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Expression of early growth response protein 1
in vasopressin neurones of the rat anterior olfactory
nucleus following social odour exposure
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The anterior olfactory nucleus (AON), a component of the main olfactory system, is a cortical
region that processes olfactory information and acts as a relay between the main olfactory
bulbs and higher brain regions such as the piriform cortex. Utilizing a transgenic rat in which
an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones
(eGFP-vasopressin), we have discovered a population of vasopressin neurones in the AON.
These vasopressin neurones co-express vasopressin V1 receptors. They also co-express GABA
and calbinin-D28k indicating that they are neurochemically different from the newly described
vasopressin neurons in the main olfactory bulb. We utilized the immediate early gene product,
early growth response protein 1 (Egr-1), to examine the functional role of these vasopressin
neurons in processing social and non-social odours in the AON. Exposure of adult rats to a
conspecific juvenile or a heterospecific predator odour leads to increases in Egr-1 expression in
the AON in a subregion specific manner. However, only exposure to a juvenile increases Egr-1
expression in AON vasopressin neurons. These data suggest that vasopressin neurones in the
AON may be selectively involved in the coding of social odour information.
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Abbreviations AON, anterior olfactory nucleus; AONI, pars lateralis; AONd, pars dorsalis; AONm, pars medialis;
AONe, pars externa; BrDU, bromodeoxyuridine; eGFP, enhanced green fluorescent protein; Egr-1, early growth response
protein 1.
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Introduction

Complex social behaviour in vertebrates, from sexual
behaviour to the maintenance of social hierarchies,
involves individual recognition. In rodents, recognition
is primarily facilitated by olfactory information (Brennan
& Kendrick, 2006; Sanchez-Andrade & Kendrick, 2009).
Vasopressin modulates social recognition at the level of
the olfactory bulbs (Dluzen et al. 1998a; Tobin et al. 2010)
and brain regions such as the lateral septum (Dantzer
et al. 1988; Bielsky et al. 2005), and, in turn, regulates
social behaviours such as aggression (Ferris & Potegal,
1988; Blanchard et al. 2005), pair-bonding (Winslow
et al. 1993), and parental behaviour (Parker & Lee, 2001;
Bosch et al. 2010). Recent stuhave also linked vasopressin
signalling to human social behaviour (Coccaro et al.
1998; Thompson et al. 2004; Bachner-Melman et al. 2005;
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Thompson et al. 2006; Knafo et al. 2008; Walum et al.
2008; Meyer-Lindenberg et al. 2009), as well as neuro-
logical disorders such as autism (Kim et al. 2002; Wassink
et al. 2004; Yirmiya et al. 2006; Meyer-Lindenberg et al.
2009).

The AON, an olfactory cortex located just caudal to
the olfactory bulbs, acts as a relay between the main
olfactory bulbs and higher brain regions such as the
piriform cortex, and between the left and right AONs
(Haberly & Price, 1978a,b; Mohedano-Moriano et al.
2005; Illig & Eudy, 2009). The AON is segregated into
five different subdivisions, each with topographically
relevant connections and differential expression of neuro-
chemicals and receptors (reviewed in Brunjes et al. 2005).
The behavioural relevance of the AON has been only
rudimentarily explored. The dorsal, lateral and post-
eroventral subdivisions of the rat AON (AONd, AONI,
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and AONpv respectively) all express the protein products
of immediate early genes following exposure to predator
odour (Staples et al. 2005, 20084,b), with the AONI
potentially playing a role in olfactory recognition (Staples
et al. 2008a). Immediate early gene expression in the
AON also increases in anoestrous female ewes in the pre-
sence of a ram or ram’s fleece (Gelez & Fabre-Nys, 2006),
suggesting that this region is also involved in the processing
of social odour information in other species. Vasopressin
V1 receptor binding (Vallet et al. 1995; Schorscher-Petcu
et al. 2009) and Vla receptor mRNA expression (Szot
et al. 1994) occur in the anterior olfactory nucleus (AON),
suggesting that vasopressin signalling in this area may also
be important in the processing of social stimuli.

We have discovered a new population of vaso-
pressin neurones distributed across multiple sub-
divisions of the AON by utilizing a transgenic rat
line in which an enhanced green fluorescent protein
reporter gene is expressed specifically in vasopressin
cells (eGFP-vasopressin) (Ueta et al. 2005). We have
characterised these neurons based on numerous other
chemical markers. As the rostral migratory stream, by
which new neurones migrate into the olfactory bulb, lies
within the AON, we have also utilized bromodeoxyuridine
(BrDU) to determine if these vasopressin neurones, as well
as those previously identified in the olfactory bulb, are
continually produced in the adult rat. Finally, in view of
the established role of vasopressin in social recognition,
we have quantified Egr-1 expression in these neurones
in adult rats following exposure to social and non-social
odours.

Methods
Experimental animals

All procedures were carried out in accordance with
guidelines defined by the UK Home Office and all
efforts were made to minimize the numbers of rats used
(Drummond, 2009). Adult wild-type or homozygous
eGFP-vasopressin Sprague-Dawley rats were housed in
same sex groups prior to experimental manipulation.

Tissue preparation

Rats were deeply anaesthetised with pentobarbital (1-2 ml
1.P.) and transcardially perfused with 200 ml of 0.9% saline
and heparin (5000 Uml™!) followed by 300 ml of 4%
paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4)
or 4% paraformaldehyde + 0.2% glutaraldehyde in 0.1 M
PB (only for tissue treated with either GABA or glutamate
antibodies). Brains were removed and cryoprotected at
4°C in 4% paraformaldehyde and 15% sucrose in 0.1 M
PB for 24 h followed by incubation in 30% sucrose in
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0.1 M PB for 48 h. Brains were then frozen on dry ice and
stored at —70°C. Sections were cut with a freezing micro-
tome at 40 um (for immunofluorescence) or 52 um (for
immunohistochemistry).

