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The microRNA pathway participates in basic cellular processes and its discovery has enabled the
development of si/shRNAs as powerful investigational tools and potential therapeutics. Based on a
simple kinetic model of the mRNA life cycle, we hypothesized that mRNAs with high turnover rates
may be more resistant to RNAi-mediated silencing. The results of a simple reporter experiment
strongly supported this hypothesis. We followed this with a genome-wide scale analysis of a rich
corpus of experiments, including RT-qPCR validation data for thousands of siRNAs, siRNA/
microRNA overexpression data and mRNA stability data. We find that short-lived transcripts are
less affected by microRNA overexpression, suggesting that microRNA target prediction would be
improved if mRNA turnover rates were considered. Similarly, short-lived transcripts are more
difficult to silence using siRNAs, and our results may explain why certain transcripts are inherently
recalcitrant to perturbation by small RNAs.
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Introduction

What determines how strongly an mRNA responds to a
microRNA or an siRNA? We know that properties of the
sequence match between the small RNA and the mRNA are
crucial. However, the same microRNA can repress different
mRNAs to varying orders of magnitude, with no noticeable
difference in features of the binding site (Lim et al, 2005;
Grimson et al, 2007). Similarly, different siRNAs that are
designed according to state-of-the-art guidelines will silence
their target mRNAs to different degrees. In part, this may
be explained by limitations in our understanding of small
RNA-target recognition and the influence of various contextual
features. However, large-scale validations of siRNA efficacies
have shown that certain transcripts remain recalcitrant to
perturbation even after repeated redesign of the siRNA
(Krueger et al, 2007). Weak response to RNAi may thus be
an inherent property of the mRNA, but the underlying factors
have proven difficult to uncover.

Progress has been made in identifying features, which help
predict the outcome of RNAIi outside the specific micro/siRNA
binding site. These include the contribution of local sequence
context (Grimson et al, 2007), local RNA structure (Kertesz
et al, 2007; Long et al, 2007), RNA-binding protein (RBP)
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motifs (Jacobsen et al, 2010), pre-existing endogenous micro-
RNA regulation (Khan et al, 2009) and total target cellular
abundance (Arvey et al, 2010). However, even taking these
factors into account still leaves puzzling discrepancies in what
we can explain or quantitatively predict.

siRNAs induce degradation by sequence-specific cleavage of
their target mRNAs (Elbashir et al, 2001). MicroRNAs, too,
induce mRNA degradation, and ~80% of their effect on
protein levels can be explained by changes in transcript
abundance (Hendrickson et al, 2009; Guo et al, 2010). Given
that multiple factors act simultaneously to degrade individual
mRNAs, we here consider whether variable responses to
micro/siRNA regulation may, in part, be explained simply by
the basic dynamics of mRNA turnover. If a transcript is already
under strong destabilizing regulation, it is theoretically
possible that the relative change in abundance after the
addition of a novel degrading factor would be less pronounced
compared with a stable transcript (Figure 1). mRNA turnover
is achieved by a multitude of factors in addition to small
RNAs, such as those that act on AU-rich elements (AREs) and
other destabilizing RBPs, although the relative contributions
of these components are not known. The influence of
such factors on small RNA targeting can be individually
explored. However, their combined action, including yet
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Figure 1  Schematic illustration. The relative change in degradation rate after
perturbation of an mRNA by a small RNA will be different depending on the
pre-existing degrading effect.

unknown factors, is summarized into a single property: the
mRNA decay rate.

mRNA decay rates in animal cells are highly variable, with
half-lives ranging from minutes to days (Ross, 1995). For
instance, for mRNAs in mouse embryonic stem cells the
median is around 7 h, whereas some genes, including Foxa2,
Hes5 and Trib1, have half-lives under an hour (Sharova et al,
2009). We investigated the relationship between mRNA decay
rates, mRNA abundance and susceptibility to small RNA
perturbation using a mathematical model, a basic reporter
experiment and analysis of a rich corpus of large-scale
experiments, including RT-qPCR validation data for thou-
sands of siRNAs, siRNA/microRNA overexpression data and
mRNA stability data. Our theoretical analysis suggests that
short-lived transcripts could be more difficult to perturb using
microRNAs and siRNAs, and this is consistently supported by
the experimental data.

