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Increasing evidence suggests that parentally supplied RNA plays
crucial roles during eukaryotic development. This epigenetic con-
tribution may regulate gene expression from the earliest stages.
Although present in a variety of eukaryotes, maternally inherited
characters are especially prominent in ciliated protozoa, in which
parental noncoding RNA molecules instruct whole-genome re-
organization. This includes removal of nearly all noncoding DNA
and sorting the remaining fragments, producing extremely gene-
rich somatic genomes. Chromosome fragmentation and extensive
replication produce variable DNA copy numbers in the somatic
genome. Understanding the forces that drive and regulate copy
number change is fundamental. We show that RNA molecules
present in parental cells during sexual reproduction can regulate
chromosome copy number in the developing nucleus of the ciliate
Oxytricha. Experimentally induced changes in RNA abundance can
both increase and decrease the levels of corresponding DNA mole-
cules in progeny, demonstrating epigenetic inheritance of chromo-
some copy number. These results suggest that maternal RNA, in
addition to controlling gene expression or DNAprocessing, can also
program DNA amplification levels.

copy number variation | genome rearrangement

DNA copy number profoundly influences evolution (1–4),
permitting changes in gene and protein expression (5–7)

that may be acted upon by positive selection (7), permit adap-
tation (8–11), or have links to human genetic disease (12) and
disease susceptibility (13–15), including autism-spectrum dis-
orders (16) and several cancers (5–6, 17–22).
Because most of Oxytricha’s more than 20,000 unique “nano-

chromosomes” in its somatic nucleus bear only a single gene (23,
24) and copy number can vary independently (25), Oxytricha
provides a unique opportunity to study copy number variation.
The absence of physical linkage potentially releases most con-
straints on gene copy number, encouraging gene regulation at
the level of DNA copy number, in addition to transcription.
Although longer, germline chromosomes participate in conven-
tional mitosis during vegetative growth, the tiny somatic mac-
ronuclear chromosomes that differentiate from the germline
chromosomes undergo amitosis, permitting both drift and reg-
ulation of copy number (26, 27). Observed levels vary over four
orders of magnitude (23, 25, 27–31). With such high copy
numbers, a typical macronucleus may contain tens of millions of
nanochromosomes, averaging 2.2 kb bound by short telomeres
(23). Such high copy numbers may permit high rates of tran-
scription and translation to sustain Oxytricha’s large (∼100 μm)
cells (23).
Our previous work revealed that noncoding template RNAs

that originate from the parental macronucleus guide a highly
elaborate process of DNA deletion, unscrambling, and assembly
to form the macronuclear genome (32). Disruption of specific
RNA templates disables rearrangement of the corresponding
gene, and injection of artificial templates reprograms the DNA
rearrangement pathway. Here we investigate whether the same
maternal RNA templates that guide genome rearrangement in

Oxytricha can also control the level of chromosome amplification
in the developing nucleus.

Results
To test whether the level of maternal transcripts available during
sexual reproduction has an influence on DNA copy number in
the sexual progeny, we independently microinjected full-length
RNA copies of two different gene-sized chromosomes, carrying
Telomere-End-Binding Protein-β (TEBPβ) or ActinI genes, into
the cytoplasm of mating cells. TEBPβ represents an example of
a conventional gene, requiring only DNA deletion but no reor-
dering during nuclear development, whereas ActinI represents
a scrambled gene that requires both DNA inversions and per-
mutations to produce a functional copy (23). Injections occurred
between 10 to 15 h after mixing of complementary mating types,
before pairs separate, around the time of fertilization. The
progeny from mating pairs injected with TEBPβ RNA demon-
strated normal growth rate but 2.9-fold greater levels (i.e., 290%
increase) of TEBPβ nanochromosomes, regardless of whether
theywere injectedwith sense, antisense, or bothRNAstrands (Fig.
1). Therefore, subsequent experiments used only the sense strand.
The uniform ActinI hybridization (Fig. 1, lanes 11–15) suggests
that the effects of TEBPβ RNA microinjection were sequence-
specific. In addition, there was no effect of RNAmicroinjection on
the overall amount of macronuclear DNA, based on ethidium
bromide staining (Fig. 1, lanes 16–20), supporting the sequence
specificity of the effect. PCR and DNA sequencing confirmed
that the DNA copy number increase is not a result of any con-
taminating DNA that may have been coinjected with RNA,
because the progeny DNA contains multiple alleles, whereas the
synthetic templates derive from a single PCR clone that also
contains additional point substitutions (SI Text). The presence of
multiple TEBPβ alleles also supports their zygotic origin.
To confirm the effect and examine its epigenetic inheritance,