Immunofluorescence - characterization
of vasopressin neurones in AON

Immunohistochemical protocols were based on
Tobin et al. (2010). Horizontal sections from six
eGFP-vasopressin rats were distributed so that
representative sections (dorsal, medial and ventral)
from at least three rats were contained in each well
exposed to each combination of primary antibodies.
Free-floating sections to be incubated with biotinylated
secondaries were placed in 0.001% avidin (Sigma-Aldrich,
UK) in 0.1 M PB for 30 min, rinsed in 0.1 M PB, then
placed in 0.001% biotin (Sigma-Aldrich) in 0.1M PB
for 30 min. All sections were then washed in 0.1Mm
PB and incubated for 60 min at room temperature
in a blocking buffer consisting of 10% normal serum
(matching host animal of secondary antibody) +
0.2% Triton X-100 in 0.1 M PB (PB-T). Sections were
then incubated in either a rabbit anti-eGFP polyclonal
antibody (1:1000; AB3080, Millipore, Hertfordshire,
UK) or mouse anti-eGFP monoclonal antibody (1:1000;
MAB3580 Miillipore, Hertfordshire, UK) and one
other primary antibody (mouse anti-calbindin D-28K:
1:500, 300, Swant, Bellinzona, Switzerland; mouse
anti-calretinin: 1:500, 6B3, Swant; mouse anti-GABA:
1:500, 3D5, Swant; mouse anti-glutamate: 1:5000, 2D7,
Swant; mouse anti-vasopressin: 1:1000, PS41, Prof.
H. Gainer, NIH, Bethesda, MD; goat anti-vasopressin
receptor Vl1a: 1:50, Sc-1896, Santa Cruz Biotechnology,
Heidelberg, Germany; rabbit anti-vasopressin receptor
V1b: 1:500, 905-750-100, Cambridge Bioscience Ltd,
Cambridge, UK; mouse anti-oxytocin 1:1000, PS38, Prof.
H. Gainer; rabbit anti-oxytocin: 1:100, PC226L, Merk
Chemicals Ltd, Nottingham, UK) first for 60 min at room
temperature then 48 h at 4°C. After washing in 0.1 M PB,
sections were incubated for 60 min at room temperature
with an Alexa 488 labelled secondary antibody (1:500,
Invitrogen Ltd, Paisley, UK) to label eGFP-vasopressin
neurones and either a biotylated goat anti-rabbit (1:500,
BA-1000), horse anti-mouse (1:500, BA-2001), or horse
anti-goat (1:500, BA-9500, Vector Laboratories Ltd,
Peterborough, UK), or Alexa 568 labelled secondary
antibody (1:500, Invitrogen Ltd, Paisley, UK) to label
the other antigen of interest. Sections incubated with
the biotinylated secondary antibody were washed and
incubated for 60 min in Alexa 568—streptavidin conjugate
(1:500; S11226, Invitrogen). All primary and secondary
antibodies were diluted in blocking buffer. Sections
were mounted using a Mowiol 4-88 based (Calbiochem,
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USA) mounting medium, supplemented with 2.5%
DABCO (Sigma-Aldrich). eGFP immunoreactivity was
not detectable in wild-type rats (data not shown) or when
the primary antibody was omitted. Information regarding
antibody specificity was provided by suppliers, but in
addition we have tested the Vla and V1b antibodies in
pituitary sections and, in agreement with previous studies,
found no Vla, but V1b immunoreactivity in a subset of
anterior pituitary cells (data not shown). In addition,
we tested a rabbit polyclonal antibody to vasopressin
(PC234L, Calbiochem, Merck Chemicals) and found the
same pattern of immunoreactivity, i.e. immunoreactivity
co-localised with PS41 and eGFP. Fluorescence signals
were acquired using a Zeiss LSM510 Axiovert confocal
laser scanning microscope equipped with argon—krypton
lasers. Signals were acquired at 1024 x 1024 pixels, using
a Zeiss Plan NeoFLUAR 1.4 NA x63 oil-immersion
objective. Emissions for Alexa 488 and Alexa 568 were
obtained consecutively to avoid channel cross-talk.
Images were captured with Zeiss Laser Scanning Systems
LSM510 software and cropped and labelled in Adobe
Photoshop or Illustrator. The pars externa and pars
principalis (dorsal and lateral sub-regions) from at least
three sections per primary antibody combination were
examined to quantify numbers of eGFP-vasopressin cells
positive or negative for calbindin-D-28K, calretinin,
GABA, glutamate, vasopressin receptors Vla and Vlb,
vasopressin or oxytocin.

Immunohistochemistry — characterization
of vasopressin neurones in AON

Sections from wild-type adult female rats were rinsed
in 0.1m PB, incubated in 1% BSA + 3% normal
horse serum (NHS) in PB-T for 30 min, incubated in
a mouse anti-vasopressin primary antibody (1:1000 in
0.1M PB-T + 3% NHS + 1% bovine serum albumin
(BSA); PS41, donated by Prof. H. Gainer) for 60 min
at room temperature, then at 4°C for 36 h. Following
PB-T washes, endogenous peroxidase was blocked with
0.3% H,0, in 0.1 M PB for 20 min, then sections were
washed in PB before being incubated in a biotinylated
horse anti-mouse secondary antibody for 60 min (1:500
in 0.1 M PB-T + 1% BSA; BA-9500, Vector Laboratories).
Sections were then washed in 0.1 M PB, incubated in
0.05M acetate buffer for 10 min, incubated with R.T.U.
horseradish-peroxidase-strepavidin for 30 min (Vector
Laboratories), rinsed in 0.05M acetate buffer, and
visualized with diaminobenzidine (DAB) with nickel
sulphate (adapted from Shu et al. 1988). The visualization
reaction was terminated with 0.05M acetate buffer and
repeated washes of 0.1 M PB. Sections were then mounted,
dehydrated through a graded series of ethanols, counter-
stained with cresyl violet (1.25 g cresyl violet acetate and
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0.75ml glacial acetic acid per 250 ml of dH20), and
coverslipped.

