
A high-resolution human contact network for
infectious disease transmission
Marcel Salathéa,1,2, Maria Kazandjievab, Jung Woo Leeb, Philip Levisb, Marcus W. Feldmana, and James H. Jonesc,d

Departments of aBiology, bComputer Sciences, and cAnthropology, and dWoods Institute for the Environment, Stanford University, Stanford, CA 94305-5020

Edited by Adrian Raftery, University of Washington, Seattle, WA, and approved November 8, 2010 (received for review June 25, 2010)

The most frequent infectious diseases in humans—and those with
the highest potential for rapid pandemic spread—are usually
transmitted via droplets during close proximity interactions (CPIs).
Despite the importance of this transmission route, very little is
known about the dynamic patterns of CPIs. Using wireless sensor
network technology, we obtained high-resolution data of CPIs
during a typical day at an American high school, permitting the
reconstruction of the social network relevant for infectious disease
transmission. At 94% coverage, we collected 762,868 CPIs at a max-
imal distance of 3 m among 788 individuals. The data revealed
a high-density network with typical small-world properties and
a relatively homogeneous distribution of both interaction time
and interaction partners among subjects. Computer simulations
of the spread of an influenza-like disease on the weighted contact
graph are in good agreement with absentee data during the most
recent influenza season. Analysis of targeted immunization strat-
egies suggested that contact network data are required to design
strategies that are significantly more effective than random immu-
nization. Immunization strategies based on contact network data
were most effective at high vaccination coverage.
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Pandemic spread of an infectious disease is one of the biggest
threats to society because of the potentially high mortality

and high economic costs associated with such an event (1, 2).
Understanding the dynamics of infectious disease spread
through human communities will facilitate the development of
much needed mitigation strategies (3). Schools are particularly
vulnerable to infectious disease spread because of the high fre-
quency of close proximity interactions (CPIs) that most in-
fectious disease transmission depends on (3, 4). Infections that
are transmitted predominantly via the droplet route, such as
influenza, common colds, whooping cough, severe acute re-
spiratory syndrome (SARS), and many others, are among the
most frequent infectious diseases. Droplets from an infected
person can reach a susceptible person in close proximity, typi-
cally a distance of less than 3 m (5, 6), making CPIs highly rel-
evant for disease spread. Very little is known about the dynamic
patterns of CPIs in human communities, however [but see Cattuto
et al. (7)]. Here, we present data collected with a wireless
sensor network deployment using TelosB motes (Crossbow
Technologies Inc.) (8) to detect high-resolution proximity (up
to 3 m) between subjects in a U.S. high school. The dataset
represents a high-resolution temporal contact network relevant
to the spread of infectious diseases via droplet transmission in
a school.
Previous attempts to capture the contact networks relevant for

infectious disease transmission have mostly been based on data
collection using surveys, sociotechnological networks, and mo-
bile devices like cell phones. Each of these approaches has
advantages and disadvantages. Surveys manage to capture the
interactions relevant for disease transmission but are often lim-
ited by small sample sizes (9) and are subject to human error
(10). Sociotechnological networks can provide large long-term
datasets (11) but fail to capture the CPIs relevant for disease
transmission. The use of mobile devices aware of their location

(or of other mobile devices in proximity) represents a promising
third alternative. Using mobile phones to detect spatial proximity
of subjects is possible with repeated Bluetooth scans (10), but the
resolution is too coarse for diseases that are transmitted through
the close contact route. Our approach is free of human error,
captures the vast majority (94%) of the community of interest,
and allows us to collect high-resolution contact network data
relevant for infectious disease transmission.
Most efforts to understand and mitigate the spread of pan-

demic diseases (influenza in particular) have made use of large-
scale spatially explicit models parameterized with data from
various sources, such as census data, traffic/migration data, and
demographic data (3, 4, 12–15). The population is generally di-
vided into communities of schools, workplaces, and households,
but detailed data on mixing patterns in such communities are
scarce. In particular, very little is known about the contact net-
works in schools (16) even though schools are known to play
a crucially important role in pandemic spread, mainly owing to
the intensity of CPIs at schools. In what follows, we describe and
analyze the contact network observed at a U.S. high school
during a typical school day. Using an SEIR (susceptible, exposed,
infectious, and recovered) simulation model, we investigate the
spread of influenza on the observed contact network and find
that the results are in very good agreement with absentee data
from the influenza A (H1N1) spread in the fall of 2009. Finally,
we implement and test various immunization strategies to eval-
uate their efficacy in reducing disease spread within the school.

