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Abstract
In this article, the authors consider a semiparametric additive hazards regression model for right-
censored data that allows some censoring indicators to be missing at random. They develop a class
of estimating equations and use an inverse probability weighted approach to estimate the
regression parameters. Nonparametric smoothing techniques are employed to estimate the
probability of non-missingness and the conditional probability of an uncensored observation. The
asymptotic properties of the resulting estimators are derived. Simulation studies show that the
proposed estimators perform well. They motivate and illustrate their methods with data from a
brain cancer clinical trial.
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1. INTRODUCTION
In the analysis of failure time data, the cause of failure may be unknown for some subjects
for a variety of reasons (e.g., autopsies were not performed or medical records were
missing). We motivate and illustrate our methods with data on patients from a brain cancer
clinical trial, where we evaluate the effect of two potential explanatory variables on a
measure of quality of life. All patients were initially ambulatory, but over time some lost
their mobility, some had a progression of their cancer, and some experienced both events.
To assess quality of life, we define “survival time” as the time to non-ambulatory
progression. Thus, patients who progressed and were no longer ambulatory contributed
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uncensored times, patients who progressed but were still ambulatory or who had not
progressed by the end of the study contributed censored times, and patients who progressed
but whose ambulatory status was unknown contributed times with missing censoring
indicators. We apply our regression analysis to evaluate the effects of sex and age on the
time to non-ambulatory progression.

Specifically, let T be the failure time, let Z be a p×1 vector of covariates, and let C be a
censoring time that is assumed to be conditionally independent of T given Z. Data are
available on Z and X = T ^C, but the censoring indicator δ = I(T ≤ C) may be missing. If the
probability that δ is missing does not depend on either the true value of δ or the values of X
and Z, then a missing δ is said to be missing completely at random (MCAR). Alternatively,
if the probability that δ is missing depends on the values of X and Z but not on the true value
of δ, then a missing δ is said to be missing at random (MAR); see Little & Rubin (1987).

Under the MCAR assumption and in the absence of covariates, Dinse (1982) obtained a
nonparametric maximum likelihood estimator (NPMLE) of the survival function using an
EM algorithm. Lo (1991) proved that there are infinitely many NPMLEs and some of them
may be inconsistent; he consequently constructed a consistent and asymptotically normal
estimator. Gijbels, Lin & Ying (1993, 2007) and McKeague & Subramanian (1998)
proposed further improvements on these estimators. When covariates are present, Gijbels,
Lin & Ying (1993) initiated research on estimation under the Cox model. McKeague &
Subramanian (1998) provided an alternative approach to estimation. Subramanian (2000)
considered estimation under proportionality of conditional hazards. Zhou & Sun (2003)
studied the additive hazards regression model.

Under the MAR assumption, van der Laan & McKeague (1998) first addressed efficient
estimation of the survival function and proposed a sieved nonparametric maximum
likelihood estimator. Further developments along the lines of efficient estimation can be
found in Subramanian (2004, 2006) and Wang & Ng (2008). Goetghebeur & Ryan (1995)
and Lu & Tsiatis (2001) analyzed competing risks data with missing cause of failure under
proportional hazards regression models. Gao & Tsiatis (2005) considered the linear
transformation competing risks model with missing cause of failure. Recently, Lu & Liang
(2008) studied competing risks data with missing cause of failure under the semiparametric
additive hazards model, and suggested the inverse probability weighted (IPW) and double
robust (DR) estimators. To obtain these estimators, however, they imposed parametric
models for two components: the probability that the censoring indicator is not missing and
the conditional probability of a given failure type.

In this article, we propose estimators for the regression parameters in a semiparametric
additive hazards model, where the failure times are subject to right censoring and some
censoring indicators are missing at random. We provide simple and fully augmented
weighted estimators that incorporate incomplete data nonparametrically. Unlike Lu & Liang
(2008), no parametric models are assumed for the missingness probability or the conditional
probability of an uncensored observation; instead, we use nonparametric kernel smoothing
techniques to estimate these probabilities. The resulting estimators have closed forms and
are easy to implement. Under the usual MAR assumption, both the simple and fully
augmented weighted estimators are consistent and asymptotically equivalent, i.e., they have
the same asymptotic normal distribution. In addition, the asymptotic properties of the
estimated baseline cumulative hazard function are also established for the model.

The remainder of the paper is organized as follows. Section 2 presents the simple and fully
augmented weighted estimators and their asymptotic properties under the MAR assumption.
Section 3 reports simulation results that show the proposed estimators perform well. In
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Section 4, our methods are applied to analyze the brain cancer data described earlier. Our
concluding remarks follow in Section 5 and technical proofs are relegated to the Appendix.

2. ESTIMATION PROCEDURE
Under an additive hazards model, the hazard function for failure time T given covariate Z is
assumed to be of the form

(1)

where λ0(t) is an unspecified baseline hazard function and β0 is a p-vector of unknown
regression parameters. In the case where all data are observed, Lin & Ying (1994)
introduced a pseudoscore function for the parameter vector β0 and showed that the resulting
estimator is consistent and asymptotically normal, with an easily estimated covariance
matrix.

When censoring indicators are missing for right-censored data, we observe n independent
and identically distributed vectors (Xi, ξi, ξiδi, Zi, Ri) (i = 1, …, n), where ξi is an indicator
that δi is not missing, and Ri is an auxiliary covariate that is not used to model the hazard but
may be used to describe the probability that δi is missing. The probability that δi is missing
is characterized by the distribution of ξi given δi and Wi = (Xi, Zi, Ri), which is Bernoulli
with probability P{ξi = 1|δi, Wi = w}. Under the MAR assumption (Little & Rubin 1987), we
have

(2)

Another function of interest is π(w) = P{δi = 1|Wi = w, ξi = 1}, which is the conditional
probability of an uncensored observation, given that δi is observed and Wi = w.