Results

A basic model suggests a relationship between
turnover rate and targetability

First, we explored the theoretical relationship between the pre-
existing turnover rate of an mRNA, and its expected suscept-
ibility to perturbation by a small RNA. We assumed a basic
model of the mRNA life cycle, in which the rate of transcription
is constant and the rate of degradation is described by
first-order kinetics (see Materials and methods). We initially
assumed that pre-existing cell-endogenous factors (e.g. micro-
RNAs and RBPs) and an externally introduced or suddenly
upregulated factor (e.g., an siRNA or a microRNA) act
independently and contribute additively to the decay rate of
an mRNA. Under this model, the relative change in steady-
state expression level will become smaller as the pre-existing
decay rate grows larger, independent of the transcription rate
(Figure 2A). This relationship persists also if we assume
various degrees of synergy and antagonism between the pre-
existing factors and the external factor (described by an
interaction coefficient g, see Materials and methods), with
increasing synergism leading to transcripts being more equally
targetable, regardless of their pre-existing decay rate. In this
model, the pre-existing decay rate is a property of the target
mRNA, while the introduced component describes the added
effect of a specific small RNA. We can thus expect the size of
the latter to be variable, and it is useful to think of the
pre-existing decay rate as a factor that limits rather than
determines the perturbation effect (Figure 2B).
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Figure 2 Theoretical variability in targeting efficacy as a function the pre-
existing decay rate. (A) Various degrees of synergism and antagonism between
pre-existing mRNA decay rate and the added contribution of an introduced
degrading factor (e.g., an siRNA) were explored. The curves represent g=0
(additive model), g=—1 (antagonistic), g=—2 (suppressive) and g=1 and 5
(synergistic) (the interaction coefficient g is described in Materials and methods).
(B) The exogenous component was randomized between 0 and 1 to describe
variation in efficacy between different small RNAs (additive model).

Destabilization of a reporter transcript decreases
targetability

We next investigated the predicted relationship between pre-
existing mRNA stability and susceptibility to RNAi in a simple
experimental system. We generated a series of four luciferase
reporter constructs with destabilizing AREs of various
strengths incorporated into their 3’ UTRs (Figure 3A). The
strongest ARE in this series reduced the reporter signal to 46 %
compared with a non-destabilized construct (Figure 3B). This
confirmed the activity of the AREs and corresponds to a 2.2-
fold increase in turnover rate (assuming constant transcription
rates and translation efficacies). To evaluate how the different
constructs would respond to perturbation, we performed co-
transfections with an siRNA targeted at the coding region of
the luciferase gene. This reduced the signal of the non-
destabilized construct to 26 % compared with a control siRNA.
In contrast, the most destabilized construct showed 42%
remaining reporter activity compared with the control siRNA,
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Figure 3 Reporter experiments. (A) Schematic overview of luciferase reporter constructs harboring variable numbers of destabilizing (AUUU), multimers (ARES) in
their 3 UTRs. nvaried from 1 (non-functional ARE, ‘AARE’) to 7 (potent ARE). To keep UTR length constant, (AUUU) elements were never removed but rather replaced
by non-functional (GUUU) elements (Zubiaga et al, 1995). (B) Relative luciferase signals from reporter constructs after transfection in HEK293 cells (normalized to
Renilla luciferase). (C) Co-transfections with a luciferase siRNA. Bars show reporter activities in siLuc-transfected cells relative to a control siRNA (siCtrl), and error bars
indicate s.e.m. (n=3). b=2.5% per (AUUU) repeat; 95% CI 1.2-3.7% using linear regression. White and gray bars show theoretically expected results (least-squares
fitting) based on an additive (g=0) and a weakly synergistic (g=0.42) model (sum of squared errors=0.021 and 0.018, respectively).

and we could observe a dose-response relationship across the
series (linear regression P<0.004, Figure 3C). Least-squares
fitting of these results to our theoretical equations, based on
standardized turnover rates estimated from Figure 3B, re-
vealed that a weakly synergistic (g=0.45) model gave the
closest fit. However, this model was marginally better than the
additive case, and bootstrapping analysis showed that g was
not significantly different from 0 (95% CI, —0.15 to 2.15)
(Figure 3C). In conclusion, we observed changes in the ability
of a reporter transcript to respond to siRNA perturbation (55 %
increase in residual signal), caused by a relatively small (2.2-
fold) modulation of the turnover rate. mRNAs in the cell are
known to exhibit a considerably broader range of turnover
rates, motivating further investigation of this effect on real-
world transcripts.