BrDU injections

Three groups of eGFP-vasopressin rats (1= 7 per group)
received daily injections of bromodeoxyuridine (BrdU; L.p.,
50 mgkg™'), a marker of cell division. Group 1 received
BrdU for 4 days and were killed 14 days later, Group 2
received BrdU for 4 days and were killed 30 days later,
and Group 3 received BrdU for 6 days and were killed
70 days later. All animals were transcardially perfused
and brains were processed as described under Tissue pre-
paration above.

Immunofluorescence - BrDU

The BrDU labelling protocol was based on Winner et al.
(2002). Briefly, sections were incubated in 0.2% H,0O, in
Tris-buffered saline (TBS: 0.15 M NaCl, 0.1 m Tris-HCI, pH
7.5) for 30 min, then incubated in 50% formamide/2x
SSC (SSC: 0.3 M NaCl, 0.03M sodium citrate) at 65°C
for 2 h, and washed in 2x SSC for 5 min. Sections were
then incubated in 2N HCI at 37°C for 30 min followed
by a 2 x 5 min neutralisation wash in 0.1 M borate buffer
(pH 8.5). Sections were then washed in TBS + 0.25%
Triton X-100 (TBS-T) 4+ 5% NHS for 30 min, followed
by incubation with a mouse anti-BrdU monoclonal anti-
body (1:100 in TBS-T + 5% NHS; no. 11170376001,
Roche, Mannheim, Germany) for 70 h at 4°C. Sections
were then washed in TBS 3 x 5min and incubated in
a horse anti-mouse secondary conjugated to Texas Red
(1:200; TI-2000, Vector Laboratories) in TBS-T with 5%
NHS for 2h at room temperature. Sections were then
incubated in 0.1M TBS-T + 5% normal goat serum
(NGS) for 30 min, followed by a rabbit anti-eGFP poly-
clonal antibody (1:1000; AB3080, Chemicon, USA) + 5%
NGS for 70 h at 4°C. Sections were then rinsed in 0.1 M
TBS-T and incubated in a goat anti-rabbit secondary anti-
body conjugated to fluorescein (1:200; FI-2000, Vector
Laboratories) in 0.1 M TBS-T with 5% NGS for 2 h at room
temperature. Sections were mounted with ProLong Gold
Antifade Reagent (Invitrogen, USA), and coverslipped.

Three to four brain sections for each animal were
examined for BrDU/ eGFP-vasopressin co-localization on
a Leica DMR light microscope equipped with fluorescence
(Leica Microsystems, Wetzlar, Germany) under x 20, x40
and x100 objectives. Multiple images were captured in
areas of the MOB and AON for each section where
both signals were present in the same field of view. In
addition, areas of interest were examined on a Leica
TCS-NT confocal microscope (Leica Microsystems) under
both x40 and x 63 objectives, Z-stacks were acquired, red
and green channels were obtained serially, and orthogonal
photomicrographs were examined.
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Odour stimulus test

Social odour tests were modified from Engelmann
et al. (1995). Adult male (n=14) and female (n= 14)
rats were moved to single experimental cages 2h
prior to testing. Rats were presented with one of the
following: (1) a novel juvenile rat for 4 min (n=10),
(2) a combination of non-social odours (mixed 1:1 in
diethyl phthalate, 25 ul total volume, Sigma-Aldrich):
(R)-(-)-carvone (Merck, Ismaning, Germany), iso-
amylacetate, allylcaproate, anethole (all Sigma-Aldrich)
on a cotton bud placed into an air stream produced by
a silent computer cooling fan and directed to the head of
the animal for 4 min (n = 10), or (3) no olfactory stimulus
(cage moved as in other trials, but no stimulus provided
— ie. cage disturbance, n=28). It has been previously
shown that such non-social odours stimulate c-fos protein
synthesis in several brain areas (Richter et al. 2005). Rats
were transcardially perfused 70 min after the initiation of
the test and tissue was processed for eGFP-vasopressin +
Egr-1 immunohistochemistry as outlined below.

Predator odour test

Predator odour tests were modified from Staples et al.
(2008b). Adult male (n=14) and female (n=14) rats
were moved to single experimental cages 12h prior to
testing. Rats were presented with a 20 cm section of
cat collar: (1) worn by a male domestic outdoor cat
for 28 days (n=10), or (2) impregnated with 30 ul of
trimethylthiazoline (TMT; PheroTech Inc., Delta, BC,
Canada), a constituent of fox faeces (n=28), or (3)
impregnated with a combination of non-social odours
(mixed 1:100 in diethyl phthalate, otherwise as described
above) for 60 min (n = 10). Rats had access to the collar
piece during the course of the experiment. Rats were trans-
cardially perfused 70 min after the initiation of the test
and tissue was processed for eGFP-vasopressin + Egr-1
immunohistochemistry as outlined below.