A naive method for estimating β0 is to simply ignore the missing data and to apply the
pseudoscore function of Lin & Ying (1994) to the complete data only. Such a procedure
(called the complete case estimator) may not only lose efficiency due to discarding
incomplete observations, but may also generate biased estimators, even when the censoring
indicators are MAR. If either ρ(w) or π(w) is modeled correctly, we can use the approach of
Lu & Liang (2008) to obtain the IPW and DR estimators. In many situations, however,
knowledge of ρ(w) and π(w) is limited, and thus both models may be misspecified. In this
article, no parametric models are assumed for these two probabilities; rather, both are
estimated nonparametrically by kernel smoothers. We begin by introducing the simple
weighted estimator, which is derived under the MAR assumption.

Because ρ(Wi) is a function of continuous variables such as Xi, we estimate it with the
Nadaraya-Watson estimator based on complete observations. Specifically, let d denote the
number of continuous elements of Wi and let K be an rth-order (r > d) kernel function of d
variables with finite support that satisfies ∫K(u)du = 1, ∫umK(u)du = 0, m = 1, …, r − 1,
∫urK(u)du ≠ 0, and ∫K(u)2du < ∞, where u can be a scalar or a vector. If u is a vector, say

u = (u1, …, ud)′, then um denotes . The motivation for using higher-order kernels
is to reduce the order of magnitude of the bias of the curve estimator, leading to a faster rate
of convergence of the mean integrated squared error (Wand & Schucany 1990). This type of
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kernel function may be constructed in various manners. For instance, Wand & Schucany
(1990) gave a univariate Gaussian-based kernel of order 2r:

where φ(2r−1)(u1) is the (2r − 1)-th derivative of the standard normal density function φ(u1).
Hall & Marron (1988) proposed a class of univariate kernels of order r:

Some higher-order polynomial kernels can be found in Müller (1984) and Gasser, Müller &
Mammitzsch (1985).

Define Kh(·) = K(·/h), where h is a bandwidth sequence, and K(u/h) = K(u1/h, …, ud/h) for u
= (u1, …, ud)′. Write Wi = (W1i, W2i), where W1i and W2i include all continuous and discrete
elements of Wi, respectively. Then the Nadaraya-Watson estimator of ρ(w) is given by

(3)

where w = (w1, w2). The choice of the kernel function K usually has little effect on the
estimator ρ̂(w), and thus the estimator of β0, but the bandwidth sequence h typically does
influence these estimators, both theoretically and practically. We assume that h satisfies nh2r

→ 0 and nh2d → ∞ as n → ∞. If h = O(n−1/p) for some integer p > 2d, then a reasonable
choice for r is the smallest even integer such that r ≥ p − d (Qi, Wang & Prentice 2005). For
example, when d = 2, we might choose p = 5 and r = 4. In a similar manner, we can estimate
π(w) by

(4)

Note that the kernel function K and bandwidth sequence h used in (3) need not be identical
to those used in (4), and the bandwidth can be different for each component of W1i. For
example, we can define h = (h1, …, hd)′ for different bandwidths, and write K(u/h) = K(u1/
h1, …, ud/hd). Here, we use the same K and h in both for notational convenience.

Let  denote the baseline cumulative hazard function. Using the inverse
probability weighted approach, consider the following estimating equations for β0 and Λ0:

(5)
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(6)

where , Yi(t) = I(Xi ≥ t), and τ is a prespecified positive constant such
that P(Xi ≥ τ) > 0. The resulting simple weighted estimators for β0 and Λ0 have the
following closed forms:

and

where a⊗2 = aa′ for any vector a and

In practice, we often choose τ to be the largest observation time, say τ = max{Xi}.

Let z ̄(t) = E[Yi(t)Zi(t)]/E[Yi(t)]. Define Ni(t) = I(Xi ≤ t) and . The
asymptotic properties of β ̂ are given in the following theorem.

Theorem 1
Under regularity conditions (C1)–(C6), which are stated in the Appendix, β̂ is consistent and
n1/2(β̂−β0) is asymptotically normal with mean zero and covariance matrix V = A−1ΣA−1 +
A−1Σ*A−1, where

and

Note that the first term in V is the asymptotic variance of the Lin & Ying (1994) estimator
based only on the complete data (ξi ≡ 1) and the second term represents the effect of the
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missing censoring indicators. If we let , then the covariance matrix V
can be consistently estimated by V̂ = Â−1(Σ ̂ + Σ̂*)Â−1, where

and

Define  and

The asymptotic properties of Λ̂0(t) are given in the next theorem.

Theorem 2
Under the assumptions of Theorem 1, Λ ̂0(t) converges in probability to Λ0(t) uniformly in t
∈ [0, τ], and n1/2{Λ ̂0(t) − Λ0(t)g converges weakly on [0, τ] to a zero-mean Gaussian
process with covariance function at (t, s) (t ≤ s) equal to

The covariance function Γ(t, s) can be consistently estimated by substituting β ̂, ρ̂ and π̂ for
the unknowns β0, ρ and π in the appropriate empirical estimators, and by replacing the
(unobserved) processes  with . For an individual with a given covariate vector
z0, the corresponding estimator of the survival function S(t, z0) is

Using the functional delta-method and Theorem 2, we can obtain the asymptotic properties
of Ŝ(t, z0), which can be applied to construct confidence bands for S(t, z0).