High-turnover transcripts are more resistant
to silencing using siRNAs

We tested the relationship between the efficacy of individual
siRNAs, as determined using thousands of RT-qPCR measure-
ments, and the turnover rates of their respective mRNA
targets. First, in order to determine turnover rates for
individual transcripts, we reanalyzed a microarray time series
of HelLa cells that were transcriptionally inhibited using
actinomycin D (Act D) (Iwamoto et al, 2008). Log,-trans-
formed mRNA decay profiles were fit to a linear curve
y=B1t+ Bo, where B, is a decay rate coefficient related to
half-life (t;,,=—1/B;, Figure 4A). Second, we analyzed a
previously unpublished set of 2622 siRNAs, for which
individual efficacies were determined using RT-qPCR 48h
post-transfection in HeLa cells (Supplementary Table 1)
(www.appliedbiosystems.com). Of these, 1778 could be
associated with a decay rate as determined above. Indeed,
our results showed a relationship between the efficacy of an
siRNA and the pre-existing turnover rate of the target
transcript. Although the overall correlation between the two
variables was modest (Spearman’s rank correlation r;=0.22,
P<1le—20), we found that siRNAs directed at high-turnover
(t12<200min) and medium-turnover (200<t,;,, <1000 min)
mRNAs caused significantly less repression than those
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targeting long-lived (t;,,>1000min) transcripts (P<8e—11
and <4e-9, respectively, two-tailed KS-test, Figure 4B).
While 41.6% (498/1196) of the siRNAs directed at low-
turnover transcripts reached 10% remaining expression or
better, only 16.7% (31/186) of the siRNAs that targeted high-
turnover mRNAs reached this high degree of silencing
(Figure 4B). Reduced targetability (25.2%, 100/396) was also
seen for transcripts with medium turnover rate. We observed a
similar trend using RT-qPCR and RT-PCR measurements from
87 si/shRNAs transfected into mouse embryonic stem cells
(Ren et al, 2006), confirming these results in another cell type
and using an independent set of turnover rate measurements
(Sharova et al, 2009) (Supplementary Figure 1).

We expect to see variability in efficacy among different
siRNAs directed at the same target, due to properties of the
siRNAs themselves. To account for this, we performed a gene
level analysis that included only targets for which four or more
siRNAs had been evaluated (n=50). Most of these extensively
evaluated genes (40/50) could be silenced to 20% residual
expression or lower by one or more siRNAs, and more than
half (28/50) to 10%. However, a significant correlation
between the two factors could still be observed (r;=0.29,
P<0.05) and this relationship appeared to grow stronger when
only considering genes for which five or six siRNAs had been
evaluated (n=9, rs=0.53, P<0.15, Figure 4C). Taken together,
these results show that high pre-existing mRNA turnover
rate is associated with reduced susceptibility to silencing by
siRNAs.

High-turnover transcripts are less influenced by
microRNAs overexpressed in HeLa and HepG2 cells