we injected synthetic sense RNA for the complete ActinI chro-
mosome into the cytoplasm of five mating pairs. These individual
pairs were isolated after injection and their progeny cells were
cultured separately. Southern analysis revealed 5.5- to 11.8-fold
higher ActinI chromosome copy levels in the five independent
experiments. To test whether the RNA-induced DNA copy
number increase transferred epigenetically to the next genera-
tion, we induced sexual conjugation by starving the progeny of
ActinI-injected cells after 2 wk of vegetative growth. Conjugating
pairs that were separated and grown vegetatively for another
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2 wk also demonstrated increased ActinI nanochromosome copy
number in F2 cells (4.3–7.5-fold; Fig. 2), supporting epigenetic
inheritance of this acquired trait.
We also tested whether increased DNA copy number in the

parental nucleus can induce increased amplification of the cor-
responding chromosome in sexual progeny. We injected full-
length DNA copies of a cloned ActinI nanochromosome con-
taining additional point substitutions into the somatic nuclei of
mating pairs 6 to 8 h after mixing, approximately 1 to 3 h after
pair formation. Of the three pairs that survived nuclear injection
to allow examination of progeny after 12 d of growth, two show-
ed an approximate 5.4-fold increase levels of ActinI nanochro-
mosome copy number (Fig. 2). Cloning and sequencing revealed
the absence of the artificial substitutions in the injected DNA
(sites marked with an asterisk in SI Text), as well as the presence
of multiple alleles, confirming the amplification of endogenous
ActinI chromosomes and not simply the added presence of in-
jected DNA in the progeny.
Reciprocally, we used RNAi to test whether reduced availability

of RNA during conjugation has a negative effect on chromosome

amplification. Pooled progenies of conjugating cells that were
treated with RNAi against TEBPα and DNA Polymerase-α (pol-α),
both scrambled genes, previously displayed down-regulation of cor-
responding mRNA levels during conjugation and aberrant rear-
rangement of the corresponding DNA loci (32). Here we report
that these cells also display 1.8-fold (i.e., 180%) and 7.7-fold re-
duced levels, respectively, of the mature DNA nanochromosomes
(Fig. 3). The stronger effect for pol-α is consistent with its more
severe effect on DNA rearrangements (32). The two independent
RNAi experiments have a sequence-specific effect on the respec-
tive gene copy numbers, with no effect on the nonhomologous
gene (Fig. 3, lanes 1 and 6), reinforcing the conclusion that RNA
level during conjugation influences DNA copy number in the prog-
eny in a sequence-specific manner.