Results
The dataset covers CPIs of 94% of the entire school population,
representing 655 students, 73 teachers, 55 staff, and 5 other
persons, and it contains 2,148,991 unique close proximity records
(CPRs). A CPR represents one close (maximum of 3 m) prox-
imity detection event between two motes. An interaction is de-
fined as a continuous sequence (≥1) of CPRs between the same
two motes, and a contact is the sum of all interactions between
these two motes. Thus, a contact exists between two motes if
there is at least one interaction between them during the day,
and the duration of the contact is the total duration of all
interactions between these two motes. Because the beaconing
frequency of a mote is 0.05 s−1, an interaction of length 3 (in
CPRs) corresponds to an interaction of about 1 min (SI Text and
references therein). The entire dataset consists of 762,868
interactions with a mean duration of 2.8 CPRs (∼1 min), or
118,291 contacts with mean duration of 18.1 CPRs (∼6 min)
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(data available in SI Methods). Fig. 1A shows the frequency, f, of
interactions and contacts of length m (in minutes) [f(m)]. The
majority of interactions and contacts are very short (80th per-
centile of interactions at 3 CPRs, 80th percentile of contacts at
15 CPRs), and even though about 80% of the total time is spent
in interactions that are shorter than 5 min, short contacts (<5
min) represent only about 10% of the total time (Fig. 1B).
The temporal mixing patterns observed are in accordance with

the schedule of the school day [i.e., the average degree (number
of contacts) peaks between classes and during lunch breaks] (Fig.
S1). The aggregate network for the entire day can be represented
by a weighted undirected graph, wherein nodes represent indi-
viduals and edges represent contacts (edges are weighted by
contact duration). The topology of the contact network is an
important determinant of infectious disease spread (17, 18).
Traditional infectious disease models assume that all subjects
have the same number of contacts, or that the contact network of
subjects is described by a random graph with a binomial degree
distribution. Many networks from a wide range of applications,
including contact networks relevant for infectious disease
transmission (19, 20), have been found to have highly hetero-
geneous degree distributions, however. Such heterogeneity is
important because it directly affects the basic reproductive
number, R0, a crucially important indicator of how fast an in-
fectious disease spreads and what fraction of the population will
be infected. In particular, if ρ0 is the incorrect estimate for R0
in a heterogeneous network under the false assumption of a
uniform degree distribution, the correct estimate is given by
R0 = ρ0 (1 + CV2), where CV2 is the squared coefficient of varia-
tion of the degree distribution (17, 21). Thus, the CV quantifies
the extent to which contact heterogeneity affects disease dynamics.
The descriptive statistics of the school network with different

definitions of contact are shown in Fig. 2. To account for the fact
that the majority of the contacts are relatively short (Fig. 1A), we
recalculated all statistics of the network with a minimum re-
quirement for contact duration, cm (i.e., all edges with weight <cm
are removed from the graph). The network exhibits typical “small-
world” properties (22), such as a relatively high transitivity (also
known as clustering coefficient, which measures the ratio of tri-
angles to connected triplets) and short average path length for all
values of cm. Assortativity, the tendency of nodes to associate with
similar nodes with respect to a given property (23), was measured
with respect to degree and role of the person (e.g., student,
teacher). Interestingly, although bothmeasures are relatively high,
degree assortativity decreases and role assortativity increases with
higher values of cm. Because of the very high density of the contact
network, a giant component exists for all values of cm. Community
structure (or modularity) is relatively high, increasingly so with
higher values of cm, indicating that more intense contacts tend to

occur more often in subgroups and less often between such groups
(24).Wefinda veryhomogeneousdegreedistributionwith aCV2=
0.118 for the full network and slightly increased heterogeneity
in the network with higher cutoff values cm (Fig. 2J). The dis-
tributions of number of interactions, c, and the strength, s (the
weighted equivalent of the degree) (25) are equally homogeneous
(Fig. 3). Overall, the data suggest that the network topology is best
described by a low-variance small-world network.
To understand infectious disease dynamics at the school, we

