.g005
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we expect that ATF2 play significant roles in melanomas that

carry either of these mutations.

Materials and Methods

Ethics statement
Research involving human participants has been approved by

the institutional review board at Yale University (where the TMA

was prepared and analyzed). All animal work has been conducted

according to relevant national and international guidelines in

accordance with recommendations of the Weatherall report and

approved by the IACUC committee at SBMRI.

Animal treatment and tumor induction protocols
Mice bearing a conditional allele for mutant ATF2 in which the

DNA binding domain and part of the leucine zipper domain were

deleted, were generated as previously described [36,55]. To study

the function of ATF2 in melanocytes, we utilized the Cre-loxP

system for disruption of the ATF2 gene in melanocytes [37]. The

Tyr::CreER::Atf2md mice and their littermate controls (WT) were of

FVB/129P2/OlaHsd (TyrCreERT mice were FVB, ATF2fl/fl were

129P2/OlaHsd) and N-Ras/Ink4a2/2 mice were C57Bl/6/

129SvJ. For melanoma studies we have used Tyr::CreER::NrasQ61K::

Ink4a2/2 mice (developed at HMS by LC) following their cross

with the Tyr::CreER::Atf2md mice.

Immunohistochemistry
Skin specimens were fixed in neutral buffered formalin solution

and processed for paraffin embedding. Skin sections (5 mm in

thickness) were prepared and deparaffinized using xylene. For

MITF, DCT and S100 immunostaining, tissue sections were

incubated in DAKO antigen retrieval solution, for 20 min in a

boiling bath, followed by treatment with 3% hydrogen peroxide for

20 min. Antibodies against MITF (1:100 from Sigma), DCT (1:500,

kind gift from Dr. Vincent Hearing) and S100 (1:100, DAKOCy-

tomation; Carpinteria, CA) were allowed to react with tissue

sections at 4uC overnight. Biotinylated anti-rabbit IgG was allowed

to react for 30 min at room temperature and diaminobenzidineor

Nova Red were used for the color reaction. Hematoxylin was used

for counterstaining. The control sections were treated with normal

mouse serum or normal rabbit serum instead of each antibody.

Cell culture
Immortalized human melanocytes Hermes 3A which has hTERT

(puro) and CDK4 (neo) expression [57] were grown in RPMI 1640

medium containing Fetal Bovine Serum (FBS, 10%), 12-O-

tetradecanoyl-phorbol-13-acetate (TPA, 200 nM, Sigma, St. Louis,

MO), Cholera toxin (200 pM, Sigma), human stem cell factor

(10 ng/ml, R&D systems, Minneapolis, MA), and endothelin 1

(10 nM, Bachem Bioscience Inc., Torrance, CA). Primary human

melanocytes (NEM-LP; Invitrogen) were grown in medium 254 and

HMGS (Cascade Biologics). Mouse melanocytes (melan-Ink4a-Arf1)

were grown as for immortalized human melanocytes excluding

human stem cell factor and endothelin. Melanoma cell lines were

grown in DMEM medium supplemented with 10% FBS and

penicillin/streptomycin (P/S; Cellgro). Melanoma cell lines used in

this study LU1205, WM793, 501MEL, WM35, WM1361, MeWO

(kind gift from Meenhard Herlyn), UACC903 were maintained in

DMEM medium supplemented with 10% FBS and Penicillin/

Streptomycin. Melanoma cell lines SbCl2, WM9, WM4, WM1650,

A2068, WM1366, WM3629, WM1552, SKMEL2, SKMEL5, and

SKMEL8 were maintained in RPMI medium supplemented with

10% FBS and Penicillin/Streptomycin. Primary melanocytes cultures

were prepared from mice carrying the Atf2 WT or mutant genotypes

and N-Ras/Ink4a2/2 as follows. Dorsal-lateral skin was removed from

one day-old pups, disinfected with 70% ethanol for 1 min and then

washed at least twice with sterile PBS. The skin was submerged in 16
Trypsin/EDTA overnight at 4uC and next day, the skin was placed