Discussion
Our data support a model of template RNA-mediated epigenetic
inheritance of DNA copy number in the Oxytricha macronucleus
(Fig. 4) involving chromosome replication during development.
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Fig. 1. Microinjection of RNA increases chromosome copy number in sexual
progeny. Southern analysis of whole-cell DNA isolated from pooled progeny
of 40 cells (20 conjugating pairs) in each experiment injected (inj.) with
TEBPβ sense (s) or antisense (as) RNA or both strands. Hybridization to
a TEBPβ probe (lanes 1–5) shows increased levels of the WT TEBPβ chromo-
some in progeny of injected cells (lanes 3–5). Gray bars indicate relative
amount of TEBPβ probe signal. Lanes 6 to 10 and 11 to 15 are hybridization
to a TBE1 transposase and ActinI probe, respectively, as DNA loading con-
trols, in addition to ethidium bromide staining (lanes 16–20) on a 0.9%
agarose gel. ActinI hybridization and ethidium bromide staining indicate
that the effect of TEBPβ RNA microinjection is sequence-specific, as it does
not increase the levels of ActinI chromosomes or of macronuclear DNA
in general.
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Fig. 2. Microinjection of RNA or DNA increases chromosome copy number
in sexual progeny. Southern analysis of total DNA from progeny of cells
injected with sense RNA copies of the complete ActinI nanochromosome.
Lanes 1 to 9 and 28 to 36 contain DNA from the progeny of individually
injected mating pairs hybridized to an ActinI probe. F1 cells (lanes 3–7) show
increased levels of the ActinI nanochromosome. F2 cells (lanes 8 and 9) that
were derived from the progeny of individual mating pairs isolated from F1
cells also show higher amounts of the ActinI chromosome, although slightly
less than their parents (lanes 3 and 4). Lanes 30 to 33 contain DNA from four
different clonal cultures derived from noninjected parents. They do not
exhibit differences in ActinI chromosome copy number. Lanes 34 to 36
contain DNA from the progenies of cells injected with the full-length syn-
thetic DNA chromosome. Two show increased levels of ActinI chromosomes.
To compare relative signal intensities on both blots, samples 1 and 4 (Left)
were duplicated in lanes 28 and 29. Gray bars indicate relative levels of
ActinI probe signal. TBE1 transposase probe provided a loading control
(lanes 10–18 and 37–45) in addition to ethidium bromide staining (lanes 19–
27 and 46–54). The ethidium staining also confirms that ActinI injection did
not influence the overall levels of macronuclear DNA, helping to exclude
non-sequence-specific effects.
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As chromosome copy number varies in the somatic nucleus, cells
should produce RNA templates during conjugation in approxi-
mately the same proportion as their DNA concentration in
a mature parent nucleus. After template RNAs guide DNA
rearrangements, the level of correctly processed chromosomes
may also correlate with available template RNA concentration,
suggesting a quantitative relationship from maternal DNA to
maternal RNA to progeny DNA. This permits establishment of
chromosome copy number very early during development (23).
Furthermore, the effect of RNA injection on chromosome copy
number is not dependent on the type of DNA rearrangement
during chromosomal maturation, influencing both scrambled and
nonscrambled genes.
A previous observation in Paramecium noted that the presence

of siRNA during conjugation leads to local DNA deletions
within the targeted region (33). This is consistent with a “scan-
RNA” model proposed for Paramecium and Tetrahymena (34,
35) wherein injected siRNA cause degradation of homologous
maternal transcripts, which subsequently are unable to sequester
the germline scan RNAs, resulting in deletion of corresponding
DNA in the developing nucleus. It is unknown, however, whether
maternal RNA in these and other organisms can influence DNA
copy number, as we show for Oxytricha.
The combination of imprecise nuclear division during vege-

tative growth and high ploidy allows individual chromosome

copy number to vary widely (26, 27). In addition, most reports of
DNA copy number in ciliates reflect population averages that
mask individual variation, if copy number is not measured in
individual cells. Although somatic variation can be acted upon by
selection during asexual growth, after approximately 80 divisions,
Oxytricha trifallax cells cannot produce viable progeny (36), and
extreme departures in chromosome copy number from initial,
postconjufation levels may contribute to senescence (30). The
possibility that chromosome copy number is not regulated during
vegetative growth underscores the need to regulate it during
conjugation. RNA-mediated epigenetic control of DNA copy
number offers both robustness and plasticity to genomes, be-
cause they may transmit somatically acquired changes in copy
number across generations if the new copy number confers
a selective advantage, yet still retain the ability to reset DNA copy
number to previous levels upon mating with a “wild-type” cell or
by further somatic change in the opposite direction. It remains to
be determined whether individual exconjugant cells in a mating
pair adopt the chromosome copy numbers of one parent or ac-
quire the average of both parents’ RNA template levels. The
potential reversibility of RNA-mediated epigenetic phenomena
facilitates adaptation in a changing environment. The expanding
roles of RNA-mediated inheritance underscore the inadequacy of
the germline genome and the need for the parental cell to equip
its daughters with an RNA cache bearing all of the additional
information necessary for proper development.