When the missingness probability ρ(w) is known or a parametric model is specified for ρ(w),
the simple weighted estimator uses only the complete case data (i.e., only individuals with ξi
= 1), and the fully augmented weighted estimator (also called the double robust estimator)
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incorporates contributions from the incomplete observations (i.e., individuals with ξi = 0),
thus the fully augmented weighted estimator is more efficient than the corresponding simple
weighted estimator (Lu & Liang 2008). In addition, the fully augmented weighted estimator
has the so-called double-robustness property; that is, the estimator is consistent if one can
correctly specify either the missingness probability ρ(w) or the conditional probability of an
uncensored observation π(w) (Wang & Chen 2001). However, estimating ρ(w)
nonparametrically enables the simple weighted estimator β ̂ to follow the same asymptotic
distribution as the fully augmented weighted estimator β ̂a (described next). This indicates
that β ̂ is equivalent asymptotically to β ̂a. These conclusions are consistent with the results of
Qi, Wang & Prentice (2005) for proportional hazards regression with missing covariates.

The fully augmented weighted estimators for β0 and Λ0 are the solutions to the following
estimating equations:

(7)

(8)

The resulting fully augmented weighted estimators for β0 and Λ0 have the following closed
forms:

and

where

Similar to Theorems 1 and 2, the asymptotic properties of β ̂a and Λ̂a are given in the
following theorem.

Theorem 3
Under the assumptions of Theorem 1, we have:

i. β̂a is consistent and n1/2(β̂a − β0) is asymptotically normal with mean zero and
covariance matrix V:
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ii. Λ ̂a(t) converges in probability to Λ0(t) uniformly in t ∈ [0, τ], and n1/2{Λ ̂a(t) −
Λ0(t)} converges weakly on [0, τ] to a zero-mean Gaussian process with covariance
function Γ(t, s) at (t, s) (t ≤ s).

For the fully augmented weighted method, the covariance matrix V and covariance function
Γ(t, s) can be consistently estimated by substituting β ̂a, ρ̂ and π̂ for β0, ρ and π in the
appropriate empirical estimators, and by replacing the processes  with

.

Theorems 1, 2 and 3 show that both the simple and fully augmented weighted estimators
have the same asymptotic normal distribution, and the resulting estimators of the baseline
cumulative hazard function converge to the same Gaussian process. This means that the
simple weighted estimators with nonparametric ρ̂(w) are as efficient as the kernel-assisted
fully augmented weighted estimators. One intuitive explanation for this is that the
incomplete observations are indirectly incorporated in the simple weighted estimator by
using the inverse of ρ̂(w) as a weight.

Note that Λ̂0(t) and Λ̂a(t) may not always be monotonic in t, in which case simple
modifications such as those discussed in Lin & Ying (1994) can be made to ensure
monotonicity while preserving asymptotic properties.

3. SIMULATION STUDIES
We conducted simulation studies to examine and compare the finite-sample performance of
the simple and fully augmented weighted estimators proposed in Section 2, and also to
compare their performance with that of the full data and complete-case analyses under the
MAR model. In these studies, we considered three situations for the covariate Z: (a) Z was
assumed to follow a Bernoulli distribution with success probability 0.5; (b) Z was generated
from a uniform distribution on (0, 1); (c) Z = (Z1, Z2)′, where Z1 follows a uniform
distribution on (0, 1) and Z2 follows a Bernoulli distribution with success probability 0.5.

The underlying additive hazards model for the failure time T was taken to be ,
where β0 = 0, 0.5 and 1 for the case Z is a scalar, and β0 = (0, 0)′ and β0 = (1, −1)′ for the
two-dimensional covariate. The censoring time C was generated from a uniform distribution
on (0, c), where c was selected to give a censoring rate of either 15% or 55%.

The missingness indicators were generated from the logistic model

(9)

where W = (X, Z), X = T ^ C, and θ was chosen to produce a missingness rate of 50% under
each censoring level. When Z was a Bernoulli random variable, there was only one (d = 1)
continuous element in W, and we used the univariate Gaussian kernel function K(u) =
(2π)−1/2 exp(−u2/2) and a bandwidth of h = 0.5n−1/3, with sample size of n = 100. When Z
was a uniform random variable or a two-dimensional covariate as in (c), there were two (d =
2) continuous elements in W, and we used the bivariate Gaussian-based kernel function of
order 4 (Wand & Schucany 1990)
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(10)

and a bandwidth vector of h = (h1, h2)′ = (1.5n−1/5, n−1/5)′, with sample size of n = 400. We
took τ to be the largest observed value of X, so that all data were used in the analysis. All
simulation studies were based on 1000 replications for each combination of parameters.

Our simulation results are summarized in Tables 1 and 2. In these tables, Bias is the sample
mean of the estimate minus the true value; MSE is the sample mean of the squared
differences between the estimate and the true value; and CP is the 95% empirical coverage
probability for β0 based on a normal approximation. Similar summaries for the full-data and
complete-case estimators are calculated for comparison.

Tables 1 and 2 show that the complete case estimator is highly biased in all situations, with
coverage probabilities that are too small, whereas the simple and fully augmented weighted
estimators are nearly unbiased, with very reasonable coverage probabilities. Furthermore,
the simple and fully augmented weighted estimators have similar MSE values, which are
only slightly larger than those of the full data estimator and are often much smaller than
those of the complete case estimator. These results suggest that our proposed estimators are
more efficient than the complete case estimator and are adequate for practical use. We also
simulated data under different parameter configurations and obtained similar results.