in a Petri dish with mouse melanocyte culture medium (described

below). The epidermis and sheared tissue was removed and discarded

with forceps. The tissue was transferred to 15 ml centrifuge tubes and

vortexed vigorously until solution becomes cloudy (1–2 min). The cell

suspension was transferred to tissue culture flasks. After 3 days,

melanocyte growth medium containing 0.8 mg/ml geneticin (Sigma-

Aldrich) was added to eliminate contaminating fibroblasts (melano-

cytes are resistant to such treatment). Geneticin-containing medium

was removed and replaced with fresh media after 1 day. Media was

changed twice a week. Primary mouse melanocytes were grown in F-

12 media (Invitrogen) containing 20% L-15 media (Invitrogen), 4%

of FBS and Horse serum (Invitrogen), Penicillin (100 units) and

streptomycin (50 mg) antibiotics, db-cAMP (40 mM, Sigma-Aldrich),

12-O-tetradecanoyl-phorbol-13-acetate (TPA, 50 ng/ml, Sigma-

Aldrich), alpha-Melanocyte stimulating hormone (a-MSH, 80 nM,

Sigma-Aldrich), Fungizone (2.5 mg/ml, Sigma-Aldrich) and melano-

cyte growth supplement (Invitrogen). Primary melanocytes were

treated with 4-OHT (10 mM) for 8h followed by addition of

doxycycline (2 mg/ml) for 24h to inactivate ATF2 and induce

expression of N-Ras.

Constructs
ATF2-specific shRNA clones were obtained from Open

Biosystems (catalog no. RHS4533). Five different shRNA were

obtained and tested for their efficiency of KD. Clone

TRCN0000013714 was more efficient in inhibiting ATF2 in

human cell lines while clone TRCN0000013713 was more

efficient for knocking down mouse ATF2. For subsequent

experiments we used the respective shATF2 clone depending on

human or mouse cell lines. We also tested 3 different clones for

KD of ATF2 to rule out any off target effect (Data not shown).

siRNA control (cat # 4611) and three SOX10-specific siRNA

oligonucleotides were obtained from Ambion (cat # 4392420).

Four FOXD3 specific siRNA were obtained from Dharmacon

(Cat # J-009152-06 -07, -08, -09). These siRNAs were pooled

together in equimolar ratio for transient transfection. An MITF

Figure 6. MITF down-regulation partially rescues colony formation by BRAFV600E-expressing mouse melanocytes with inhibited ATF2
expression. A. Melan-Ink4a-Arf1 cells were stably transduced with wild type BRAF or BRAFV600E, followed by treatment with ICI 182780 (ICI, 200 nM) to
induce BRAF expression. Western analysis was carried out to assess ERK activation using pERK and ERK antibodies. B. Mouse melanocytes stably expressing
mutant B-RAF were infected with lentiviral vectors carrying shRNA for ATF2 or MITF or both. Cells were plated (5000 per well) on soft agar and assessed for
the ability to form colonies after 21 days using P-Iodonitrotetrazolium Violet staining. Colonies were counted in triplicate wells per experiment, and
experiments were reproduced twice. Means +SD are shown. C. Shown are representative images for quantification depicted in panel B. D. qPCR was
performed for MITF (left panel) and ATF2 (middle panel) transcripts using RNA from cells used in panels B/C. Western analysis was performed on lysates
obtained from cells used for colony formation with the indicated antibodies (right panel). E. Mouse melanocytes analyzed for colony formation were stained
with BrdU. The cell cycle phase was analyzed using the Mod Fit LT v.2 program. The percentage of cells in G1, S and G2 is shown in the graph. F. Melanocytes
shown in Panels A–E were also stained with Annexin V (early apoptosis) and 7-AAD (apoptosis and necrosis). The plot presented reveals Annexin-APC
staining on the x-axis and 7-AAD staining on the y-axis. Mean +/2 SD are calculated based on triplicate analyses.
doi:10.1371/journal.pgen.1001258.g006
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Figure 7. Analysis of nuclear ATF2 and MITF in melanoma specimens using quantitative immunofluorescence. A. ATF2/MITF
expression ratios tended to be higher in metastatic than in primary specimens. B. In the primary specimen cohort, high ATF2/MITF ratios were
associated with decreased 10-year disease specific survival. Quantification was performed by AQUA, which provides continuous output scores. In the
absence of underlying cut-point justification, nuclear ATF2/MITF ratios were randomly binarized by the median ratio for all specimens (primary and
metastatic). Results are shown for the primary cohort only, as no association was found between survival and ATF2/MITF ratios in the metastatic
cases. The number of cases and events (deaths) for high or low ATF2/MITF expression ratios is shown.
doi:10.1371/journal.pgen.1001258.g007
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specific shRNA, and MITF promoter luciferase constructs (WT

and mutant CRE-Luc constructs) were obtained from Dr. David

Fisher [58]. pGL3 vectors containing wild-type and BRN2-site-

mutated MITF promoters were obtained from Dr. Colin Goding

[34]. pGL3 vectors containing wild-type and SOX10-site-mutated

MITF promoters were obtained from Dr. Michel Goossens [59].