Methods
Microinjection of DNA and RNA. Synthetic RNA and DNA were generated by
PCR, followed by restriction digestion, ligating segments, and cloning into
pCR2.1-TOPO vector (Invitrogen). DNA versions were prepared by telo-
mere-to-telomere PCR from the cloned DNA, and RNA versions of each
strand were prepared by in vitro transcription of PCR products with T7
promoter appended to the forward or the reverse primer. RNA samples
were DNase-treated after in vitro transcription and before injection. Ap-
proximately 5 pL DNA or 10 pL RNA (5 μg/μL) was injected (IM 300; Nar-
ishige) into the macronucleus or cytoplasm, respectively, of each cell in a
mating pair visualized by phase-contrast inverted microscopy (Axiovert
200; Zeiss) as described previously (32). After injection, the pairs were
pooled together or cultured separately. The same number of noninjected
pairs were always treated identically as a control. Whole-cell DNA was
isolated 12 to 14 d later for analysis. Individual exconjugants were ob-
served under the microscope and each cell displayed morphological fea-
tures characteristic of sexual reproduction in Oxytricha (also called
Sterkiella), such as rounded cell shape or a large macronuclear anlagen.
Thus, as described earlier (32), on the basis of cell morphology, the ana-
lyzed F2 cells were the progeny of F1.

RNAi. Double-stranded RNA feeding was performed by using a modified
Paramecium protocol (37) that we described previously (32), in which ciliates
were fed live bacteria, supplemented with algae. Silencing plasmids con-
tained 1.5 kb of TEBPα or 1.8 kb of the pol-α macronuclear sequence (details
and RNAi-feeding sequences provided in ref. 32). Pooled progeny cells
were analyzed.

Cells. O. trifallax (Sterkiella histriomuscorum) strains JRB310 and JRB510 (38)
were cultured in inorganic salts medium (39) with the algae Chlorogonium
elongatum as a food source and Klebsiella oxytoca as a food supplement. To
induce mating, JRB310 and JRB510 cells were mixed in Pringsheim salts (40)
at 2,000 cells/mL, with only Klebsiella as food source. Early pairs appear 4 to
6 h after mixing of mating types, and maximum pairing (>60%) occurs
within 24 h after mixing.

DNA and RNA isolation. Cells were harvested after 12 to 14 d of recovery in
vegetative culture by addition of 50 mM EDTA and centrifugation at 2,500 ×
g for 10 min. DNA was extracted with the NucleoSpin Tissue kit (Macherey-
Nagel). RNA was extracted with NucleoSpin RNA II (Macherey-Nagel).

PCR After RNAi. All PCR products were amplified with FastStart High-Fidelity
PCR systems (Roche Applied Science).
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Fig. 3. RNAi during conjugation reduces chromosome copy number in prog-
eny. Southern analysis of whole-cell DNA from progeny of cells treated with
RNAi against pol-α (lanes 1–4) and TEBPα (lanes 5–8). RNAi during conjugation
reduces the levels of corresponding chromosomes in sexual progeny (lanes 2
and 5). Gray bars indicate relative levels of pol-α and TEBPα probe signals. TBE1
transposase probe signal (lanes 9–12), as well as ethidium bromide staining of
whole-cell DNA (lanes 13–16), provided a loading control.
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Southern Hybridization. DNA (approximately 1 μg) was electrophoresed
through an ethidium bromide-stained 0.9% agarose gel, depurinated in gel
(0.25% HCl 15 min; washed in 0.4 M NaOH for 15 min), and transferred to
Hybond XL membrane in 0.4 M NaOH with a Nytran TurboBlotter (GE
Healthcare). Probes were generated by random priming [Prime-It (Stra-
tagene) with (α-32P)-dATP 3,000 Ci/mmol (Perkin-Elmer)] of WT Oxytricha
strain JRB310 TEBPα, TEBPβ, Pol-α, ActinI, and TBE1 transposase PCR products
and purified (NucTrap; Stratagene). After overnight hybridization at 60 °C

(0.5 M NaPO4, pH 7.2, 1% BSA, 1 mM EDTA, 7% SDS) the membrane was
washed in 0.2× SSC with 0.1% SDS (30 min, 60 °C), and visualized on a Storm
860 PhosphorImager.
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