We compared the proposed methods and the parametric approach of Lu & Liang (2008)
under MAR and MCAR assumptions. Data were simulated under correctly and incorrectly
specified parametric models, using the same setup as in Table 1 with a censoring rate of
55% and a missingness rate of 50%, where Z follows a Bernoulli distribution with a sample
size of n = 200 and β0 = 0 and 1. The results are presented in Table 3. In Table 3, LIPW1
and LIPW2 stand for the inverse probability weighted (IPW) estimators of Lu & Liang
(2008) when using the logistic model and the constant model for ρ(w), respectively; LDR1
and LDR2 stand for the double robust (DR) estimators of Lu & Liang (2008) when using the
logistic model and the constant model for ρ(w), respectively. In all cases, we used a constant
model for π(w), which is misspecified.

It can be seen from Table 3 that the proposed methods are essentially unbiased in all the
settings, and the parametric approach of Lu & Liang (2008) is also unbiased when the
parametric model for ρ(w) is correctly specified. Furthermore, the proposed estimators are as
efficient as the DR estimator of Lu & Liang (2008), and are more efficient than the IPW
estimator of Lu & Liang (2008). When both ρ(w) and π(w) are misspecified, however, both
the IPW and DR estimators of Lu & Liang (2008) are biased under MAR. The key
advantage of our method is that it provides reasonable estimation without making parametric
modeling assumptions about ρ(w) and π(w). Rather than assuming parametric models, our
approach uses nonparametric smoothing techniques to estimate these probabilities. In
addition, the proposed estimators are more efficient than the complete case estimator under
MCAR. So, if MCAR is true, our proposed approach still works well and does not lose
efficiency.

We also conducted simulation studies to examine the performance of the proposed methods
when MNAR (missing not at random) is true. In the study, the setup was the same as in
Table 1, where Z follows a uniform distribution on (0, 1) with β0 = 0 and n = 400, except
that the censoring rate was set to be 20%, and the missingness probability was given by
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where θ1 and θ2 were chosen to produce a missingness rate of either 20% or 50%. The
results are summarized in Table 4. It can be seen from Table 4 that the proposed estimation
procedures perform well when the missingness rate is low (say, 20%), but when the
missingness rate is high (say, 50%), the proposed estimators are a little biased. However, the
biases are relatively small compared to those of the complete case estimator.

4. EXAMPLE: ANALYSIS OF BRAIN CANCER DATA
We applied our methods to the brain cancer data mentioned earlier. We analyzed the data on
all 387 patients who entered the clinical trial with a form of brain cancer known as
glioblastoma. Dinse (1982) used a subset of these data to illustrate his nonparametric
maximum likelihood analysis, which did not account for covariates. All patients were
ambulatory when they entered the trial, but over time some lost their mobility, some had a
progression of their cancer, and some experienced both events. As a measure of quality of
life, we defined “survival time” as the time to non-ambulatory progression, and we
evaluated the effects of sex and age on this event time.

Of the 387 patients, 86 progressed and were non-ambulatory, 24 progressed but were still
ambulatory, 220 did not progress by the end of the study, and 57 progressed but had an
unknown ambulatory status. Thus, our analysis treated these outcomes as 86 uncensored
times, 244 censored times, and 57 times with a missing censoring indicator. There were 144
women and 243 men, ranging in age from 14 to 74 years, and the length of time on study (or
until progression) varied from 2 to 1088 days.

Let X be the observed time (in days), measured from the beginning of the trial, and let δ
indicate whether the patient had progressed and was non-ambulatory. We defined Z1 to be a
binary indicator of the patient’s sex, which was 1 for men and 0 for women, and Z2 to be the
age at trial entry (in years), which was treated as a continuous covariate. Since W = (X, Z1,
Z2) contains two continuous elements, we used the bivariate Gaussian-based kernel function
of order 4 for K, as defined in (10), with a bandwidth vector of h = (h1, h2)′ = (34, 10)′. We
used τ = 1088, which was the largest observed value of X.

The analysis of the brain cancer data is summarized in Table 5, which gives the results for
our simple weighted estimator (SWE) and our fully augmented weighted estimator (FAWE).
For comparison, Table 5 also gives the results of the complete case (CC) analysis. None of
the three methods suggested that men and women had different hazard rates for non-
ambulatory progression. On the other hand, our two estimators showed that age is important
(p = 0.037 for SWE and p = 0.011 for FAWE), but the CC analysis did not (p = 0.367).
Specifically, the hazard rate for non-ambulatory progression increased as patients grew
older, which is consistent with worsening quality of life. The age coefficients were of
similar magnitude for all three methods, but the standard error was much larger for the CC
analysis than for our SWE and FAWE analyses. Thus, as a result of excluding data, the
complete case analysis missed the age effect on non-ambulatory progression that our
approaches appropriately identified.
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5. CONCLUDING REMARKS

Model (1) has the limitation that the linear predictor  needs to be constrained to ensure
non-negativity for the right side of (1). One may avoid this constraint by using a

nonnegative link function, such as . The ideas presented in this paper can be

applied to any regression function , where g(·) is a known link function. In addition,
Our approach can be extended to incorporate missing covariates (Qi, Wang & Prentice
2005) in the situation where both the failure indicators and the covariates are partially
observed.