used an SEIR simulation model (parameterized with data from
influenza outbreaks; details presented in SI Methods), wherein an
index case becomes infected outside of the school on a random
day during the week and disease transmission at the school
occurs during weekdays on the full contact network as described
by the collected data. Each individual is chosen as an index case
for 1,000 simulation runs, resulting in a total of 788,000 epidemic
simulation runs. This simulation setting represents a base sce-
nario, wherein a single infectious case introduces the disease into
the school population. In reality, multiple introductions are to be
expected if a disease spreads through a population, but the base
scenario used here allows us to quantify the predictive power of
graph-based properties of individuals on epidemic outcomes. We
assume that symptomatic individuals remove themselves from
the school population after a few hours. We find that in 67.7% of
all simulations, no secondary infections occur and thus there is
no outbreak, whereas in the remaining 32.3% of the simulations,
outbreaks occur with an average attack rate of 3.87% (all sim-
ulations = 1.33%, maximum = 46.19%) and the average R0,
measured as the number of secondary infections caused by the
index case, is 3.85 (all simulations = 1.24, maximum = 18).
Recent work on disease spread on networks has identified the
relationship between R0, the network degree distribution, and
the average probability that an infectious individual transmits the
disease to a susceptible individual, T (18, 26). Based on this, R0
would be valued at 4.52 (SI Methods). This value is higher than
what we measure in the simulations because it is based on the
assumption of continuous transmission, whereas the simulations
exhibit discontinuous transmission attributable to weekends;
during that time, the school is closed and the chain of trans-
mission is effectively cut for 2 d. Finally, absentee data from the
school during the fall of 2009 (i.e., during the second wave of
H1N1 influenza in the northern hemisphere) are in good
agreement with simulation data generated by the SEIR model
running on the contact network (Fig. 4A).
A strong correlation exists between the size of an outbreak

caused by index case individual i and the strength of the node
representing individual i (r2 = 0.929). The correlation between
outbreak size and degree is substantially weaker (r2 = 0.525)
because at the high temporal resolution of the dataset, the de-
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Fig. 1. (A) Normalized frequency, f, of interactions and contacts of durationm (in minutes) [f(m)] on a log-log scale. (B) Percentage, p, of total time of all CPIs
by interactions and contacts with a minimum duration, cm (in minutes). Most CPI time is spent in medium-duration contacts consisting of repeated short
interactions.
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gree contains many short-duration contacts whose impact on
epidemic spread is minimal. To estimate the sampling rate at
which degree has maximal predictive power, we systematically
subsampled our original dataset to yield lower resolution data-
sets. Fig. S2 shows that sampling as infrequently as every 100 min
would have resulted in the same predictive power for degree as
sampling every 20 s, whereas the maximum predictive power for
degree would have been attained at ∼20 min. At this sampling
rate, the 95% confidence intervals for the correlation between
degree and outbreak size and the correlation between strength
and outbreak size start to overlap (because of the high correla-

tion between degree and strength; Fig. S2, blue line). These
results suggest that high-resolution sampling of network prop-
erties such as the degree of nodes might be highly misleading for
prediction purposes if used in isolation (i.e., without the tem-
poral information that allows for weighting).
To mitigate epidemic spread, targeted immunization inter-

ventions or social distancing interventions aim to prevent disease
transmission from person to person. Finding the best immuniza-
tion strategy is of great interest if only incomplete immunization is
possible, as is often the case at the beginning of the spread of
a novel virus. In recent years, the idea of protecting individuals
based on their position in the contact network has received con-
siderable attention (11, 27, 28). Graph-based properties, such as
node degree and node betweenness centrality (29), have been
proposed to help identify target nodes for control strategies, such
as vaccination; however, because of the lack of empirical contact
data on closed networks relevant for the spread of influenza-like
diseases, such strategies could only be tested on purely theoretical
networks [or on approximations from other empirical social net-
works that did not measure CPIs directly (11)]. To understand the
effect of partial vaccination, we measured outbreak size for three
different levels of vaccination coverage (5%, 10%, and 20%) and
a number of different control strategies based on node degree,
node strength, betweenness centrality, closeness centrality, and
eigenvector centrality (so-called “graph-based strategies”). In
addition, we tested vaccination strategies that do not require
contact network data (random vaccination, preferential vaccina-
tion for teachers, and preferential vaccination for students; SI
Methods). To ensure robustness of the results to variation in
transmission probabilities, all simulations were tested with three
different transmission probabilities (Methods). Ten thousand
simulations for each combination of vaccination strategy, vacci-
nation coverage, and transmission probability with a random index
case per simulation were recorded (i.e., total of 810,000 simu-
lations) to assess the effect of vaccination. Fig. 4B shows which
strategies led to significantly (P < 0.05, two-sided Wilcoxon test)
different outcomes at all transmission probability values (results
separated by transmission probability are presented in Fig. S3). As
expected, all strategies managed to reduce the final size of the
epidemic significantly. Compared with the random strategy,
graph-based strategies had an effect only at higher vaccination
coverage. Graph-based strategies did not differ much in their ef-
ficacy; in general, strength-based strategies were the most effec-
tive. Overall, two main results emerge: (i) in the absence of
information on the contact network, all available strategies, in-
cluding random immunization, performed equally well and (ii) in
the presence of information on the contact network, high-
resolution data support a strength-based strategy, but there was
no significant difference among the graph-based strategies.