Retroviral vectors encoding a fusion protein consisting of full

length human BRAF and BRAFV600E linked to the T1 form of the

human estrogen receptor hormone-binding domain were gener-

ously provided by Dr. Martin McMahon [60]. SOX10 expression

vector obtained from Dr. Alexey Terskikh, RSV-JunB, RSV-JunD

were obtained from Dr. Michael Karin and pBabe-Flag-TAM67

from Dr. Michael Birrer.

Antibodies and immunoblotting
Antibodies against SOX10 and CREB (sc-1734 and sc-186

respectively) were from Santa Cruz Biotechnologies; antibodies

against ATF2, pERK and ERK (catalogue # 9226, 4337 and

4695 respectively) were obtained from Cell Signaling; antibodies

against MITF (C5) were purchased from Cell Lab vision. Protein

extract (40–60 mg) preparation and western blot analysis were

done as described previously [8]. Specific bands were detected

using fluorescent-labeled secondary antibodies (Invitrogen, Carls-

bad, CA) and analyzed using an Odyssey Infrared Scanner (Li-

COR Biosciences). b-Actin antibody was used for monitoring

loading.

Immunofluorescence
Human melanoma and melanocytes were grown in coverslips,

fixed (4% paraformaldehyde and 2% sucrose in 16PBS), and then

permeabilized and blocked (0.4% Triton X-100 and 2% BSA in

16PBS) at room temperature. The cells were then washed (0.2%

Triton X-100 and 0.2% BSA in 16PBS) and incubated overnight

at 4uC with monoclonal anti-rabbit antibody against ATF2 (20F1,

1:100), followed by five washes and then subsequent incubation at

room temperature for 2 h with anti-rabbit IgG (Invitrogen, 1:300)

and Phalloidin (Molecular Probes, 1:1000). DNA was counter-

stained with 4,6-diamidino-2-phenylindole (DAPI; Vector Labo-

ratories) containing mounting medium.

Analysis of skin samples
Skin samples were collected from the backs of mice and

immediately fixed with Z-fix, processed, and embedded in

paraffin. Paraffin sections were routinely stained by H&E.

Dewaxed tissue sections (4.0–5.0 mm) were immunostained using

rabbit polyclonal antibodies to MITF (Sigma-Aldrich), S100

(S100B; DAKOCytomation; Carpinteria, CA), and DCT (aPEP8,

kindly provided by Dr. Vincent Hearing). Application of the

primary antibody was followed by incubation with goat anti-rabbit

polymer-based EnVision-HRP-enzyme conjugate (DakoCytoma-

tion). DAB (DakoCytomation) or SG-Vector (Vector Lab, Inc.;

Burlingame, CA) chromogens were applied, yielding brown (DAB)

and black (SG) colors, respectively.

Quantitative analysis of immunostaining
Quantitative analysis was performed as described previously

[61]. Briefly, all slides were scanned at an absolute magnification

of 4006 [resolution of 0.25 mm/pixel (100,000 pix/in.)] using the

Aperio ScanScope CS system (Aperio Technologies; Vista, CA).

The acquired digital images representing whole tissue sections

were analyzed applying the Spectrum Analysis algorithm package

and ImageScope analysis software (version 9; Aperio Technolo-

gies, Inc.) to quantify IHC and histochemical stainings. These

algorithms make use of a color deconvolution method [62] to

separate stains. Algorithm parameters were set to achieve

concordance with manual scoring on a number of high-power

fields, including intensity thresholds for positivity and parameters

that control cell segmentation using the nuclear algorithm.