Nonparametric kernel estimation can be done for a small number of continuous covariates,
but for categorical covariates, it would usually require stratified kernel estimation within
each strata defined by the categorical covariates. In practice, when there are too many
categories, it may be desirable to specify a more flexible model for the missingness
probability, such as a partially linear additive model, and then use local kernel regression to
estimate the missingness probability. Here we focus on a kernel estimation approach for
ρ(w) and π(w). Of course, other smoothing techniques such as the local polynomial method
(Fan & Gijbels 1996) may be used and require the same assumptions. Furthermore, n1/2-rate
asymptotic normality of the proposed estimators indicates that an appropriate choice for the
bandwidth sequence h depends only on the second order terms of the mean square error of
the estimators, and thus bandwidth selection may not be critical for estimating β0 and Λ0.

Since the estimating functions in (5) to (8) were obtained in a somewhat ad hoc fashion, it
might be worthwhile investigating possible improvements that could result from other
approaches, such as the one suggested by McKeague & Sasieni (1994) or perhaps a
nonparametric maximum likelihood approach. Alternatively, estimation procedures based on
the general Aalen additive model (Aalen 1980) or the linear transformation model (Gao &
Tsiatis 2005) with missing censoring information might also be worthy of investigation.

Another limitation of the approach given here is that the covariates Z are time-invariant. In
some applications, we might want to incorporate time-dependent covariates. Thus, a more
general approach might extend model (1) to a time-varying version:

where β0(t) is an unknown p-vector of time-varying regression coefficients and Z(t) is a
vector of covariates that may depend on time. However, the proposed estimation procedure
cannot be extended in a straightforward manner to deal with time-dependent covariates
because of the curse of dimensionality created by Z(t) and a need for alternative smoothing
techniques for estimating β0(t). In addition, when the dimension of Z(t) is high, the
probabilities ρ(w) and π(w) can be modeled parametrically (Lu & Liang 2008). As a
different approach, perhaps dimension-reduction techniques could be extended in
conjunction with a partially linear model (Liang, Härdle & Carroll 1999) for ρ(w) and π(w).
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APPENDIX
We will use the same notation defined in the previous sections and assume that the
following regularity conditions hold:

(C1) Λ0(τ) < ∞, Pr(X ≥ τ) > 0, Z is bounded, and  a.e.

(C2) The probability (density) f(w) of Wi is bounded away from 0, and has r continuous
and bounded partial derivatives with respect to the continuous components of Wi a.e.

(C3) The missingness probability ρ(w) is bounded away from 0, and has r continuous
and bounded partial derivatives with respect to the continuous components of Wi a.e.

(C4) The conditional probability π(w) has r continuous and bounded partial derivatives
with respect to the continuous components of Wi a.e.

(C5)  is nonsingular.

(C6) nh2r → 0 and nh2d → ∞, as n → ∞.

We give the proof of Theorem 3 and outline the proof of Theorem 1; Theorem 2 can be
proven in the same manner. For notational convenience, we assume that all components of
Wi are continuous in the following proof.

Proof of Theorem 3(i)
Substituting Λ̂a into equation (7), we find that β ̂a is the solution to U (β) = 0, where

Let . Then we can write

(A.1)

where

and
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Note that U1(β0) is a martingale integral. Thus, it follows that

(A.2)

Define , and write Φn(t) = Φn1(t) + Φn2(t) + Φn3(t),
where

and

By the uniform strong law of large numbers (Pollard, 1990), sup0≤t≤τ |Φn1(t)| = o(1) almost
surely. It can be checked that

where f̂(w) = (nhd)−1Kh(w − Wi), which is a kernel density estimate of f(w). By a Taylor
expansion of 1/f̂(Wi) about f (Wi), Φn2(t) can be written as Φn21(t) − Φn22(t) + op(1), where

and
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A straightforward calculation yields that E{Φn21(t)} = O(hr) → 0, and Var{Φn21(t)} = O(h2r

+ (nh2d)−1) → 0, which imply Φn21(t) = op(1). Similarly, Φn22(t) = op(1), and thus it follows
that Φn2(t) = op(1). Likewise, Φn3(t) = op(1). Therefore, we have Φn(t) = op(1). Note that
Φn(t) is monotone and bounded in t. Consequently, we obtain

(A.3)

The functional central limit theorem (Pollard 1990) implies that

(A.4)

Using (A.3) and (A.4), we have

Hence,

(A.5)

In a similar manner, we obtain

(A.6)

Thus, it follows from (A.1), (A.2), (A.5) and (A.6) that

where

and

SONG et al. Page 15

Can J Stat. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Let m(w) = ρ(w)f(w) and . Then by the Taylor expansion of
1/m ̂Wi) at m(Wi), we can write

where

and

Define

Some straightforward calculation gives , and

, which imply that

Similarly, we have Rn12 = op(n1/2), and thus

(A.7)

In a similar manner, we obtain
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(A.8)

It follows from (A.7) and (A.8) that Rn1 = op(n1/2). Likewise, Rn2 = op(n1/2). Thus,

(A.9)

The law of large numbers and the multivariate central limit theorem show that n−1U(β0) →
0 in probability and n−1/2U(β0) converges in distribution to a normal random variable with
mean zero and variance matrix Σ + Σ*. Note that

and

almost surely by the uniform strong law of large numbers (Pollard 1990). Then it follows
from (A.9) that β ̂a is consistent and n1/2(β ̂a − β0) is asymptotically normal with mean zero
and covariance matrix V = A−1(Σ + Σ*)A−1.