siRNAs typically induce strong silencing by cleavage of their
perfectly complementary targets, whereas microRNAs are
guided by imperfect complementarity to induce deadenylation
and subsequent degradation. On average, microRNAs have
a weaker variable effect on a larger set of transcripts, and due
to the limitations of microRNA target prediction not
all putative targets will be altered. Nevertheless, the mode
of action is similar enough to suggest that turnover rates could
also be important for microRNA targeting. We assembled
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Figure 4 Turnover rates influence siRNA efficacy. (A) Distribution of turnover rates for mRNAs in HeLa as determined using Act D chase. (B) RT-qPCR validation
data for 1778 siRNAs. The scatter plot shows the obtained repression, indicated by the log,-transformed mRNA expression ratio, as a function of the mRNA decay slope
f34. siRNAs were further grouped into three bins based on the half-life of their targets. The bars indicate the fraction of siRNAs in each bin that reached 10% remaining
expression (90% silencing, —3.32 logy) or better. The cumulative distribution function (CDF) of log,-fold changes is indicated for each group. (C) Similar analysis on a
per-gene basis. The plot only shows genes for which at least four siRNAs were evaluated. Source data is available for this figure at www.nature.com/msb.
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Figure5 High-turnover mRNAs are less influenced by microRNA overexpression. (A) Genes were divided into three bins based on their half-lives (t;,2). The plot shows
the cumulative distribution function (CDF) of relative mRNA expression levels after transfection of synthetic microRNAs. Z-normalized log,-transformed mRNA
expression ratios from 20 microRNA overexpression experiments were pooled. The bar graphs indicate, for each half-life bin, the fraction of predicted targets or non-
targets that were strongly repressed (z-score < —3). (B) Similar analysis based on a time series of miR-124 overexpression in HepG2 cells. Result shown is for 24 h
after transfection. Source data is available for this figure at www.nature.com/msb.

genome-wide mRNA expression data from 20 published
microRNA transfections in HeLa cells (Supplementary Table 2)
and defined predicted targets for these microRNAs. As expected,
in 17 out of the 20 data sets, predicted target mRNAs with
low turnover rates (as defined above) had stronger average
repression than their high-turnover counterparts (Supplemen-
tary Figure 2). To quantify the effect, we pooled z-transformed
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expression changes from all 20 experiments. We found that
predicted target mRNAs with short and medium half-life were
significantly less repressed after transfection than their long-
lived counterparts (P<8e—5 and P<0.03, respectively, two-
tailed KS-test, Figure 5A). Specifically, 10.2% (293/2874) of
long-lived targets versus 4.4% (41/942) of short-lived targets
were strongly (z-score < —3) repressed.
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To confirm these results in another cell type, we performed a
similar analysis using a microarray time series of miR-124
overexpression in HepG2 cells (Wang, 2006), which was also
the basis of a recent mRNA decay modeling study (Vohradsky
et al, 2010). These data were combined with published decay
rates for 3600 genes in the same cell line (Yang et al, 2003).
Predicted targets with high turnover rates were more strongly
affected, both in the early response after transfection (8 and
16h) and at the end of the time series (120 h, Supplementary
Figure 3). At 24h, none of the predicted targets with high-
turnover rates (t;,, <200 min) were repressed more than —1.5
log,, while 13% of predicted targets with t;,,>1000 min
reached this level (P<0.02, Figure 5B).

High-turnover transcripts are more resistant
to siRNA off-target effects

siRNAs are known to cause off-target effects that are mediated,
in part, by microRNA-like seed complementarity (Jackson
et al, 2006). Our results indicate that mRNA turnover rates
could also influence seed-mediated off-target regulation. To
investigate this, we analyzed changes in transcript levels after
transfection of seven different siRNAs, each with a unique
seed region (Jackson et al, 2006). Z-transformed expression
changes from all seven experiments were pooled, and putative
‘off-targets’ were identified by mapping of non-conserved seed
matches in 3’ UTRs. We found that low-turnover mRNAs (¢,
>1000 min) were more affected by seed-mediated off-target
silencing than high-turnover mRNAs (t;,, <200 min), with
twice as many long-lived seed-containing transcripts (3.8
versus 1.9%) being strongly (z-score <—3) repressed (Sup-
plementary Figure 4).

Relationship between mRNA turnover rate, mRNA
abundance and targetability

mRNA turnover rate is intimately coupled to mRNA abun-
dance, as the steady-state levels of mRNAs having the same
rate of transcription will be completely determined by their
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decay characteristics. We observed a modest but significant
correlation (rs=-—0.23, P<1e—20) between decay rate and
abundance, indicating that abundance could have a predictive
value on targetability (Supplementary Figure 5A). Indeed, we
observed a negative correlation between target mRNA level
and relative level after siRNA transfection (rs=-0.24,
P<1e—20, Supplementary Figure 5B). Other factors related
to mRNA turnover rate, such as UTR length and the number of
conserved target sites for highly expressed microRNAs, were
only weakly associated (rs=0.07 and 0.11, respectively). In
contrast to turnover rate, the association between abundance
and targetability became weaker when we considered the best
siRNA out of several tested against the same gene (rs=—0.20
and —0.10 for four or five to six siRNAs, respectively,
Supplementary Figure 5C). It should be noted that abundance
here refers to the level of the target transcript, as opposed to
previous work investigating the influence of the total
abundance of competing targets in the cell (Arvey et al, 2010).