Microarray analysis
Primary melanocytes were treated with 4-OHT and Doxycy-

cline before isolation of total RNA. 500 ng of total RNA was used

for synthesis of biotin-labeled cRNA using an RNA amplification

kit (Ambion). The biotinylated cRNA is labeled by incubation with

streptavidin-Cy3 to generate probe for hybridization with the

Mouse-6 Expression BeadChip (Illumina MOUSE-6_V1_1_

11234304_A) that represents 46.6K mouse gene transcripts. We

analyzed the BeadChips using the manufacturers BeadArray

Reader and collected primary data using the supplied Scanner

software. Data analysis was done as follows. First, expression

intensities were calculated for each gene probed on the array for

all hybridizations using illumina’s BeadStudio 3.0 software.

Second, intensity values were quality controlled and normalized:

quality control was carried out by using the BeadStudio detection

P-value set to ,0.01 as a cutoff. This removed genes which were

never detected in the arrays. All the arrays were then normalized

using the cubic spline routine from the BeadStudio 3.0 software.

This procedure accounted for any variation in hybridization

intensity between the individual arrays. Finally, these normalized

data were analyzed for differentially expressed genes. The groups

of 2 biological and 2 technical replicates were described to the

BeadStudio 3.0 software and significantly differentially expressed

genes were determined on the basis of the difference changes in

expression level (Illumina DiffScor.60 or DiffScore,260) and

expression difference p-value,0.01. Microarray data are available

under accession number GSE23860.

ShRNA infection and RNA interference
Human embryonic kidney 293T cells were transfected with

corresponding retro- or lentiviral shRNA constructs (10 mg), Gag-

pol (5 mg) and ENV expression vectors (10 mg) by calcium

phosphate transfection into 10 cm plates and supernatant was

collected after 48 hours to obtain viral particles. 2 million

melanocytes and melanoma cells in 10 cm plates were infected

with 5 ml of viral supernatant along with 5 ml of medium in the

presence of 8 mg/ml polybrene. The virus was replaced with fresh

media after 8 hours of infection. After two days, puromycin

(1.5 mg/ml) was used to select cells for 3 days. For human and

mouse melanocytes the media was changed to DMEM containing

10% FBS 24 h prior to harvesting cells. 50 nM duplexes of

scrambled and SOX10- or FOXD3- specific siRNA were

transfected into human melanocytes and WM1361 melanoma

cells (2 million cells per transfection) by Nucleofection using

Amaxa reagents (NHEM-Neo Nucleofector and Solution R

respectively) for SOX10 or FOXD3 knock down. Over 90% of

the cells transduced were able to resist drug selection, indicating

efficient infection of the respective genes. GFP was also used to

monitor efficiency of infection, confirming .90% GFP expression

by fluorescence microscopy.

Real-time quantitative reverse transcription–PCR
(RT–PCR)

Quantitative PCR was performed as described earlier [8]. Total

RNA was isolated using an RNeasy mini kit (Sigma, St. Louis, MO)

and reverse transcribed using a high cDNA capacity reverse

transcription kit (Applied Biosystems, Foster City, CA) following the
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manufacturer’s instructions. Specific primers (Valuegene, San Diego,

CA) used for PCR were as follows: Human ATF2, forward:

tgtggccagcgttttaccaa, reverse: tgatgtgggctgtgcagttt., human MITF,

forward: aaaccccaccaagtaccaca, reverse: acatggcaagctcaggac., hu-

man SOX10, forward: caa gtaccagcccaggcggc, reverse: gggtgccggtg-

gtccaagtg., human FOXD3, forward: gcgacgggctggaagag, reverse:

gctgtccgtgatggggtgcc., human PAX3, forward: ggaactggagcgtgcttttg,

reverse: ggcggttgctaaaccagac., human BRN2, forward: gaaagagc-

gagcgaggaga, reverse: caggctgtagtggttagacg., mouse MITF, forward:

agatttgagatgctcatcccc, reverse: gatgcgtgatgtcatactgga, mouse TYRP1,

forward: ccctagcctatatctccctttt, reverse: taccatcgtggggataatggc.,

mouse DCT, forward: gtcctccactcttttacagacg, reverse: attcggttgtgac-

caatgggt, mouse Silver, forward: tgacggtggaccctgcccat, reverse:

agctttgcgtggcccgtagc. The reaction mixture was denatured at 95uC
for 10 min, followed by 40 cycles of 95uC for 15s, annealing at 60uC
for 30s and extension at 72uC for 30s. Reactions were performed

using the SYBR Green qPCR reagent (Invitrogen) and run on an

MX3000P qPCR machine (Stratagene, La Jolla, CA). The specificity

of the products was verified by melting curve analysis and agarose

gels. The amount of the target transcript was related to that of a

reference gene (Cyclophilin A for both human and mouse) by the Ct

method. Each sample was assayed at least in triplicate and was

reproduced at least three times.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed using the