Proof of Theorem 3(ii)
First write

Note that

Following similar arguments as in the proof of (i), we obtain
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(A.10)

uniformly on [0, τ]. In view of the consistency of β ̂a, it follows from the uniform strong law
of large numbers and the multivariate central limit theorem that sup0≤t≤τ |Λ ̂a(t) − Λ0(t)| → 0
in probability, and n1/2{Λ ̂a(t) − Λ0(t)} converges in finite dimensional distributions to a
zero-mean Gaussian process. The first term on the right-hand side of (A.10) is tight as it is a
martingale integral. The second term is tight because n1/2(β ̂a − β0) converges in distribution
and d(t) is a deterministic function. Note that for each i, (ξiρ(Wi)−1 − 1) (δi − π(Wi))

 can be written as sums of monotone processes. Then the tightness of the
third term follows from Example 2.11.16 of van der Vaart & Wellner (1996). Thus,
n1/2{Λ ̂a(t)− Λ0(t)} is tight and converges weakly to a zero-mean Gaussian process with
covariance function Γ(s, t) at (s, t).

Outlined proof of Theorem 1
Note that β ̂ is the solution to U*(β) = 0, where

Then it can be checked that

(A.11)

where

and

Similarly to (A.2), we get

(A.12)
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From an argument similar to that in the proof of (A.7), we have

(A.13)

It follows from (A.11)–(A.13) that

which implies that n−1/2U*(β0) converges in distribution to a normal random variable with
mean zero and variance matrix Σ + Σ*. Then it follows from the Taylor expansion of U*(β ̂)
that n1/2(β ̂ − β0) is asymptotically normal with mean zero and covariance matrix V = A−1(Σ
+ Σ*)A−1.

SONG et al. Page 19

Can J Stat. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

SONG et al. Page 20

Ta
bl

e 
1

Si
m

ul
at

io
n 

re
su

lts
 fo

r o
ne

 c
ov

ar
ia

te
 w

ith
 a

 m
is

si
ng

ne
ss

 ra
te

 o
f 5

0%

Pa
ra

m
et

er
s

β 0
 =

 1
β 0

 =
 0

.5
β 0

 =
 0

C
R

E
st

im
at

e
B

ia
s

M
SE

C
P

B
ia

s
M

SE
C

P
B

ia
s

M
SE

C
P

Z 
~ 

B
er

no
ul

li(
0.

5)
 w

ith
 n

=1
00

15
%

Fu
ll

0.
03

22
0.

13
04

0.
95

2
−
0.
00
76

0.
08

16
0.

94
8

0.
00

09
0.

05
06

0.
96

0

SW
E

−
0.
02
05

0.
15

63
0.

93
9

−
0.
00
33

0.
10

66
0.

94
8

−
0.
01
68

0.
06

03
0.

94
3

FA
W

E
0.

03
36

0.
15

69
0.

94
5

−
0.
00
49

0.
09

92
0.

94
8

0.
00

20
0.

06
07

0.
95

2

C
C

−
0.
36
30

0.
33

56
0.

79
5

−
0.
17
29

0.
14

61
0.

88
2

−
0.
08
65

0.
08

36
0.

93
6

55
%

Fu
ll

−
0.
01
54

0.
20

61
0.

95
6

−
0.
00
67

0.
14

59
0.

94
4

−
0.
00
27

0.
09

14
0.

95
4

SW
E

0.
00

30
0.

36
52

0.
94

8
0.

01
38

0.
21

94
0.

94
1

0.
00

93
0.

16
31

0.
95

1

FA
W

E
0.

00
42

0.
35

36
0.

95
0

0.
00

56
0.

21
99

0.
94

5
−
0.
00
10

0.
14

51
0.

95
3

C
C

−
0.
19
18

0.
42

50
0.

91
3

−
0.
07
88

0.
24

89
0.

92
3

−
0.
11
22

0.
18

05
0.

93
2

Z 
~ 

un
ifo

rm
(0

, 1
) w

ith
 n

=4
00

15
%

Fu
ll

0.
00

63
0.

08
10

0.
95

8
0.

01
64

0.
05

65
0.

96
1

0.
00

58
0.

03
59

0.
95

3

SW
E

0.
01

33
0.

10
09

0.
94

6
−
0.
00
94

0.
06

22
0.

93
9

0.
00

49
0.

04
01

0.
93

4

FA
W

E
0.

00
49

0.
09

57
0.

94
1

0.
01

87
0.

06
15

0.
95

6
0.

00
39

0.
03

95
0.

94
2

C
C

−
0.
23
04

0.
16

08
0.

86
6

−
0.
15
10

0.
09

88
0.

91
8

−
0.
09
62

0.
05

92
0.

91
2

55
%

Fu
ll

0.
01

99
0.

14
36

0.
94

8
0.

00
61

0.
08

45
0.

96
4

0.
00

52
0.

06
66

0.
94

7

SW
E

−
0.
00
52

0.
22

63
0.

94
3

−
0.
00
94

0.
12

88
0.

94
7

0.
00

50
0.

11
30

0.
93

3

FA
W

E
0.

01
95

0.
22

58
0.

95
0

−
0.
00
34

0.
12

48
0.

95
2

0.
00

02
0.

10
99

0.
93

4

C
C

−
0.
23
71

0.
26

95
0.

91
0

−
0.
18
39

0.
15

41
0.

91
0

0.
06

24
0.

11
75

0.
92

5

C
R

 st
an

ds
 fo

r c
en

so
rin

g 
ra

te
, F

ul
l s

ta
nd

s f
or

 fu
ll 

da
ta

 e
st

im
at

or
, S

W
E 

st
an

ds
 fo

r s
im

pl
e 

w
ei

gh
te

d 
es

tim
at

or
, F

A
W

E 
st

an
ds

 fo
r f

ul
ly

 a
ug

m
en

te
d 

w
ei

gh
te

d 
es

tim
at

or
, a

nd
 C

C
 st

an
ds

 fo
r c

om
pl

et
e 

ca
se

 e
st

im
at

or
.