Immunohistochemistry — eGFP-vasopressin + Egr-1

Immunohistochemical protocols were based on Meddle
et al. (2007). Sections were rinsed in 0.1 M PB with and
without 0.2% Triton X-100 (PB-T), and incubated in 0.3%
H,0, in 0.1 M PB to block endogenous peroxidase activity.
Sections were then blocked in 3% NGS in 0.1 m PBT for
30 min and incubated in a rabbit anti-Egr-1 polyclonal
antibody (1:1000; SC-189 Santa Cruz Biotechnology,
Santa Cruz, CA, USA) in 0.1M PB-T + 3% NGS for
48 h at 4°C. This antibody recognizes the C-terminus of
human Egr-1, has been utilized successfully in rats, and
immunoreactivity in a Western blot is completely absent
in A-431 cells treated with a specific an Egr-1 siRNA
(SC-189 product datasheet; Santa Cruz Biotechnology).
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Egr-1 is a relatively ubiquitous zinc finger transcription
factor involved in recognition memory and used as a
marker of neuronal activation (Bozon et al. 2003; Knapska
& Kaczmarek, 2004). Sections were then rinsed in 0.1 M
PB-T and incubated in a goat anti-rabbit secondary anti-
body (1:500 in 0.1 M PB-T + 3% NGS, BA-1000, Vector
Laboratories) for 1h at room temperature. Egr-1 was
visualized using a Vectastain Elite ABC Kit (PK-6101;
Vector Laboratories), followed by a 5 min rinse in 0.1 M
sodium acetate buffer, and incubation in 0.025% DAB
with nickel sulphate, ammonium chloride and 0.03%
H,0, in 0.1 M sodium acetate. Sections were then washed
in 0.1 M PB-T, blocked in 3% NHS in 0.1 M PB-T and
then incubated in a mouse anti-eGFP monoclonal anti-
body (1:1000; MAB3580, Millipore, Billerica, MA, USA)
for 48h at 4°C. Sections were then washed in 0.1 M
PB-T and incubated in a horse anti-mouse secondary
antibody (1:500 in 0.1m PB-T + 3% NHS, BA-2001,
Vector Laboratories) for 1 h at room temperature. eGFP
was visualized with a Vectastain Elite ABC Kit (PK-6102;
Vector Laboratories), followed by incubation in 0.025%
DABwith 0.03% H,0O, in 0.1 M PB. Sections were mounted
on gelatine-subbed slides, dehydrated in a graded ethanol
series, and coverslipped using DPX (Sigma-Aldrich). eGFP
immunoreactivity was not detectable in wild-type rats
(data not shown) or when the primary antibody was
omitted.

The AON and its subdivisions were identified on a
Leica DMR light microscope under a x5 objective using
multiple rodent brain atlases (Konig & Klippel, 1963;
Paxinos & Watson, 1998) and Brunjes et al. (2005).
As the subdivisions of the AON change shape across
the sagittal plane, and because the number of vaso-
pressin neurons decreases medially within each sub-
division, all cell counts were distributed evenly across
the sagittal extent of each subdivision (Fig.3A-F). It
was not possible to delineate the pars ventroposterior
(AONpv) and pars lateralis (AONI) in the sagittal
plane, so these regions are collectively referred to as
AONIL Egr-1-immunoreactivity was restricted to cell
nuclei (black staining), while eGFP-vasopressin immuno-
reactivity was visualised as brown cytosolic staining
(Fig.3G and H). Total Egr-1 immunoreactivity was
assessed in photos acquired on a Leica DMR light
microscope under a x20 objective, and captured with
a Leica DFC490 digital camera and Leica Application
Suite version 2.8.1 software. Areas within each photo-
graph were sampled for total Egr-1 immunoreactivity
utilizing sampling rectangles covering a majority of each
respective AON subdivision, with the size of each sampling
rectangle consistent in size and placement for each sub-
division. Brown eGFP staining was filtered out utilizing
the Threshold Colour plugin (G. Landini; available from
http://www.dentistry.bham.ac.uk/landinig/software) for
Image] (National Institutes of Health, Bethesda, MD,
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USA). Photos were then transformed into black and
white images and the total area covered by black (i.e.
Egr-1 immunoreactivity) was calculated utilizing the
same programs. Ratios of the number cells immuno-
reactive for both Egr-1 and eGFP-vasopressin to the total
number of cells immunoreactive for eGFP-vasopressin
were calculated, and are represented as activated:total in all
graphs. Cell counts were conducted under a x20 objective
on a Leica DMR light microscope by one observer who
was blind to treatment. Images were captured using a
Leica DFC490 digital camera and Leica Application Suite
version 2.8.1 software and were cropped and labelled in
Adobe Photoshop or Illustrator. Overview photos of the
AON (Fig. 3A—C) were stitched together from multiple
adjoining images using PTGui Pro version 8.22 (New
House Internet Services B.V., The Netherlands).

Total vasopressin cell counts in the AON

The total number of vasopressin cells in the AON was
estimated according to the following methodology. The
number of eGFP-vasopressin cells were counted in a sub-
set of 52 um sections across animals in the predator odour
study. Sections were divided into sagittal regions indicative
of the lateral to medial aspects of this brain area. The
average number of eGFP-vasopressin cells in each sagittal
region was multiplied by the total number of sections
typical for that region. Cell counts were Abercrombie
corrected to increase precision (Guillery, 2002).

Statistical analysis

Data that were normally distributed with homogeneous
variance across treatment groups are represented with
mean =+ standard error of the mean measurements.
Data were natural log transformed (ln transform) or
ranked to achieve normality or homogeneous variance
as necessary. Total Egr-1 immunoreactivity (area fraction)
and ratios of the number of Egr-1 immunoreactive cells
and eGFP-vasopressin immunoreactive cells to the total
number of eGFP-vasopressin immunoreactive cells were
compared with two factor ANOVA, with treatment and sex
as factors. For the odour stimulus test, relevant post hoc
pairwise Holm-Sidak comparisons were conducted. As we
demonstrated that the non-social odour cocktail does not
increase the ratio of Egr-1 expressing eGFP-vasopressin
to total eGFP-vasopressin cells in any subdivision, for
the predator odour test, relevant post hoc Holm-Sidak
comparisons were made against the non-social odour
control only. As neither an effect of sex nor a treatment
X sex interaction was detected in any analysis, males and
females were combined in all figures. Sex differences in
the number of eGFP-vasopressin neurones were assessed
with two factor ANOVA, with treatment and sex as
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factors. Comparisons of cells showing co-expression of
neurochemical markers were made by comparing the
percentages of immunopositive cells in each region
counted in at least three sections from three rats. Statistical
comparison was made using Kruskal-Wallis one-way
ANOVA on ranks. Data reported in the text represent the
overall percentage in each region for all sections and cell
numbers counted.