Magna-Chip (Upstate) according to the manufacturer’s instruc-

tions. Control shRNA and ATF2 knocked down WM1361 cells

(one 10 cm plate for each, 80% confluent) were fixed in 37%

formaldehyde and sheared chromatin was immunoprecipitated

and subjected to PCR for 32 cycles. The following primers

corresponding to the MITF promoter, spanning the SOX10

binding site were used, forward: gcagtcggaagtggcag, reverse:

caactcactgtcagatcaa. Antibodies against Sox10 and CREB (sc-

1734 and sc-186 respectively) were from Santa Cruz Biotechnol-

ogies. IgG control, and glyceraldehyde-3-phosphate dehydroge-

nase oligonucleotides were provided by the kit. Antibody against

ATF2 (sc-6233), JunB (sc-8051), JunD (sc-74) were obtained from

Santa Cruz. Antibodies against ATFa were provided generated by

Nic Jones. For Sox10 promoter, the following primers spanning

AP-1 binding site were used; forward: cccagtgctggcctaatagc,

reverse: cacccttgatatccccaagtga.

Luciferase assays
MeWo, WM35, WM1361, Lu1205 cells in six-well plates

were transiently transfected with 0.5 mg of reporter plasmid

containing WT or CRE mutant, BRN2 mutant or SOX10

mutant MITF promoter and 0.1 mg of pSV-b-Galactosidase

(Promega, San Luis Obispo, CA) using Lipofectamine 2000

reagent (Invitrogen). Human melanocytes (2 million) were

transfected with 2 mg of reporter plasmid containing WT or

SOX10 mutant MITF promoter and 0.3 mg of pSV-b-

Galactosidase using Amaxa reagent (NHEM-Neo nucleofector

kit, Lonza) according to the manufacturer’s protocol. Cell lysates

were prepared from cells after 48 h. Luciferase activity was

measured using the Luciferase assay system (Promega) in a

luminometer and normalized to b-galactosidase activity. The

data were normalized to b-galactosidase and represent the mean

and SD of assays performed in triplicate. All experiments were

performed a minimum of 3 times.

Colony formation assay
Melan-Ink4a-Arf1 cells were transduced with a retroviral vector

expressing BRAFV600E:ERT1 and selected with puromycin for 3

days. These cells were treated with 200 nM of estrogen receptor

antagonist ICI 182780 (ICI, Tocris Bioscience) to induce

expression of BRAFV600E. After one day, these cells were

transduced with a lentiviral vector expressing either shATF2 or

shMITF separately, or in combination. Colony formation was

carried out as described by Franken et al. [63]. Briefly, 5,000 cells

were plated into each well of a 6-well plate, and cells were grown

in mouse melanocyte media containing ICI and puromycin

(1.5 mg/ml) for 3 weeks until colonies became visible. The colonies

were stained with P-Iodonitrotetrazolium Violet (1 mg/ml Sigma,

St. Louis, MO). This experiment was performed in triplicate and

reproduced 2 times.

Mouse genotyping
Genomic DNA was isolated from tail tissue was subjected to

PCR resulting in amplification of a 549 bp DNA fragment for Atf2

floxed and a 485 bp DNA fragment for wild type mice. PCR

conditions included one cycle at 95uC for 3 min; and 30 cycles of

94uC/30 sec, 55uC/30 sec and 72uC/1 min and one cycle at

72uC for 5 min. Primers used for PCR reactions were forward:

caatccactgccatggcctt, reverse: tcagataaagccaagtcgaatctgg.

Avidin-biotin DNA–protein binding assay
MeWo cells were left untreated or treated with 20 mJ/cm2 of

UV-B for 1 h. The cells were lysed using lysis buffer containing

1% Triton-100 and incubated with 4 mg of biotin-labeled MITF

promoter spanning the CRE site oligo (59-gaaaaaaaagcatgacgt-

caagccaggggg-39) in the presence of poly-(dI-dC) (20 mg/ml) for 2h

at 4uc. The oligo-bound proteins were captured using streptavidin-

agarose (Invitrogen) for 1 h incubation, followed by extensive

washes with washing buffer (20 mm HEPES, 150 mm NaCl, 20%

glycerol, 0.5 mm EDTA, and 1% Triton-100) and analyzed using

SDS-PAGE and western blots.