Discussion
In summary, we present high-resolution data from the CPI net-
work at aU.S. high school during a typical school day. Notably, the
month of the experiment (January) is associated with the second
highest percentage of influenza cases in the United States for the
1976–1977 through 2008–2009 influenza seasons (second only to
February). The data suggest that the network relevant for disease
transmission is best described as a small-world network with a very
homogeneous contact structure in which short repeated inter-
actions dominate. The low values of the coefficients of variation in
degree, strength, and number of interactions (Fig. 3) suggest that
the assumption of homogeneity in traditional disease models (21)
might be sufficiently realistic for simulating the spread of in-
fluenza-like diseases in communities like high schools. Further-
more, we do not find any “fat tails” in the contact distribution of
our dataset, corroborating the notion (9) that the current focus on
networks with such distributions is not warranted for infectious
disease spread within local communities.
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It is important to recognize the limitations of the data presented
here, particularly in light of the fact that transmission of influenza-
like diseases also occurs via other routes, for example, via contact
with contaminated surfaces (30). Moreover, different pathogens
as well as different strains of a particular pathogen might have
different minimum requirements (both spatial and temporal) that
need to be met for person-to-person transmission. At present, the
data capture the contact network during a single day only. This is
not an inherent shortcoming of the approach presented here,

however, and long-term studies in the future could address how the
large-scale structure of the contact network in a high school
changes over time. Data collection at different schools with dif-
ferent demographic compositions would be helpful in clarifying if
and how demographic compositions affect the properties of the
network relevant for disease transmission. Wireless sensor net-
work technology certainly allows further elucidation of the contact
networks not only at different schools but in households, hospitals,
workplaces, and other community settings.
With regard to immunization strategies, our simulation results

suggest that contact network data are necessary to design strate-
gies that are significantly more effective than random immuniza-
tion to minimize the number of cases at the school caused by
a single index case. Great care needs to be taken in interpreting
these results for various reasons. First, the limitations of the data as
discussed above mean that these results may not hold in other
settings, underlining the need for further empirical network
studies. Second, the simulations assume neither multiple intro-
ductions nor ongoing interactions of participants outside of the
school. To what extent these assumptions, particularly the latter,
are violated when a disease spreads through a community is un-
known and remains to be measured. Third, future work needs to
establish the robustness of the effect of vaccination strategies
against errors in the measurement of graph-based properties.
Fourth, and perhaps most importantly, a particular immunization
strategy may be optimal for reducing the number of cases in one
particular school but, at the same time, may not be optimal from
the perspective of an entire community. Immunization strategies
must also take into account medical, social, and ethical aspects
(31). Thus, although we believe that data of the kind reported here
can help to inform public health decisions, particularly as more
data become available in the future, it is clear that one cannot
derive public health recommendations at this stage directly from
this study alone. We note, however, that our findings support the
notion that graph-based immunization strategies could, in prin-
ciple, help to mitigate disease outbreaks (11, 28).

Methods
The mote deployment is described in detail in SI Methods.

Epidemic Simulations. To simulate the spread of an influenza-like disease, we
used an SEIR simulation model parameterized with data from influenza
outbreaks (12, 32, 33). In the following, we describe the model in detail.

Transmission occurs exclusively along the contacts of the graph as collected
at the school. Each individual (i.e., node of the network) can be in one of four
classes: susceptible, exposed, infectious, and recovered. Barring vaccination,
all individuals are initially susceptible (more information on vaccination is
presented below). At a random time step during the first week of the sim-
ulation, an individual is chosen as the index case and his or her status is set to
exposed. A simulation is stopped after the number of both exposed and
infectious individuals has gone back to 0 (i.e., all infected individuals have
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recovered). Each time step represents 12 h and is divided into day and night.
Transmission can occur only during the day and only on weekdays (i.e., apart
from the initial infection of the index case, we do not consider any trans-
mission outside of the school; although this assumption will not hold in
reality, it allows us to focus exclusively on within-school transmission and to
analyze the spread of a disease starting from a single infected case).