Can J Stat. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

SONG et al. Page 21

Ta
bl

e 
2

Si
m

ul
at

io
n 

re
su

lts
 fo

r a
 tw

o-
di

m
en

si
on

al
 c

ov
ar

ia
te

 v
ec

to
r w

ith
 a

 m
is

si
ng

ne
ss

 ra
te

 o
f 5

0%

C
R

E
st

im
at

e
B

ia
s

M
SE

C
P

B
ia

s
M

SE
C

P

β 1
0 =

 0
β 2

0 =
 0

15
%

Fu
ll

0.
01

03
0.

03
69

0.
94

7
−
0.
00
50

0.
01

22
0.

95
7

SW
E

−
0.
01
29

0.
05

26
0.

94
2

0.
00

92
0.

01
44

0.
94

9

FA
W

E
0.

00
91

0.
05

12
0.

94
6

−
0.
00
77

0.
01

45
0.

93
8

C
C

−
0.
22
22

0.
09

32
0.

80
5

0.
10

91
0.

02
61

0.
83

6

55
%

Fu
ll

−
0.
01
61

0.
06

40
0.

95
8

0.
00

10
0.

02
12

0.
95

6

SW
E

−
0.
03
52

0.
10

44
0.

94
9

0.
00

48
0.

03
46

0.
94

0

FA
W

E
−
0.
02
31

0.
10

57
0.

95
5

0.
00

14
0.

03
22

0.
94

6

C
C

−
0.
12
90

0.
11

22
0.

80
9

0.
17

01
0.

06
05

0.
83

5

β 1
0 =

 1
β 2

0 =
 −

1

15
%

Fu
ll

−
0.
00
01

0.
05

37
0.

95
7

−
0.
00
53

0.
02

21
0.

95
2

SW
E

−
0.
01
00

0.
07

84
0.

95
7

0.
00

62
0.

02
97

0.
94

0

FA
W

E
−
0.
01
61

0.
08

05
0.

95
0

0.
00

27
0.

03
02

0.
95

5

C
C

−
0.
09
51

0.
09

50
0.

90
2

0.
07

97
0.

04
60

0.
89

1

55
%

Fu
ll

0.
01

13
0.

05
41

0.
94

9
−
0.
00
78

0.
02

21
0.

95
3

SW
E

−
0.
01
35

0.
07

96
0.

96
1

0.
00

57
0.

03
09

0.
93

3

FA
W

E
0.

00
86

0.
08

10
0.

94
8

−
0.
00
14

0.
03

35
0.

95
5

C
C

−
0.
08
06

0.
09

30
0.

90
8

0.
07

14
0.

04
50

0.
88

7

C
R

 st
an

ds
 fo

r c
en

so
rin

g 
ra

te
, F

ul
l s

ta
nd

s f
or

 fu
ll 

da
ta

 e
st

im
at

or
, S

W
E 

st
an

ds
 fo

r s
im

pl
e 

w
ei

gh
te

d 
es

tim
at

or
, F

A
W

E 
st

an
ds

 fo
r f

ul
ly

 a
ug

m
en

te
d 

w
ei

gh
te

d 
es

tim
at

or
, a

nd
 C

C
 st

an
ds

 fo
r c

om
pl

et
e 

ca
se

 e
st

im
at

or
.

Can J Stat. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

SONG et al. Page 22

Ta
bl

e 
3

C
om

pa
ris

on
 o

f t
he

 p
ro

po
se

d 
m

et
ho

d 
w

ith
 th

e 
pa

ra
m

et
ric

 a
pp

ro
ac

h 
of

 L
u 

an
d 

Li
an

g 
(2

00
8)

 u
nd

er
 M

A
R

 a
nd

 M
C

A
R

 fo
r a

 m
is

si
ng

ne
ss

 ra
te

 o
f 5

0%

Pa
ra

m
et

er
s

β 0
 =

 0
β 0

 =
 1

E
st

im
at

es
B

ia
s

M
SE

C
P

B
ia

s
M

SE
C

P

M
A

R
Fu

ll
0.

00
40

0.
04

48
0.

94
8

0.
00

63
0.

10
71

0.
95

0

SW
E

0.
00

18
0.

06
69

0.
95

5
0.

00
99

0.
16

70
0.

94
5

FA
W

E
0.

00
51

0.
06

77
0.

95
3

0.
00

11
0.

16
69

0.
94

7

LI
PW

1
0.

00
77

0.
09

09
0.

94
5

0.
00

13
0.

21
92

0.
95

0

LD
R

1
0.

00
31

0.
06

75
0.

95
0

0.
00

06
0.

16
83

0.
94

7

LI
PW

2
0.

62
29

0.
43

11
0.

13
9

1.
12

96
1.

38
14

0.
08

7

LD
R

2
0.

21
21

0.
08

43
0.

81
3

0.
59

99
0.

45
15

0.
47

1

M
C

A
R

Fu
ll

0.
00

60
0.

04
47

0.
96

1
0.

01
08

0.
10

79
0.

95
8

SW
E

0.
00

89
0.

06
94

0.
95

0
0.

00
80

0.
16

79
0.

95
4

FA
W

E
0.

01
04

0.
06

98
0.

94
6

0.
00

83
0.

16
61

0.
95

0

LI
PW

2
0.

00
04

0.
09

06
0.

94
4

0.
02

98
0.

20
99

0.
94

2

LD
R

2
0.

00
89

0.
06

86
0.

94
6

0.
02

09
0.

