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Abstract
Small molecular inhibitors of hepatitis C virus (HCV) replication provide remarkable potency, but
the rapid selection of resistance mutations will require that these agents be used in combination for
clinical treatment. Using a model HCV replicon system, we have extended prior in vitro studies of
double combinations of candidate small molecular inhibitors to studies evaluating the
simultaneous use of 3 agents. This was done in an effort to anticipate conditions that might
ultimately be required clinically. We formally demonstrate synergistic antiviral activity with 3-
drug combinations in this model, further supporting the concept of clinical investigations of
combination therapy for HCV infection.

Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and
hepatocellular carcinoma, with >170 million individuals infected worldwide. A substantial
increase in hospitalizations and medical costs related to chronic HCV is predicted over the
next 1–2 decades. Therapy with pegylated interferon plus ribavirin can clear the virus in
~50% of persons infected with genotype 1 HCV infection, the most commonly encountered
genotype in North America [1]. Toxicities and contraindications to interferon-based therapy
prevent most patients who would otherwise be candidates for treatment from initiating and/
or completing a treatment course. Thus, success rates for potential treatment candidates (as
opposed to those completing a course of therapy) are ≪50% [2]. These limitations in
interferon-based regimens have spurred an active search for small molecular inhibitors of
HCV that could increase response rates over the short term when used with current therapy.
Ultimately, it is possible that combinations of small molecular inhibitors could lead to
efficacious interferon-free regimens. Clinical trials with several candidate molecules have
demonstrated substantial short-term reductions in the levels of HCV RNA in plasma [3,4].
As expected, viral isolates with reduced susceptibility have emerged rapidly [5]. The
avoidance or delay of drug resistance in HIV therapeutics has been achieved by the
simultaneous use of several potent agents that collectively require the virus to develop
multiple resistance mutations [6]. Clinical trials that established the contemporary treatment
paradigm were anticipated by in vitro studies that modeled 2- or 3-drug combination therapy
in cell culture [7,8]. These studies were critical in the planning of clinical trials of
combination therapy and provided early indications that some combinations of agents were
likely to be antagonistic when used together [9]. In similar studies of the HCV replicon
system, we have recently reported in vitro additivity or synergy between pairs of agents
directed at HCV. In particular, combinations that targeted distinct viral proteins showed
greater synergy [10]. In the present report, we extend our 2-drug-combination studies, to
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examine whether additivity and/or synergy among anti-HCV agents could be demonstrated
in cell culture when used in 3-drug combinations. Because the available protease inhibitors
(PIs) all target the active site of the NS3-4A serine protease, whereas the available
polymerase inhibitors target different sites on the NS5B polymerase, we analyzed the
interactions of combinations of 1 PI and 2 polymerase inhibitors.

Materials and methods
To evaluate the synergistic effects of triplet combinations of small molecular inhibitors of
HCV, we used the BM4-5 replicon system [11], previously used in studies in our laboratory
[10]. The firefly luciferase gene was inserted into the BM4-5 replicon, in a manner
described elsewhere [12], to create a luciferase/neomycin phosphotransferase fusion protein
(designated “Feo”) and the replicon (BM4-5-Feo). Experiments were performed exactly as
described by Wyles et al. [10]. In brief, cells were seeded into 96-well plates and incubated
with compounds for 48 h. The luciferase assay (Bright-Glo; Promega) was performed
according to the manufacturer’s instructions. Relative light units for each condition were
determined by use of a microplate luminometer (Veritas Microplate Luminometer; Turner
Biosystems) and were reported as the mean ± SE for 3 wells. The tested compounds
included 2 peptidomimetic HCV PIs—BILN 2061 and a Vertex PI (kindly provided by
Vicki Sato of Vertex Pharmaceuticals); 1 GlaxoSmithKline trans-lactam PI active-site
mimic (kindly provided by Karen Romines of GlaxoSmithKline); 1 nucleoside analog HCV-
RNA–dependent RNA polymerase inhibitor, 2′-C-methyladenosine (kindly provided by
William Lee of Gilead Sciences); 1 GlaxoSmithKline benzothiadiazine RNA polymerase
nonnucleoside inhibitor (NNI) (kindly provided by Karen Romines of GlaxoSmithKline);
and 1 Wyeth benzofuran RNA polymerase NNI (kindly provided by Daria Hazuda of
Merck) [13]. The Wyeth and GlaxoSmithKline NNIs occupy unique sites in the polymerase.
The IC50 of each compound was determined independently and was used to determine the
range of concentrations used for the synergy experiments. Each compound was tested both
singly and in combination, at 2 2-fold serial dilutions above and below the IC50. The ratio of
the 3 tested compounds remained fixed across the dosing range. Determinations of
compound interactions were based on the median-effect principle and on the multiple-drug-
effect equation, as described by Chou and Talalay [14]. Combination indices were
determined, by use of Calcusyn (Biosoft), at the IC50, IC70, and IC90 levels. A total of 9
combinations were evaluated, with 3–5 replicates per condition. A combination index of
<0.9 was considered synergistic, a combination index of ≥0.9 or ≤1.1 was considered
additive, and a combination index of >1.1 was considered antagonistic. The 50%, 70%, and
90% combination indices are at the IC50, IC70, and IC90 concentrations of each drug,
respectively. Cytotoxicity was assessed for each 3-compound combination, at the highest
concentrations tested, by use of an MTS assay (CellTiter 96; Promega).