Transmission of disease froman infectious to a susceptible individual occurs
with a probability of 0.003 per 20 s of contact (the interval between two
beacons). This value has been chosen because it approximates the time-de-
pendentattack rateobserved inanoutbreakof influenzaaboardacommercial
airliner (32). In particular, the probability of transmission per time step (12 h)
from an infectious individual to a susceptible individual is 1 − (1 − 0.003)w,
wherew is theweight of the contact edge (in CPRs).On infection, an individual
will move into the exposed class (infected but not infectious). After the in-
cubation period, an exposed individual will become symptomatic and move
into the infectious class. The incubation period distribution is modeled by
a right-shifted Weibull distribution with a fixed offset of half a day [power
parameter = 2.21, scale parameter = 1.10 (12)]. On the half day that the
individual becomes infectious, the duration of all contacts of the infectious
individual is reduced by 75%. This reduction ensures that if an individual
becomes symptomatic and starts to feel ill during a school day, social contacts
are reduced and the individual leaves the school or is dismissed from school
after a fewhours. In the following days, all contacts are reduced by 100%until
recovery (i.e., the individual stays at home). Once an individual is infectious,
recovery occurswith aprobability of 1−0.95tper time step,where t represents
thenumberof time steps spent in the infectious state [in linewithdata froman
outbreak of H1N1 at a New York City school (33)]. After 12 d in the infectious
class, an individual will recover if recovery has not occurred before that time.

Based on these simulation settings and the finding that the average
contact duration is 18.1 CPRs (Results), the transmissibility, T, as defined by
Newman (18) and Meyers et al. (26), is 1 − (1 − 0.003)18.1*0.25 = 0.0135.
Furthermore, based on the framework established by Newman (18) and
Meyers et al. (26), R0 can be calculated as R0 = T × <ke>, where the average
excess degree, <ke>, is <k

2>/ <k>− 1 = 334.76.
We assume that all exposed individuals developed symptoms. A high in-

cidence of asymptomatic spread may affect infectious disease dynamics (34),
but reports of asymptomatic individuals excreting high levels of influenza
virus are rare (35). In addition, a recent community-based study investigating
naturally acquired influenza virus infections found that only 14% of infec-
tions with detectable shedding at RT-PCR were asymptomatic and viral
shedding was low in these cases (36), suggesting that the asymptomatic
transmission plays a minor role. Similar patterns were observed for SARS-
CoV, another virus with the potential for rapid pandemic spread: Asymp-
tomatic cases were infrequent, and lack of transmission from asymptomatic
cases was observed in several countries with SARS outbreaks (37).

Vaccination. The efficacy of vaccination strategies was tested by simulation.
Vaccination occurs (if it occurs at all) before introduction of the disease by the
index case. Vaccinated individuals are moved directly into the recovering
class.We assume that the vaccine provides full protection during an epidemic.

Three vaccination strategies are implemented that do not require mea-
suring graph-based properties; these strategies are called “random,” “stu-
dents,” and “teachers.”
Random. Individuals are chosen randomly until vaccination coverage is
reached.

Students. Students only are chosen randomly until vaccination coverage
is reached.
Teachers. Teachers only are chosen randomly until vaccination coverage is
reached. If vaccination coverage is so high that all teachers get vaccinated
before the coverage is reached, the strategy continues as the student strategy
(see above) for the remaining vaccinations.

Five vaccination strategies are implemented that require measuring graph
properties: These strategies are called “degree,” “strength,” “betweenness,”
”closeness,” and “eigenvector.” In all cases, individuals are ranked according
to the specific graph property and chosen according to that ranking (in
descending order) until vaccination coverage is reached.
Degree. Degree is calculated as the number of contacts during the day
of measurement.
Strength. Strength is calculated as the total time exposed to others during the
day of measurement.
Betweenness. Betweenness centrality, CB(i), of individual i is calculated as

CBðiÞ ¼ ∑
s≠t≠i

σstðiÞ
σst

where s, t, and i are distinct individuals in the contact graph; σst is the total
number of shortest paths between nodes s and t; and σst(i) is the number of
those shortest paths that go through node i (29). The shortest path is cal-
culated using inverse weights.
Closeness. Closeness centrality, CC(i), of individual i is calculated as

CCðiÞ ¼ n− 1
∑
s≠i

dsi

where s and i are distinct individuals in the contact graph, dsi is the shortest
path between nodes s and i, and n is the number of individuals in the graph
(29). The shortest path is calculated using inverse weights.
Eigenvector. Calculation of eigenvector centrality is described by White and
Smyth (38) through application of the page-rank algorithm with jumping
probability 0. The measure captures the fraction of time that a random walk
would spend at a given vertex during an infinite amount of time.

Wetestedthreedifferent levelsofvaccinationcoverage:5%,10%,and20%.
These percentages apply to the entire population [i.e., a 10% vaccination
coverage means that 10% of the entire school population is vaccinated, in-
dependent of the particular vaccination strategy (except for the strategy
“none,” which means no vaccinations occur]. In addition to the default
transmission probability per CPR interval described above (i.e., 0.003), we
tested lower (0.002) and higher (0.0045) transmission probability values.
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