16
86

0.
95

4

C
C

0.
00

41
0.

09
32

0.
95

5
0.

00
41

0.
21

91
0.

95
5

C
R

 st
an

ds
 fo

r c
en

so
rin

g 
ra

te
, F

ul
l s

ta
nd

s f
or

 fu
ll 

da
ta

 e
st

im
at

or
, C

C
 st

an
ds

 fo
r c

om
pl

et
e 

ca
se

 e
st

im
at

or
, S

W
E 

st
an

ds
 fo

r s
im

pl
e 

w
ei

gh
te

d 
es

tim
at

or
, F

A
W

E 
st

an
ds

 fo
r f

ul
ly

 a
ug

m
en

te
d 

w
ei

gh
te

d 
es

tim
at

or
,

LI
PW

1 
an

d 
LI

PW
2 

st
an

d 
fo

r t
he

 in
ve

rs
e 

pr
ob

ab
ili

ty
 w

ei
gh

te
d 

es
tim

at
or

s o
f L

u 
an

d 
Li

an
g 

(2
00

8)
 w

he
n 

us
in

g 
th

e 
lo

gi
st

ic
 m

od
el

 a
nd

 th
e 

co
ns

ta
nt

 m
od

el
 fo

r ρ
(w

), 
re

sp
ec

tiv
el

y,
 L

D
R

1 
an

d 
LD

R
2 

st
an

d 
fo

r t
he

do
ub

le
 ro

bu
st

 e
st

im
at

or
s o

f L
u 

an
d 

Li
an

g 
(2

00
8)

 w
he

n 
us

in
g 

th
e 

lo
gi

st
ic

 m
od

el
 a

nd
 th

e 
co

ns
ta

nt
 m

od
el

 fo
r ρ

(w
), 

re
sp

ec
tiv

el
y,

 a
nd

 in
 a

ll 
ca

se
s a

 c
on

st
an

t m
od

el
 is

 u
se

d 
fo

r π
(w

).

Can J Stat. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

SONG et al. Page 23

Ta
bl

e 
4

Si
m

ul
at

io
n 

re
su

lts
 fo

r t
he

 p
ro

po
se

d 
m

et
ho

d 
un

de
r M

N
A

R

M
R

E
st

im
at

e
Fu

ll
SW

E
FA

W
E

C
C

20
%

B
ia

s
0.

00
23

0.
01

03
0.

01
84

−
0.
01
19

M
SE

0.
03

85
0.

04
16

0.
04

24
0.

04
30

C
P

0.
93

6
0.

93
5

0.
93

8
0.

93
8

50
%

B
ia

s
−
0.
00
12

0.
01

67
0.

05
62

−
0.
08
91

M
SE

0.
03

83
0.

04
34

0.
04

91
0.

07
16

C
P

0.
93

8
0.

93
6

0.
93

0
0.

92
6

M
R

 st
an

ds
 fo

r m
is

si
ng

ne
ss

 ra
te

, F
ul

l s
ta

nd
s f

or
 fu

ll 
da

ta
 e

st
im

at
or

, S
W

E 
st

an
ds

 fo
r s

im
pl

e 
w

ei
gh

te
d 

es
tim

at
or

, F
A

W
E 

st
an

ds
 fo

r f
ul

ly
 a

ug
m

en
te

d 
w

ei
gh

te
d 

es
tim

at
or

, a
nd

 C
C

 st
an

ds
 fo

r c
om

pl
et

e 
ca

se
es

tim
at

or
.

Can J Stat. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

SONG et al. Page 24

Ta
bl

e 
5

Es
tim

at
es

 o
f r

eg
re

ss
io

n 
co

ef
fic

ie
nt

s f
or

 se
x 

an
d 

ag
e 

(in
 y

ea
rs

), 
al

on
g 

w
ith

 e
st

im
at

ed
 st

an
da

rd
 e

rr
or

s a
nd

 si
gn

ifi
ca

nc
e 

le
ve

ls
, f

ro
m

 th
e 

an
al

ys
is

 o
f t

im
e 

(in
da

ys
) t

o 
no

n-
am

bu
la

to
ry

 p
ro

gr
es

si
on

 fo
r p

at
ie

nt
s i

n 
th

e 
br

ai
n 

ca
nc

er
 c

lin
ic

al
 tr

ia
l.

C
C

SW
E

FA
W

E

se
x

ag
e

se
x

ag
e

se
x

ag
e

β̂  
× 

10
4

1.
57

0
0.

08
1

1.
58

9
0.

07
7

1.
70

8
0.

08
7

SE
(β
̂ ) ×

 1
04

2.
44

5
0.

09
0

2.
30

6
0.

03
7

2.
24

1
0.

03
4

P-
V

al
ue

0.
52

1
0.

36
7

0.
49

1
0.

03
7

0.
44

6
0.

01
1

N
ot

e:
 T

he
 sa

m
pl

e 
si

ze
 is

 n
 =

 3
87

; t
he

 b
an

dw
id

th
 v

ec
to

r i
s h

 =
 (h

1,
 h

2)
′ =

 (3
4,

 1
0)
′ C

C
 d

en
ot

es
 th

e 
co

m
pl

et
e 

ca
se

 e
st

im
at

or
; S

W
E 

de
no

te
s t

he
 si

m
pl

e 
w

ei
gh

te
d 

es
tim

at
or

; F
A

W
E 

de
no

te
s t

he
 fu

lly
 a

ug
m

en
te

d
w

ei
gh

te
d 

es
tim

at
or

.

Can J Stat. Author manuscript; available in PMC 2011 September 1.