Results
Each inhibitor showed antiviral activity in our genotype 1 replicon system (figure 1). The
observed IC50 value for each of the individual compounds is listed in figure 1. Each
combination that was tested demonstrated synergy at the IC50, IC70, and IC90 concentrations
(figure 2). At the highest concentrations used in the studies, none of the compounds or
combinations exhibited cytotoxicity (figure 3).

Conclusions
HCV shares several key biological similarities with HIV-1, thereby allowing for the rapid
evolution of viral-resistance mutations under selective pressure [15]; however, unlike
HIV-1, HCV replication does not involve a DNA intermediate, a feature that has redirected
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therapeutic strategies toward viral elimination rather than life-long suppressive therapy. The
profound reductions in morbidity and mortality that accompanied the advent of highly active
antiretroviral therapy in the mid-1990s depended on the development of combination
antiretroviral regimens that were capable of durable viral suppression [16]. Early clinical
trials with small molecular inhibitors of HCV have demonstrated substantial potency but
also a propensity for rapid (i.e., within a few days) viral escape when agents are used singly
[5]. On the basis of these results of antiretroviral therapy, we investigated triple
combinations of small molecular inhibitors of HCV replication, focusing on combinations of
drugs targeting different sites of action.

We have demonstrated that these 3-drug combinations exhibit synergy in vitro, as was the
case in analogous studies that preceded the clinical investigation of highly active
antiretroviral therapy [8]. Of the compounds used in these studies, several are in the same
chemical class and possess a mechanism of action that is similar to that found in the
compounds being developed for clinical use. The Vertex PI used in these studies is a close
structural analog of VX-950, which has progressed through phase 2 human trials. The NS5B
polymerase inhibitors used in these studies, both nucleoside and nonnucleosides, are
members of chemical classes of compounds that are being actively developed as HCV
therapeutics. They share common targets and resistance mutations with therapeutic
candidates and, as such, are likely to be reasonable surrogates for use in in vitro studies.

Although there are many similarities between HCV and HIV, there are also substantial
differences in biology, and approaches that were successful in the case of HIV therapy will
undoubtedly require modification for treatment of HCV infection. HCV replicates to a
higher level, and its protease pocket represents a target that is much less attractive than the
HIV protease; it is quite conceivable that >3 small molecular inhibitors will ultimately be
required for successful HCV therapy. Nonetheless, as in the case of HIV therapeutics,
systematic exploitation of relevant in vitro systems are likely to provide extremely useful
information that can be used for generating hypotheses for clinical trials. These studies
provide further support for the concept that combinations of multiple small molecular
inhibitors of HCV replication should be evaluated in rigorous clinical trials, with the view
that this approach might ultimately lead to the development of interferon-free regimens that
can eliminate HCV from persons infected with it.
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Figure 1.
Activity of different small molecular inhibitors in the BM4-5 replicon. The IC50 is the mean
± SE of the results from at least 3 independent experiments. GSK, GlaxoSmithKline; NNI,
nonnucleoside inhibitor; PI, protease inhibitor.
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Figure 2.
IC50, IC70, and IC90, for the compound combinations evaluated. The dotted lines at
combination-index values 0.9 and 1.1 indicate the boundaries of an additive interaction.
Combination indices are displayed as the mean ± SE of the results from at least 3
independent experiments. GSK, GlaxoSmithKline; NNI, nonnucleoside inhibitor; PI,
protease inhibitor; −, antagonism; ±, additive; ±, synergy.
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Figure 3.
Results of cell-viability studies, for various 3-compound combinations used in the present
study. None of the combinations produced any significant loss in cell viability, compared
with control wells containing media alone. Data are shown as the ratio of cell viability in
wells treated with compound vs. those treated with media alone (compound A490:media
A490). GSK, GlaxoSmithKline; NNI, nonnucleoside inhibitor; PI, protease inhibitor.
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