To assess whether turnover rate and abundance contributed
independently to targetability, we combined the two using
multiple linear regression on the full set of siRNAs (n=1778).
Both were found to contribute significantly (Bpait.iite=0.16;
959% CI0.12-0.21, Bapundance=—0.23; 95% CI —0.28 to —0.19),
as we observed an increased correlation for the complete
model compared with abundance or turnover rate alone
(r¢=0.31, determined leave-one-out cross-validation). The
model was not further improved by incorporating UTR
length and conserved sites as additional features. Interestingly,
despite an overall correlation between abundance and
targetability, mRNAs with high turnover rate remained
difficult to repress regardless of their steady-state levels:
siRNAs were divided into three bins based on their target
mRNA levels (low, medium and high abundance; n=714, 806
and 258, respectively, Figure 6). For siRNAs targeting genes
with t,,,<200min, strong repression (<10% residual
expression) was seen in only 18.0, 16.3 and 20.0% of the
cases, respectively. In comparison, 28.3, 40.4 and 57.7% of
siRNAs targeting genes with t;,,>200min reached this level
(Figure 6).

< (D) ¢
0.020 - r > 90%. r_epre§sion
— b ® Remaining siRNAs
=%
ﬁ 0.015 | "o o |
© & n *
z 0010 “ Tt Fr . I
s e Toosoe . -
o° LAY oes w o %
o 0.005 | PEE g S % TR L
E ty2 =200 min
Q. 0 .
U) .
ﬁw f_"rr
s
~0.005 F .
13 14

Figure 6 High-turnover mRNAs are recalcitrant to repression, regardless of their steady-state levels. The color code indicates, for each individual siRNA, whether the
achieved silencing was > 90%. Multiple siRNAs targeting the same transcript are plotted in groups close to each other. siRNAs were divided into bins based on
abundance and turnover rate, and the pie charts indicate the fraction of SiRNA that reached 90% silencing or better in each bin. Source data is available for this figure at

www.nature.com/msb.
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In conclusion, mRNA abundance contributes additional
information, with high abundance being associated with
higher targetability. However, in accordance with our theore-
tical model, high turnover rate is associated with limited
targetability also in the case of abundant transcripts.

Discussion

Starting with a basic model of the mRNA life cycle, we
predicted that the pre-existing turnover rate of an mRNA
should influence its susceptibility to perturbation by small
RNA molecules. Assuming constant transcription rate, the
relative mRNA level change will depend on the relative and not
the absolute change in degradation rate. A simple experiment
showed that introduction of destabilizing elements to a
reporter transcript leads to attenuated siRNA silencing.
Although our interpretation of the model was based on
steady-state solutions and the reporter experiment represents
a dynamic situation, the outcome was close to the expectation
under a model where endogenous destabilizing factors and the
exogenous agent (the siRNA) contribute additively to decay
rate of the transcript.

We then present several independent lines of evidence for
the inverse relationship between mRNA decay rates and
susceptibility to small RNA perturbation on a genome-wide
scale. The analysis of qPCR-based siRNA validation data shows
that real-world high-turnover transcripts are more resistant to
siRNA silencing. The correlation between achieved silencing
and turnover rate is substantially stronger, if we only consider
the most effective siRNA designed against a particular gene.
Given that siRNA molecules cannot be infinitely efficient and
that their concentrations during delivery must be kept within
certain limits, this suggests that that as other aspects of siRNA
targeting improve, we approach an upper bound to the level of
silencing that can be achieved for any given turnover rate. The
limitations may thus not be in the design of the molecule, but
rather inherent to the target as a whole. This should reduce
expectations and clarify observed inconsistencies between
different levels of repression achieved. Our observations are
consistent with a recent report, suggesting that unknown
target-inherent factors may limit siRNA efficacy for certain
genes (Krueger et al, 2007). These included two kinases, DGKE
and ARHGAP27, which could not be efficiently silenced in
HeLa cells, despite evaluation of 18 unique siRNAs. Interest-
ingly, t;,, for these genes is short (309 and 511 min,
respectively), probably explaining the observed low efficacy.
Differences in mRNA half-life may also explain why reporter
vectors, containing cloned target sites, tend to be more
efficiently silenced than the corresponding endogenous
targets. Still, our analysis also shows that low turnover rate
does not guarantee strong repression, and continued search for
additional transcript-inherent properties that modulate RNAi
susceptibility is therefore motivated.