BrdU, PI labeling, Annexin V staining
To evaluate the cell cycle index of Melan-Ink4a-Arf1 cells stably

overexpressing BRAFV600E:ERT1 alone or in combination with

shRNA to the genes indicated in Results, cells were plated in

media containing ICI and puromycin (1.5 mg/ml) at 26106 cells

per 10 cm plate O/N. Cells were labeled with 10 mM of 5-bromo-

2-deoxyuridine (BrdU; Sigma Chemical Co.), for an hour. Cells

were then washed, fixed, and stained with anti-BrdU mAbs and

propidium Iodide (BD Biosciences, San Jose, CA) according to the

manufacturer’s protocol, and analyzed on a BD FACSCanto

machine. Cell cycle phase was analyzed using the Mod Fit LT v.2

program (Verity Software, Topsham, ME). In a separate

experiment the cells were stained with Annexin V-APC and 7-

AAD (BD Pharmingen, San Diego, CA) according to manufac-

turer’s protocol, to enable analysis of early apoptosis and cell

death.

Hypoxia treatment
Cells were treated under hypoxia (1% O2) for indicated time

points using a hypoxia chamber (In Vivo 400; Ruskin Technol-

ogies Ltd, Bridgend, UK).

UV irradiation
Mice were treated with 4-Hydroxytamoxifen (25 mg/ml in

DMSO) by swabbing the entire body (excluding the head) on days

1–3 after birth. On day 4 the pups were placed under UVB light

source (FL-15E; 320 nm) and exposed to 20 mW/cm2 for

22 seconds. Ninety minutes after UVB treatment mice were

sacrificed and entire skin was removed and processed.
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TMA and AQUA staining
Tissue microarrays were constructed as previously described

[21]. The arrays included a series of 192 sequentially collected

primary melanomas and 299 metastatic melanomas. Slides were

stained for automated, quantitative analysis (AQUA) for ATF2

and MITF as previously published [49,64]. The AQUA scores for

the two markers were obtained from the AQUAmine database

(www.tissuearray.org).

Supporting Information

Figure S1 Representative staining of non-melanoma tumor

developed in the TyrCre+::Atf2+/+::NrasQ61K::Ink4a2/2 model.

Found at: doi:doi:10.1371/journal.pgen.1001258.s001 (7.25 MB

TIF)

Figure S2 A. ATF2 negatively regulates MITF in several

melanoma lines. ATF2 was knocked down in WM793 cells (left

panel), in WM35 cells (middle panel) and in WM1361 cells (right panel)

(one 10 cm plate each, 50% confluent). Cells were lysed and

Western blotting was carried out (50 mg/lane) with the indicated

antibodies. Lower panel, RNA was extracted from the correspond-

ing cell lines, and qPCR was carried out using MITF primers.

Cyclophilin A was served as an internal control. B. ATF2

positively regulates MITF in 501-MEL melanoma cells. Left panel,

ATF2 was knocked down in 501- Mel cells (one 10 cm plate each,

50% confluent). Cells were lysed and Western blotting was carried

out (40 mg/lane) with the indicated antibodies. Right panel, RNA

was extracted from the above samples and qPCR was carried out

using MITF primers; Cyclophilin A served as an internal control.

Found at: doi:doi:10.1371/journal.pgen.1001258.s002 (1.36 MB

TIF)

Figure S3 A. ATF2 effect on Brn2 and Pax3 in human

melanocytes and melanoma cells. Cells were infected with shRNA

control or shATF2 and RNA prepared was used for qPCR

analysis of Pax3 and Brn2 expression, relative t o cyclophilin used

as control. B. Increased SOX10 mRNA expression in melanoma

cells. ATF2 expression was inhibited in WM1361 cells and total

mRNA was extracted. A qPCR was performed to quantify

changes in the expression of the indicated genes. Cyclophilin A

served as an internal control.

Found at: doi:doi:10.1371/journal.pgen.1001258.s003 (0.93 MB

TIF)

Figure S4 Effect of ATF2 and FoxD3 on Sox10 and MITF

expression in human melanocytes. H3a human melanocytes cells

were infected with Scrambled Control siRNA (siSC), shATF2,

siFOXD3 or their combination. Protein or RNA were prepared

72h later and assessed in western and qPCR.

