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Abstract
Epiceanothic acid (1) is a naturally occurring, but very rare pentacyclic triterpene with a unique
pentacyclic triterpene (PT) structure. An efficient synthesis of 1 starting from betulin (3) has been
accomplished in 12 steps with a total yield of 10% in our study. Compound 1 and selected
synthetic intermediates were further evaluated as anti-HIV-1 agents, inhibitors of glycogen
phosphorylase (GP), and cytotoxic agents. Compound 1 exhibited moderate HIV-1 inhibition.
Most importantly, compound 5, with an opened A-ring, showed significant GP inhibitory activity
with an IC50 of 0.21 μM, suggesting a potential for development as an anti-diabetic agent. On the
other hand, compound 12, with a closed A-ring, showed potent cytotoxicity against A549 and
MCF-7 human tumor cell lines, with IC50 values of 0.89 and 0.33 μM, respectively. These results
suggest that the A-ring of PTs is an important pharmacophore that could be modified to involve
different biological activities.
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Pentacylic triterpenes (PTs), a group of widespread natural compounds, possess several
intriguing biological activities, such as anti-HIV, antitumor, anti-diabetic, anti-
inflammatory, antibacterial, antiviral, antiparasitic, hepatoprotective, wound healing,
antioxidant, antipruritic, antiangiogenic, antiallergic, and immunomodulatory activities.1–5

In recent years, PTs have been the focus of much interest due to their significant therapeutic
potentials. The anti-HIV and antitumor activities of PTs have received the most attention, as
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several synthetic PT derivatives have advanced into clinical trials [e.g. PA-457 (DSB,
Bevirimat, MPC-4326)6,7 and PA-1050040 for AIDS therapy, and betulinic acid, CDDO,
and CDDO-Me for cancer therapy). Our previous investigation also showed that PTs
represent a new class of glycogen phosphorylase (GP) inhibitors, which may be a key
contributing mode of action in their anti-diabetic activity.8–10

Epiceanothic acid (EA, 1) (Figure 1) is a naturally occurring ceanothane-type PT isolated
from the seeds of the traditional Chinese medicine Ziziphus jujuba var. spinosa (Bunge) Hu.
and the stings of Gleditsia sinensis Lam.11–13 It is reported to possess strong anti-HIV-1
replication activity in HIV-1IIIB infected C8166 cell lines (EC50<0.064 μg/mL).12,13

Compound 1 has two natural configurational isomers, ceanothic acid (2a)14–18 and
isoceanothic acid (2b).19 Their structures differ from that of 1 only in the orientations of the
2-carboxylic acid (2a) and 3-hydroxy group (2b) in the A-ring. Compound 2a was reported
to possess anti-microbial and cytotoxic activity,20–22 and its derivatives were found to be
potent cancer chemopreventive agents.23

Despite its obvious potential, only limited research has been reported on 1, because it is very
rare in nature. Therefore, it is highly desirable to establish a reliable access to 1-analogs for
biological evaluation. Herein, we report an efficient synthetic route to 1 in 12 steps with a
total yield of 10% starting from betulin (3), which is easily available at a low price.
Compound 1 and the pentacylic triterpene intermediates24 were then evaluated for anti-
HIV-1, GP inhibitory, and cytotoxic activities.

As shown in Scheme 1, crude dione compound 4, which was readily prepared from 3 in 67%
yield,25 was treated with KOH and H2O2 in MeOH26 to give the dicarboxylate compound 5
(70%). Methylation of 5 with iodomethane afforded compound 6 (83%). Dieckmann
condensation of 6 (t-BuOK/toluene)27 gave crude 5-membered keto ester 7 as a mixture of
2α-ester (7a) and 2β-ester (7b). This mixture could not be separated by column
chromatography, as isomerization could be observed during the purification process. The
major component was likely 7b, based on a comparison with our related work on oleanane-
type PTs (unpublished data) and identification of the reduction product 8. Reduction of the
crude 7 in the presence of NaBH4 in THF and EtOH gave 2β-methoxycarbonyl-3β-hydroxy
compound 8 as the only product (62% over two steps). Acetylation of the 3β-hydroxy group
was accomplished with acetic anhydride in pyridine in 78% yield. Deprotection of 9 with
pyridinium p-toluenesulfonate (PPTs) in EtOH gave primary alcohol 10 (89%). Oxidation of
10 with pyridinium chlorochromate (PCC) gave aldehyde 11 in good yield (91%), which
was further oxidized with NaClO2 and NaH2PO4 in a mixture of t-BuOH/THF/2-methyl-2-
butene25 to afford carboxylic acid 12 in high yield (96%). Hydrolysis of 12 afforded
epiceanothic acid (1) in 69% yield.