We additionally observed that high transcript abundance
was associated with high susceptibility to repression by
siRNAs. This is intriguing as two earlier studies failed to show
such a relationship (Krueger et al, 2007; Guo et al, 2010).
Although we observed a similar effect for microRNAs (data not
shown), it is in this case possible that fold changes of low-
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abundance transcripts could be compressed due to the limited
signal-to-noise ratio of microarrays (Evans et al, 2003). A
related technical explanation cannot be excluded for our
siRNA analysis, but it seems less likely as it was based on
RT-qPCR measurements, which have considerable dynamic
range (Heid et al, 1996). Interestingly, the most abundant
transcripts were usually associated with low turnover rates,
although a technical artifact cannot be excluded (e.g., flattened
decay curve due to saturation on the microarray). Importantly,
however, abundant transcripts associated with high-turnover
rates still remained difficult to repress, and multiple regression
was used to show that the two factors contributed independent
information about targetability. We also noted that the
correlation between abundance and targetability was reduced
when only considering the best out of four to six siRNAs
designed against the same gene. In conclusion, abundance
contributes additional information about targetability. How-
ever, whereas a simple model can explain the relationship
between decay rate and targetability, the mechanism is less
clear in the case of target abundance, and our results call for
further investigation.

Modified siRNAs are being developed for therapeutic use,
for instance in lowering LDL-cholesterol by targeting of APOB
and PCSK9 (Zimmermann et al, 2006; Frank-Kamenetsky et al,
2008). On the whole, mRNAs display a wide range of stabilities
in any given physiological condition, and different functional
groups tend to have distinct, conserved half-life profiles (Yang
et al, 2003). It follows therefore, that some groups of genes are
more likely to be targetable by siRNAs than others. For
instance, metabolic related genes (with low-turnover mRNAs)
may be more targetable than apoptosis-related genes (Cheadle
et al, 2005) and transcription factors (Yang et al, 2003), which
tend to have shorter half-lives. For future choices of
therapeutic targets in pathways of interest, mRNA half-life
could be one factor to consider, as it may be beneficial to avoid
inherently recalcitrant targets and instead focus of long-lived
transcripts that are more likely to respond to perturbation.
This may also allow the therapeutic index to be increased.
We also show that siRNA off-target effects, mediated by seed
complementarity, are more frequently seen on transcripts
with low-turnover rates, thus suggesting that selecting seed
sequences that preferably match high-turnover transcripts
may reduce these effects.

microRNA target prediction typically involves sequence
analysis to identify putative target sites, and the predicted
strength of the interaction is judged from properties of the site
or its immediate sequence context (John et al, 2004; Grun et al,
2005; Hammell et al, 2008; Friedman et al, 2009). When we
analyzed genome-wide transcript level changes after micro-
RNA overexpression, we found a relationship between the
turnover rates of predicted target mRNAs and the extent to
which they were repressed. The chance of observing strong
repression was reduced by ~50% for short-lived predicted
targets compared with long-lived predicted targets. Recent
work has suggested a move away from the binary distinction
between mRNAs as ‘targets’ or ‘non-targets’, toward a more
context-dependent and quantitative approach (Seitz, 2009;
Arvey et al, 2010; Poliseno et al, 2010). Our work supports this
view, in which an mRNA in one cell type may not be targetable
by a microRNA or siRNA to the same extent in another cell
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type, depending on the turnover rate of the mRNA in that
context. This suggests that future microRNA target prediction
algorithms should benefit from the use of system-level
properties such as pre-existing decay rates. We estimate that
~11% of all genes expressed in HeLa cells have half-lives
below 200 min, a figure that is likely translatable to other cells
types, and specifically show that this category of genes is
difficult to perturb using RNAi. Although this represents only a
small fraction of the transcriptome, it still means that over
2000 protein-coding genes may be inherently more difficult to
repress due to their high turnover rates.