Results

Characterization of eGFP-vasopressin neurones
in the AON

There are approximately 2240 & 104 vasopressin cells in
the pars externa and 3780 = 142 cells in the pars principalis
of each AON; the latter excludes some vasopressin cells that
appear continuous with those within the pars principalis,
but would normally be considered part of the piriform

vasopressin

overlay

Figure 1. Vasopressin neurones in the AON

Vasopressin neurones are found in all AON subdivisions in wild-type
Sprague-Dawley rats (A; scale bar = 100 um). eGFP-immunoreactivity
mirrors vasopressin immunoreactivity in eGFP-vasopressin transgenic
rats (B-D — AONI). BrDU labelling in the AON was typically found
around the rostral migratory tract, while eGFP-vasopressin cells in the
pars principalis were most often distributed in the superficial aspect of
the deep cellular layer (Layer Il). Vasopressin neurones were not
co-localised with BrDU in the olfactory bulb (£ and F — glomerular layer
of the MOB; scale bar = 100 um and 20 um, respectively; F — arrow
shows location of orthogonal view in the boxed inset) or in any region
of the AON (G - lateral AONI; scale bar = 20 um), suggesting that
vasopressin cells in the AON are not simply newly born neurones.
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cortex. In all areas of the AON, every cell that was
immunoreactive for eGFP was also immunoreactive for
vasopressin in eGFP-vasopressin rats (Fig. 1B—D, AONe:
n =352 cells examined; AONd: n = 454; AONI: n=482;
AONe: n=352; AONd: n=454; AONI: n=482), and
the distribution and number of vasopressin immuno-
reactive cells in wild-type rats matches that seen in
eGFP-vasopressin transgenics (Fig. 1A). eGFP-vasopressin
cells are located in both the pars externa (AONe) and
all subdivisions of the pars principalis, primarily in
the superficial half of the deep cellular zone (Figs 1A,
3A-H). We found no sex differences in the number of
eGFP-vasopressin cells per 52 yum section in AONI (males
285 = 18, females 258 + 13; Fy g5, = 1.876, P = 0.185),
AONd (males 140 & 11, females 134 £ 9; F 95 5.2, = 0.347,
P=0.562), AONm (males 8548, females 80+ 7;
Fo052.22=0.279, P=0.603), or AONe (males 196 £ 7,
females 167 + 14; F0.05,2.22 = 1.663, pP= 0.211). There was
no treatment effect or significant sex x treatment inter-
action on the number of eGFP-vasopressin neurons for
any AON subdivision (data not shown).

Although extensive BrDU labelling was detected in the
olfactory bulb and along the rostral migratory tract, no
vasopressin cells were labelled with BrDU, 14, 30, or
70 days post-injection, in the olfactory bulb (Fig. 1E and
F). BrDU and eGFP-vasopressin immunoreactive cells
were both found at the intersection of the glomerular
and external plexiform layers of the main and accessory
olfactory bulbs. In the AON, BrDU labelled cells (14 days:
132.9+7.5; 30days 126.1 £5.1; 70days: 131.2+5.0,
mean three sections/seven animals per group) were
typically located in and around the rostral migratory tract
through the pars principalis, while eGFP-vasopressin cells
were most often found in the superficial aspect of the deep
cellular layer (Layer IT). Extensive examination by confocal
microscopy never demonstrated any co-localization of
these two signals in the AON (0 of 7884 BrDU positive cells
counted were eGFP-vasopressin positive). This suggests
that these vasopressin cells are not newly born migratory
neurones.

Most eGFP-vasopressin cells in the AON were also
immunoreactive for Vla receptors (Fig.2A-C), in
all subdivisions (AONe: 100%, n =259 cells; AONd:
97%, n=194 cells; AONI: 98%, n=253). All eGFP-
immunoreactive cells in the AON express V1b receptors
(Fig. 2D-F; AONe: n=596 cells; AONd: n=432 cells;
AONI: n=513). The eGFP-vasopressin cells in the AON
also all expressed calbindin-D28k (Fig.2G-I, AONe:
n=171; AONd:, n=454; AONIL: n=397), but none
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expressed calretinin (Fig. 2J-L, AONe: n=408; AONd:
n=264; AONL n=331). In the AON, eGFP-vasopressin
cells were all immunoreactive for GABA (Fig.2M-0,
AONe: n=162; AONd: n=204; AONI: n=280), and
none were immunoreactive for glutamate (Fig.2P-Q,
AONe: n=183; AONd: n=128; AONI: n=81). Not all
V1b, calbindin-D28k or GABA positive cells in the AON
are immunoreactive for eGFP. No immunoreactivity to
oxytocin was detected in any region of the AON (data not
shown).