Compound 1, betulin (3), four selected pentacylic triterpene intermediates (9–12) and
PA-457 (as a positive control) were tested in acutely HIV-1NL4-3 infected MT-4 cells,
according to the literature methods.28–31 However, 3 and 9–12 did not exhibit significant
antiviral activity in our assay. In addition, despite the previous report, compound 1
demonstrated only moderate anti-HIV activity with an EC50 value of 15.6 μM and a
therapeutic index (TI) of 2.49 (Table 1). Esterification or acylation of the free carboxylic
acid and hydroxy functionalities in A-ring may be a contributing factor to the loss of
potency, as seen with 1 vs. 9, 10, 11, and 12. Interestingly, 2a, which has a 1α-COOH rather
than the 1β-COOH in 1, showed no anti-HIV-1 activity (unpublished data), suggesting that
the configuration of the 2-carboxylic acid group has an impact on the anti-HIV-1 activity.
Compared with the reported data,12,13 our results also suggested that different HIV viral
strains may have different sensitivity to 1. The molecular mechanisms underlying this
phenomenon remain to be elucidated.
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Type 2 diabetes mellitus is a severe disease with great economic consequences. Hepatic
glucose output is elevated in type 2 diabetic patients, and GP is the enzyme that catalyzes
glycogenolysis (release of monomeric glucose from the glycogen polymer storage form,
resulting in abnormally high glucose production). GP inhibitors lower glucose level acutely
and chronically in diabetic animal models, representing promising new hypoglycemic agents
for the treatment of type 2 diabetes mellitus.

In our continuing efforts to find potent GP inhibitors from PT compounds, all of the related
compounds (1, 3, 5–6, and 8–12) in our study were evaluated for inhibitory activity against
rabbit muscle glycogen phosphorylase a (RMGPa).32 As described previously, the activity
of RMGPa was measured by detecting the amount of phosphates released from glucose-1-
phosphates in the direction of glycogen synthesis.33 The assay results are summarized in
Table 2. Most of the newly synthesized PTs exhibited inhibitory activity against RMGPa.

As shown in Table 2, opening of the A-ring of lupine-type PTs significantly improved the
GP inhibitory potency. The A-ring opened compound 6 showed potent GP inhibitory
activity with an IC50 value of 2.87 μM, and was 14-fold more potent than betulin (3, IC50
41.5 μM). Another A-ring opened compound 5 showed the most potent GP inhibitory
activity with an IC50 value of 0.21 μM. Compound 5 was 14-fold more potent than its
methylated parent compound 6 and almost 200-fold more potent than 3. The trityl ether
compounds 8 and 9 were slightly more potent than 3, and compounds 11 and 12 showed
comparable potency to 3. However, 1 exhibited only weak GP inhibitory activity with an
IC50 value of 194.1 μM. Overall, the A-ring was proven to be a very important
pharmacophore for modifying PTs’ GP inhibition activity, and the preliminary SAR analysis
showed that opening of the A-ring of lupine-type PTs may enhance GP inhibition. The most
potent GP inhibitor, 5 (IC50 0.21 μM), merits further development as a potential anti-
diabetic agent.

The cytotoxic activity of 1 and its synthetic intermediates (5, 6, 8–12) was tested in vitro
using the MTT cytotoxicity assay,34–35 and the results are summarized in Table 3. Five
different cancer cell lines were used including PC3 (human prostate cancer), A549 (human
lung carcinoma), MCF-7 (human breast cancer), HeLa (human epithelial carcinoma), and
BGC-823 (human gastric carcinoma). Adriamycin was used as the reference standard.

Overall, different cancer cell lines showed different sensitivity to the PT compounds. The
trityl ether compounds 8 and 9 were inactive against the PC3 cell line, while aldehyde 11
(IC50 = 8.51 μM) and carboxylic acid 12 (IC50 = 10.8 μM) were more cytotoxic than the
corresponding primary alcohol 10 (IC50 = 66.3 μM). With a free carboxylic acid and
hydroxy group in the A-ring, 1 (IC50 = 19.7 μM) showed slightly decreased activity
compared with 12. The A-ring opened compounds 5 and 6 exhibited more potent
cytotoxicity against PC3 with IC50 values of 6.75 and 5.32 μM, respectively.

Noticeably, natural product 1 showed the greatest cytotoxicity against gastric carcinoma
BGC-823 with an IC50 value of 2.41 μM. The potency against this cell lines was at least 10-
fold higher than against all the remaining four tested cancer cell lines, thus, demonstrating
selective sensitivity. Compound 12, with ester-protected carboxylic acid and hydroxy groups
in the A-ring relative to 1, showed three-fold decreased activity with an IC50 of 7.64 μM. All
of the remaining PTs showed moderate to little cytotoxic activity against BGC-823.

Generally, the A549, MCF-7, and Hela cancer cell lines were insensitive to the tested PT
analogs. However, compound 12 showed selective potent cytotoxicity against A549 and
MCF-7 with IC50 values of 0.89 and 0.33 μM, respectively. Interestingly, the free carboxylic
acid and hydroxy groups in the A-ring of 1 decreased its cytotoxic activity against A549 and
MCF-7 by more than 20-fold compared with 12, which is opposite to the activity profile
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against BGC-823. The activity of 12 against MCF-7 was slightly better than that of
adriamycin, suggesting that it merits further SAR and mechanism of action study.