In summary, mRNA turnover rates have an important
influence on the changes exerted by small RNAs on mRNA
levels. It can be assumed that mRNA half-lives will influ-
ence how mRNAs are differentially perturbed whenever small
RNA levels change in the cell, not only after transfection
but also during differentiation, pathogenesis and normal cell

physiology.

Materials and methods

A basic model of mRNA turnover

We wanted to theoretically clarify the relationship between the
pre-existing turnover rate of an mRNA, and its expected susceptibility
to perturbation by a small RNA molecule. To do this, we assumed a
basic model of the mRNA life cycle, in which the rate of transcription is
constant and the rate of degradation is described by first-order kinetics.
In a generalized form of this model, the derivative of the abundance of
an mRNA can be described as

where o is the rate of transcription and f(u, M) is the combined
contributions of endogenous factors (i) and an externally introduced
factor (M) to the (specific) decay rate. If we assume additivity and
independence, f would be simply the sum of the two factors. However,
there are specific known cases of siRNAs and microRNAs acting in
synergy (Vella et al, 2004; Grimson et al, 2007; Saetrom et al, 2007).
It also cannot be excluded that the accumulated action of a multitude
of heterogeneous degrading factors on an mRNA would, on average,
eventually exhibit an antagonistic effect, because of, e.g., steric
competition for access to the mRNA or flux limitations in the molecular
components involved in degradation. To explore synergism and
antagonism, we defined f as:

f(u, M, q) = max(p + M + pMg, 0)

By modulating g, this function can be tuned to describe additive,
synergistic, antagonistic and even suppressive interaction, where the
addition of a second factor releases the effect of the first (Bollenbach
et al, 2009) (Supplementary Figure S5). Steady-state equilibrium
(y-=0) is reached when

Yo :a/f(uv M, q) (1)

The relative abundance after introduction of an external destabilizing
agent M can be therefore be described as

_a/fm, M, q)  f(y, 0, q)

= = 2
3/f(h. 0. @)~ fu M. q) @

or, for the special case of additivity,
R_YW+M)  u 3)

a/m p+M

As the rate of transcription is eliminated, it does not influence
susceptibility to perturbation under this basic model. The endogenous
decay rate u must be larger than zero, or the mRNA would accumulate
indefinitely in the unperturbed cell.

We now explored how the relative abundance after perturbation,
R, varies with p, for simplicity using a fixed value for the exogenous
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component (M=1) (Figure 2A). As expected from Equation (3), the
size of the perturbation becomes less pronounced as p (the pre-existing
endogenous degradation rate) grows large relative to M (the externally
introduced perturbation) under a purely additive model. An antagonistic
behavior will make this relationship stronger. Increasing synergism, on
the other hand, will make transcripts more equally targetable, regardless
of their endogenous decay rate.

Luciferase assays

A destabilizing (AUUU), multimer element (ARE) (Zubiaga et al, 1995)
was cloned into the 3’ UTR of the pEZX-MTO01 SV40-firefly luciferase
reporter vector (Genecopoeia). Three mutated variants of this
construct were generated, where 2, 4 or 6 of the adenosines were
replaced by guanosines, the last representing a completely inactivated
ARE. In addition, all constructs contained an identical 60 bp fragment
from the mouse Flil1 3’ UTR (Larsson et al, 2009). Cloned sequences are
listed in Supplementary Table 3 (mutations are indicated in bold).
HEK293 cells, 25000 per well, were seeded onto 24-well plates and
cultured overnight in DMEM (10% FCS) without antibiotics. Co-
transfections were performed using Lipofectamine 2000 (Invitrogen),
according to the manufacturers instructions, and using 75ng of
plasmid DNA and 10 pmol of a custom siRNA directed against the
coding region of the luciferase gene (siLuc) or a negative control siRNA
(AM4636, Applied Biosystems). Firefly luciferase activity was assayed
using the Dual-Luciferase Reporter System (Promega) after 52h.
Signals were normalized to the activity of the CMV-Renilla luciferase
gene, which is built into pEZX-MTO01.