Odour stimulus test

The AON is an olfactory cortex located just caudal to the
olfactory bulbs (Fig. 3A—F). Egr-1 and eGFP-vasopressin
immunoreactivity and co-localization of these signals were
easily discernible in the pars externa and all subdivisions
of the pars principalis as black nuclear and brown cyto-
solic staining, respectively (Fig. 3G-H). Egr-1 immuno-
reactivity was significantly different across treatments in
AONI (Fg 05220 =3.528, P <0.05). Post hoc tests after
the two factor ANOVA showed no pairwise differences
between groups; however, as there was no effect of sex
(Fo.05.2.20 = 0.000, P =0.987) or a sex X treatment inter-
action (Fy 5,220 =0.527, P =0.598), a post hoc analysis
following a one way ANOVA with the sexes lumped
together showed that levels were higher in animals
presented with a novel juvenile rat versus animals in
control group (Fig.3P). Egr-1 immunoreactivity did
not vary by treatment (Fg 5,20 = 1.184, P=10.326) or
sex (Fgps.2.20=0.174, P=0.681), nor was there a sex
X treatment interaction (Fp 5220 =0.156, P=0.857)
in AONd (Fig.3Q). Egr-1 immunoreactivity did not
vary by treatment (Fy 5220 = 0.855, P =0.440) or sex
(Fo.05.2.20=0.278, P=10.604), nor was there a sex X
treatment interaction (Fggs,20 =0.692, P=0.512) in
AONm (Fig. 3R).

The ratio of Egr-1 expressing eGFP-vasopressin to
total eGFP-vasopressin cells was significantly different
across treatments in AONI (Fy 5,2, = 7.368, P < 0.005;
Fig. 3I). Post hoc tests showed that more vasopressin
cells expressed Egr-1 in AONI after exposure to a
novel juvenile rat than either a non-social odour
or cage disturbance. There was no effect of sex
(Fo.05.1.20=1.135, P=0.298) nor a significant sex X
treatment interaction (Fp 572, =0.107, P=0.899) on
the ratio of Egr-1 expressing eGFP-vasopressin to total
eGFP-vasopressin cells in AONI. The ratio of Egr-1
expressing eGFP-vasopressin to total eGFP-vasopressin

Figure 2. Chemical characterization of vasopressin neurones in the AON
Some vasopressin cells in the AON co-express V1aR (A-C) and all co-express V1bR (D—F). Vasopressin neurones in
the AON express calbindin-D28k (G-/), but not calretinin (/~L) and are GABAergic (M-0), but not glutamatergic

(P-R). Scale bars =20 um.
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Figure 3. Immediate early gene expression (Egr-1) in vasopressin cells in the anterior olfactory nucleus
following odour exposure

The AON is subdivided into the pars externa (AONe) and pars principalis. The pars principalis is composed of three
subdivisions, the pars dorsalis (AONd), pars lateralis (AONI), and pars medialis (AONm) (A-C). Diagrammatic
representations of the cellular layers of AON subdivisions are indicative of a typical adult male or female
eGFP-vasopressin rat (D—F; MOB, main olfactory bulb; AOB, accessory olfactory bulb). Vasopressin cells were most
regularly located along the superficial edge of the deep cellular layer of the pars principalis (G; scale bar = 50 um).
An eGFP-vasopressint/Egr-1~(white arrow), a double labelled (grey diamond), and an eGFP-vasopressin=/Egr-1+
cell (black arrow) are shown (H; scale bar = 10 um). Exposure to a conspecific juvenile increased the ratio of
vasopressin cells expressing the Egr-1 protein over the total number of vasopressin cells (i.e. activated: total) in
AONI (/) and AONd (J), but not AONm (K) as compared to both cage agitation (ctr) and non-social odour (non)
controls. Exposure to heterospecific predator odours (cat, fox) did not alter the ratio of vasopressin cells expressing
the Egr-1 protein over the total number of vasopressin cells as compared to non-social odour controls in AONI
(L), AONd (M), or AONm (N). Exposure to a juvenile increases overall Egr-1 expression in the AONI (P), but not
AONd (Q) or AONm (R). Exposure to fox odour increases Egr-1 expression in the AONI (S) and AONd (T), but not
AONm (U), over non-social odour controls. Egr-1 expression was widespread in the AON, and is represented as the
total area fraction covered by Egr-1 immunoreactivity within a sampled area within an AON subdivision. Asterisks
denote significant differences in post hoc analyses.
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cells was significantly different across treatments in
AON (Fy 052,20 = 8.504, P < 0.005; Fig. 3]). Post hoc tests
showed that more vasopressin cells expressed Egr-1 in
AON(d after exposure to a novel juvenile rat than either a
non-social odour or cage disturbance. There was no effect
of sex (Fys.1.22 = 0.230, P =0.636) nor a significant sex
X treatment interaction (Fp 522, =0.318, P=0.731) on
the ratio of Egr-1 expressing eGFP-vasopressin to total
eGFP-vasopressin cells in AONd. There was no treatment
effect (Fops218=1.908, P=0.177), sex difference
(Fo.05.1.18 = 2.050, P=0.169), or significant sex X
treatment interaction effect (Fy 052,15 = 2.706, P = 0.094)
on the ratio of Egr-1 expressing eGFP-vasopressin to
total eGFP-vasopressin cells in AONm (Fig. 3K). There
was no treatment effect (In transform; Fy s .2, = 2.679,
P =10.091), sex difference (In transform; Fy 5,120 = 0.582,
P =0.454), or significant sex x treatment interaction
effect (In transform; Fggs,,. =0.448, P=0.644) on
the ratio of Egr-1 expressing eGFP-vasopressin to total
eGFP-vasopressin cells in AONe.

Predator odour test

Egr-1 immunoreactivity was significantly different across
treatments in AONI (Fy s 5.2, = 5.029, P < 0.05; Fig. 35).
Post hoc tests showed a greater increase in animals
exposed to a fox versus non-social odour. There was
no effect of sex (Fpgs2.2 =0.357, P=0.556) or a sex
X treatment interaction (Fo 5,2 = 1.202, P=0.319) in
AONL. Egr-1 immunoreactivity was significantly different
across treatments in AONd (Fy 522 =4.827, P < 0.05;
Fig. 3T). Post hoc tests showed a greater increase in animals
exposed to a fox versus non-social odour. There was
no effect of sex (Fpgs2.2 =0.939, P=0.343) or a sex
X treatment interaction (Fp 5.2 = 0.278, P=0.760) in
AON(d. Egr-1 immunoreactivity did not vary by treatment
(F0_05,2’22 = 0226, pP= 0.799) or sex (F0‘05.2’22 = 0000,
P =0.989), nor was there a sex x treatment interaction
(FO.OS,Z,ZZ = 1.853, pP= 0.180) in AONm (Flg. 3 U).