In summary, an efficient access to epiceanothic acid (1) starting from betulin (3) has been
developed in 12 steps with an overall yield of 10%. Because 3 is readily available, this
preparation gives practical access to the very rare natural PT epiceanothic acid and enables
further pharmacological research and drug development.

The synthesized PT derivatives were evaluated biologically as anti-HIV-1 agents, inhibitors
of glycogen phosphorylase, and cytotoxic agents. The results showed that 1 has moderate
potency against HIV-1NL-43 virus strains. In addition, compound 5 with two free carboxylic
acids in an opened A-ring showed potent GP inhibitory activity with an IC50 value of 0.21
μM. To our knowledge, it is the most potent PT derived GP inhibitor thus far. On the other
hand, compound 12, with a closed A-ring and protected carboxylic acid and hydroxy groups,
exhibited potent cytotoxic activity against A549 and MCF-7 cancer cell lines with IC50
values of 0.89 and 0.33 μM, respectively, which were comparable or better than those of
adriamycin. These results suggest that the A-ring is an important pharmacophore for both
GP inhibitory and cytotoxic activity of PTs. Different modifications on the A-ring could
change the bioactivity of epiceanothic acid derivatives. Further mechanistic and
pharmacologic studies of these compounds are currently ongoing.
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s), 4.63 (1H, s), 4.75 (1H, s), 5.17 (1H, d, J = 7.5 Hz) 9.68 (1H, s); 13C NMR (CDCl3) δ 13.5,
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42.8, 47.6, 47.9, 48.2, 50.4, 51.2, 59.3, 60.0, 62.2, 83.6, 110.3, 149.6, 170.5, 171.6, 206.6; ESI-MS
m/z: 549.0 [M+Na]+; HRMS for C33H50O5+Na calcd 549.35505, found 549.35424. Compound
12: [α]D −10.67 (c 0.09, CH3OH); IR (film, cm−1): 3346, 2948, 2868, 1748, 1701, 1457, 1377,
1241, 1194, 1158, 1029, 736, 638; 1H NMR (C5H5N) δ 0.87 (3H, s), 1.03 (3H, s), 1.06 (3H, s),
1.15 (3H, s), 1.37 (3H, s), 1.76 (3H, s), 2.03 (3H, s), 1.19–1.95 (16H, m), 2.23–2.28 (2H, m),
2.60–2.76 (2H, m), 2.80 (1H, d, J = 7.7 Hz), 3.46–3.53 (1H, m), 3.58 (3H, s), 4.73 (1H, s), 4.91
(1H, s), 5.47 (1H, d, J = 7.7 Hz); 13C NMR (C5H5N) δ 13.8, 14.6, 16.5, 17.8, 19.0, 19.2, 20.4,
24.2, 25.4, 30.2, 30.7, 31.0, 32.7, 34.3, 37.3, 38.1, 41.6, 42.3, 42.8, 47.6, 47.9, 49.5, 50.4, 50.8,
56.3, 59.9, 62.0, 83.8, 109.7, 150.9, 170.1, 171.5, 178.5; ESI-MS m/z: 565.0 [M+Na]+; HRMS for
C33H50O6-H calcd 541.35346, found 541.35249. Compound 1 (Epiceanothic acid): [α]D −14.5
(c 0.076, CH3OH) [lit.4, [α]D −16.3 (c 0.08, CH3OH)]; IR (film, cm−1): 3476, 2951, 2868, 1696,
1643, 1459, 1377, 1320, 1237, 1187, 1058, 884; 1H NMR (C5H5N) δ 1.08 (3H, s), 1.13 (3H, s),
1.15 (3H, s), 1.20 (3H, s), 1.67 (3H, s), 1.74 (3H, s), 1.13–2.22 (18H, m), 2.60–2.64 (1H, m),
2.73–2.80 (1H, m), 2.89 (1H, d, J = 7.2 Hz), 3.43–3.49 (1H, m), 4.66 (1H, d, J = 7.4 Hz), 4.69
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Figure 1.
Structures of epiceanothic acid (1) and related PT compounds (2a, 2b, 3).
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Scheme 1.
Synthesis of epiceanothic acid (1) from betulin (3).
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Table 1

Anti-HIV-1 replication activity of PT compounds in HIV-1NL4-3 infected MT-4 cell lines

Compound EC50 (μM)a IC50 (μM)a TI

PA-457 0.082 15.2 185.4

1 15.6 38.9 2.49

a
Results are averaged from two experiments. Compounds 3 and 9–12 were also tested, but were not active.
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Table 2

Inhibition of RMGPa by synthesized PT compounds

Compound IC50
a (μM) ±SD Compound IC50

a (μM) ±SD

3 41.5±3.2 10 NIb

5 0.21±0.1 11 53.8±4.9

6 2.87±0.1 12 46.4±3.6

8 20.1±1.1 1 194.1±17.5

9 15.2±0.7 Caffeinec 75.3±6.6

a
Values are means of three experiments.

b
NI = no inhibition.

c
Caffeine was used as a positive control.
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