Least-squares fitting

Based on Equation (1), and assuming turnover rates and translation
efficacies to be constant, pre-existing turnover rates (u) of the four
constructs were estimated as 1/y, where y represents the reporter
signal (0.47, 0.51, 0.75 and 1.00 on a standardized scale). We
minimized the fit (sum of squared errors) of Equation (2) to the
observed relative levels in Figure 3C, with the exogenous component
M and the interaction coefficient g being the two unknown parameters.
Due to the low dimensionality, this was done using exhaustive search
of the solution space at high resolution. A bootstrapping strategy was
applied to determine whether g was significantly different from 0. The
observed luciferase data was resampled 1000 times with replacement
and with the same sample size as the original data, and least-squares
fitting of the model was performed on each sample. A 95% confidence
interval was estimated by determining the 2.5th and 97.5th percentiles.

Determination of mRNA half-lives in HeLa cells

mRNA half-lives (¢;,,) were determined by reanalysis of a 120-min,
five time point, microarray (Affymetrix U133v2) time series of
HeLa cells that were transcriptionally inhibited using Act D (Iwamoto
et al, 2008). The arrays were annotated using gene-probeset mappings
from the ENSEMBL database (Birney et al, 2004). Probesets mapping
to more than one ENSEMBL gene were removed and probesets
associated with the same gene were averaged, resulting in a final
dataset covering 17849 unique ENSEMBL genes. Log,-transformed
intensity values for each gene were fit to a linear curve y=0t+ o,
corresponding to an exponential decay model, where B is the initial
intensity when Act D is added and B, is a decay slope related to half-life
(t12=—1/B1). Genes with a poor fit to this model (sum-of-squared
errors >0.5) and genes with low expression in HeLa cells (signal
intensity <100) were removed, eventually resulting in B; coefficients
being reliably determined for 8211 genes. Intensity values before Act D
treatment (time point 0) were used as measurements of mRNA
abundances in HeLa.

siRNA gPCR validation data

Overall, 4481 RT-qPCR measurements in HeLa (SYBR green or
Tagman) for 2622 human Silencer™ siRNAs covering 1105 unique
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genes were obtained from Applied Biosystems (www.appliedbiosystems.
com). Replicate measurements (log, scale) were averaged to produce one
measure per unique siRNA. Half-life data, as described above, were
available for 735 of these genes.

Assembly of microarray experiments from public
repositories

We assembled microarray data from 20 microRNA-mimic overexpres-
sion experiments (Lim et al, 2005; Grimson et al, 2007; He et al, 2007;
Linsley et al, 2007; Selbach et al, 2008; Gennarino et al, 2009)
(Supplementary Table 2) and 7 siRNA overexpression experiments
(Jackson et al, 2006) (MAPK14-1...7), all performed in HeLa cells. The
20 microRNA experiments were selected to represent a non-redundant
set of microRNA families. In cases where we could identify more than
one data set for the same microRNA family, the one showing the
strongest regulation (as determined using the two-sample KS-test) of
predicted targets versus remaining genes was selected. Redundant
probes were averaged. Predicted targets were identified by mapping of
microRNA and siRNA seed regions as described previously (Khan et al,
2009), requiring evolutionary conservation across four mammalian
species for microRNAs and requiring presence of two non-conserved
seed matches for siRNAs. Conserved sites for microRNAs with high
endogenous expression was identified as described previously (Khan
et al, 2009), in brief based on the 10 most abundant microRNA families
in HelLa.

Multiple regression

We applied multiple linear regression, using least-squares minimiza-
tion, as implemented in the Matlab Statistics Toolbox (Mathworks
Inc.). The two predictor variables (turnover rate and mRNA
abundance), as well as the response variable (log, relative target
mRNA level after siRNA transfection), were standardized by adjusting
their means and standard deviations to 1. We employed leave-one-out
cross-validation (n=1778) to assess whether the combined model had
higher predictive power (as determined by Spearman’s rank correla-
tion rs) than either variable alone.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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