The ratio of Egr-1 expressing eGFP-vasopressin to
total eGFP-vasopressin cells was significantly different
across treatments in AONI (Fy 5,2 = 8.709, P < 0.005;
Fig. 3L), but post hoc tests showed that neither cat nor
fox odour treatments was significantly different from
non-social odour controls. There was no effect of sex
(Fo0s5.1.22=0.109, P=0.745) nor a significant sex X
treatment interaction (Fp 522, =1.776, P=0.193) on
the ratio of Egr-1 expressing eGFP-vasopressin to total
eGFP-vasopressin cells in AONI. There was no treatment
effect (Fops22 =2.468, P=0.108), sex difference
(Fo0s5.1.20=0.144, P=0.708), or significant sex X
treatment interaction effect (Fy 52,2, = 0.516, P = 0.604)
on the ratio of Egr-1 expressing eGFP-vasopressin
to total eGFP-vasopressin cells in AONd (Fig.3M).
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There was no treatment effect (Fygs2.2 =0.544,
P =0.588), sex difference (Fg 512 =0.315, P =0.580),
or significant sex X treatment interaction effect
(Fo0s5.2.20=1.175, P=0.328) on the ratio of Egr-1
expressing eGFP-vasopressin to total eGFP-vasopressin
cells in AONm (Fig.3N). There was no treatment
effect (ranked; Fpgs22 =1.218, P=0.315), sex
difference (ranked; Fggs12 =0.763, P=0.392), or
significant sex X treatment interaction effect (ranked;
Fo0522 =2.078, P=0.149) on the ratio of Egr-1
expressing eGFP-vasopressin to total eGFP-vasopressin
cells in AONe. A Kruskal-Wallis one-way analysis of
variance on ranks with treatment as the factor further
verified that there were no treatment effects in AONe
(X245, = 2.235, P=0.327).

Discussion

Here, we have described a previously undiscovered
population of vasopressin neurones in the AON, a cortical
region where odour stimuli are integrated (Lei et al.
2006). These cells are widely distributed across both
the pars externa and in all subdivisions of the pars
principalis. We have recently shown a novel population
of vasopressin neurones in the external plexiform and
glomerular layer of the main and accessory olfactory bulb.
However, the vasopressin neurones in the AON differ
from those in the olfactory bulb in their neurochemical
characteristics. Vasopressin neurones in the olfactory bulb
do not express GABA, calbindin-D28k or calretinin, but
co-express glutamate (Tobin et al. 2010). Vasopressin
neurones in the AON co-express calbindin-D28k and
GABA, but not calretinin and glutamate. We found no
sex differences in the number of vasopressin cells in the
AON, differentiating it from other brain regions where
such differences are well established, such as in the bed
nucleus of the stria terminalis (De Vries & al-Shamma,
1990).

As neurones newly born in the subventricular zone in
the adult rat migrate to the main and accessory olfactory
bulbs via the rostral migratory stream (Lledo et al. 2008),
a fibre tract that runs through the AON, it is possible
that vasopressin neurones in the AON are new neurones
destined for the olfactory bulb. However, while injections
of BrDU, a marker of cell division, yielded a high level
of incorporation in olfactory bulb neurones and in the
rostral migratory stream, there was no incorporation in
vasopressin neurones in the main or accessory olfactory
bulbs or the AON. This suggests that vasopressin neurones
in the AON are not simply migrating to the olfactory bulbs,
and that vasopressin neurones in the olfactory bulb and
AON are not replaced in the adult rat.

Although the axonal targets of the AON have been
well characterized, including the main olfactory bulb,
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piriform cortex and contralateral AON itself (Haberly &
Price, 1978a,b; Mohedano-Moriano et al. 2005; Illig &
Eudy, 2009), the targets of the vasopressin neurones in
the AON are not yet known. Recent work suggests that
the somato-dendritic release of neuropeptides, including
vasopressin, in the brain is at least as relevant as release
from axonal terminals (Ludwig et al. 2002; Engelmann
et al. 2004; Leng & Ludwig, 2008). Considering such
release, as well as the presence of bilateral AON axonal
connections, AON-produced vasopressin would be pre-
dicted to exert some of its effects locally. We have
shown V1la receptor expression in the AON, confirming
results from previous receptor binding (Vallet ef al. 1995;
Schorscher-Petcu et al. 2009) and mRNA (Szot et al.
1994) studies. We have also shown V1b receptor immuno-
reactivity for the first time in the AON, although it
has been described in both the olfactory tubercle and
piriform cortex previously (Hernando ef al. 2001). All
vasopressin cells in the AON express V1b receptor and
some express V1a receptor, which suggests that these cells
might be sensitive to their own signal. Thus, vasopressin
may provide a direct feedback to its neurones of origin in
the AON.

We have shown that expression of the immediate early
gene product, Egr-1, is increased in a subdivision-specific
pattern in the AON in rats exposed to either conspecific
or heterospecific social odours. Although changes in
immediate early gene expression have not been previously
examined in rats exposed to conspecific juveniles, our
results are consistent with reports showing that exposure
to predator odours leads to such increases in subdivisions
of the AON (Staples et al. 2005, 2008b). These and
other studies examined the expression of Fos, the protein
product of the immediate early gene c-fos. Preliminary
studies in our lab showed a general paucity of immuno-
reactivity for Fos in AON relative to that for Egr-1 (data
not shown). By contrast, Egr-1 expression in the AON is
extremely widespread. Egr-1 is also involved in memory,
being necessary for late phase TP in the dentate gyrus
and associated with impaired object recognition when
knocked out in mice (Bozon et al. 2003). It was therefore a
logical choice for neuronal activation studies investigating
brain regions involved in the formation of social odour
memory.