Found at: doi:doi:10.1371/journal.pgen.1001258.s004 (1.16 MB

TIF)

Figure S5 Analysis of ATF2 effect on SOX10 and MITF

transcription in 12 melanoma cell lines. Melanoma cell lines

indicated were infected with shATF2 and subjected to selection to

enrich for ATF2 KD cells. RNA was prepared 4 days later and

QPCR analysis was performed for ATF2 (upper panel), MITF

(middle panel) and SOX10 (lower panel) transcripts. Data shown

represent analysis of triplicate samples.

Found at: doi:doi:10.1371/journal.pgen.1001258.s005 (1.70 MB

TIF)

Figure S6 Altered MITF expression by ATF2 +/2 SOX10 in

human melanocytes and melanomas. Indicated cell lines were

infected with shControl or shATF2, in the presence or absence of

SOX10 overexpression, and proteins were prepared to determine

changes in expression of SOX10. b-actin was used as loading

control. Analysis of MITF and SOX10 transcript levels was

carried out in the indicated cell lines using qPCR on RNA

prepared from the cells that were infected with indicated vectors

(C, C+SOX10, shATF2, shATF2+SOX10).

Found at: doi:doi:10.1371/journal.pgen.1001258.s006 (2.59 MB

TIF)

Figure S7 Effect of ATF2 on SOX10 and MITF in human

melanoma cell lines exhibiting positive regulation by ATF2. A.

Melanoma cell lines MeWo and 501Mel were infected with

shControl or shATF2 and level of SOX10 protein was assessed. B,

C. The effect of SOX10 expression on MITF (B) and on SOX10

(C) transcripts in MeWO (left graph) cells expressing control or

shATF2 was determined using qPCR. D. Effect of DN Jun and

JunB on SOX10 protein and MITF transcript levels. Indicated

melanoma cells were transfected with TAM67 (DN Jun) and

JUNB either alone or in combination as indicated. The cells were

lysed and proteins and RNA were prepared. Western blotting was

carried out with the indicated antibodies. QPCR analysis for

MITF transcripts was performed (lower panel). E. Chromatin IP

reveals loss of JunB binding to SOX10 promoter in melanoma

cells in which MITF is positively regulated by ATF2. Melanoma

cells were subjected to ChIP using the indicated antibodies

followed by PCR of SOX10 promoter sequences harboring the

AP1 response element. F. Endogenous level of JUNB in various

melanoma cells. Cell lysates from indicated melanoma cells were

subjected to Western blot analysis using JUNB antibody. b–actin

was used as a loading control.

Found at: doi:doi:10.1371/journal.pgen.1001258.s007 (1.06 MB

TIF)

Figure S8 A. Transcriptional activity of MITF is dependent on

ATF2 and a CRE element in specific melanoma cells that express

high MITF levels. WT and mutant (CRE) forms of MITF-Luc

constructs were used to assess the contribution of ATF2 to MITF

transcription in MeWo cells. Luciferase assays were performed as

detailed in Materials and Methods. B. ATF2 and CREB bind to a

MITF CRE site. Human melanoma (MeWo) cells were treated

with 20mJ/cm2 of UVB, and proteins prepared after 1h were

incubated with dI/dT (20 mg/ml for 30 min at 4C) and then with

a biotinylated annealed oligo (4 mg, overnight at 4uC) containing

the CRE site and flanking sequences from the MITF promoter.

Streptavidin beads were added to lysates and bound material was

analyzed on immunoblots with the indicated antibodies. C. ChIP

analysis shows ATF2 binding to the MITF CRE site in specific

melanoma MeWo cells. Chromatin was prepared and precipitated

using an ATF2 antibody and bound DNA was amplified using

MITF specific primers that flank the CRE binding site and

analyzed on 1.5% agarose gel. Rabbit IgG served as a negative

control and CREB and ATF1 served as positive controls.

Found at: doi:doi:10.1371/journal.pgen.1001258.s008 (1.34 MB

TIF)

Figure S9 Subcellular localization of ATF2 in melanoma cell

lines. Immunostaining was carried out in indicated melanoma and

human melanocyte cells with ATF2 (green) antibody and

Phalloidin (red). The cells were counter stained with DAPI for

nuclear staining.

Found at: doi:doi:10.1371/journal.pgen.1001258.s009 (6.98 MB

TIF)
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