We have demonstrated that exposure to a conspecific,
but not heterospecific, social odour leads to increased
Egr-1 protein expression in vasopressin neurones in the
AON. It is important to note that the conspecific juvenile
stimulus used in this study differed from the other
stimuli in that a live animal, rather than just an odour
mixture, was presented. It is therefore possible that other
cues, such as visual or auditory, may have affected our
results. The olfactory system interacts with other sensory
systems (Wesson & Wilson, 2010), and future studies
should address whether multiple sensory modalities
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might feed back on olfactory-specific brain regions, such
as AON.

Our results are consistent with previous studies
documenting the role of olfactory vasopressin in social
recognition and the modulation of social behaviour
(Dluzen et al. 19984,b). Classically, social odour cues are
thought to be processed via the accessory olfactory system.
The AON is largely considered to be part of the main
olfactory system, but recent studies suggest that social
odour cues, including non-volatile pheromonal signals,
may be processed by both the main and the accessory
olfactory bulb (Spehr et al. 2006; Keller et al. 2009), with
active compounds able to elicit neuronal activity in both
regions in mice (Brennan & Zufall, 2006). There is also
some evidence that social cues may also be processed
through the main olfactory system in rats. For example,
social buffering of fear responses is eliminated in main
olfactory bulb lesioned male rats (Kiyokawa et al. 2009).

The AON lies at a nexus of regions that process
olfactory information, exchanging information with both
the piriform cortex and the main olfactory bulb. If vaso-
pressin produced in the AON acts locally in the processing
of social odour cues, it may serve as a quick reference
site for conspecific social recognition. When an animal is
exposed to a novel odour combination, for example from
a conspecific juvenile, a predictable topographic pattern of
neuronal activation emerges in the olfactory bulb (Uchida
et al. 2000). During a subsequent exposure to the same
animal, the combination of its relevant odours would
be predicted to create a similar activation pattern. It is
thought that the AON mediates the first order central
integration of odour information from spatially diffuse
bulbar signals prior to subsequent central processing
(Haberly, 2001). It is therefore in the perfect position
for a quick comparison of a new and remembered social
odour combination. In the present study, we have shown
that an initial encounter with a novel juvenile rat leads
to an increase in Egr-1 in vasopressin neurones in the
AON, which may be indicative of vasopressin release.
Similar to the hypothesized function of vasopressin in the
olfactory bulb (Tobin et al. 2010), vasopressin in the AON
may act to filter out recognized odour information, and
thereby facilitate the remembrance of conspecifics. This
would be advantageous as it would prevent an animal
from expending energy engaging in unnecessary olfactory
investigation. Filtering at the level of both the olfactory
bulb and the AON may facilitate discrimination of subtle
odour combinations likely to be required for individual
recognition. That a response in vasopressin neurones is
seen after exposure to a conspecific but not a predator
odour is not surprising, as we would predict responses to
a predator odour would be more stereotyped and perhaps
less likely to be modulated by peptidergic signalling.

If vasopressin produced in the AON is also released
from axon terminals into the main olfactory bulb, it
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may act there to further modulate social recognition.
Vasopressin administered bilaterally into the olfactory
bulb lengthens the time that male rats can recognize
a conspecific juvenile upon re-exposure in a social
discrimination test (Dluzen et al. 1998a). Both a general
vasopressin V1 receptor antagonist and a Vla receptor
siRNA administered bilaterally into the olfactory bulbs
disrupt social recognition in the adult rat (Tobin et al.
2010). As the olfactory bulb produces its own vasopressin
intrinsically (Tobin et al. 2010), additional release from
the AON may represent a higher order fine tuning of the
recognition responses mediated at this level.

Recently, there have been a wealth of studies linking
vasopressin signalling to human behaviour, including
altruism (Knafo er al. 2008), aggression (Coccaro et al.
1998), social cognition (Thompson et al. 2004, 2006),
personality and creativity (Bachner-Melman et al. 2005;
Meyer-Lindenberg et al. 2009), pair-bonding (Walum
et al. 2008), and autism (Wassink et al. 2004; Yirmiya
et al. 2006). Comparisons of human and rodent olfaction
are often difficult, given that rodents rely heavily on a
functional accessory olfactory system that humans do not
possess. The AON, however, is part of the main olfactory
system and is present in humans. It is one of the first sites of
neural pathology in Parkinson’s disease (Lerner & Bagic,
2008), a malady primarily known for its debilitating effects
on motor skills, but one that also disrupts social cognition
and emotional recognition (Suzuki et al. 2006; Kawamura
& Koyama, 2007). Furthermore, intranasal administration
of vasopressin has significant effects on human social
cognition (Thompson et al. 2004, 2006), which suggests
that vasopressin signalling in olfactory regions may be of
eventual clinical importance.

We have discovered a new population of vasopressin
neurons in the AON and demonstrated that the activity
of these cells is linked to the processing of social odour
information in a region-specific manner. Specifically,
vasopressin neurones in the AONI and AONd, but not
the AONm, of the pars principalis show increased activity
after exposure to a novel juvenile rat versus a non-social
odour stimulus, while heterospecific predator odours do
not activate these neurons above control levels. Future
studies should address the connectivity of these cells, as
well as the ability of other contextually relevant conspecific
odours (e.g. odour of a sexually receptive female, rival
adult male) to alter the activity of vasopressin neurones in
the AON.
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