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Abstract
In 1951 Robbins and Monro published the seminal paper on stochastic approximation and made a
specific reference to its application to the “estimation of a quantal using response, non-response
data”. Since the 1990s, statistical methodology for dose-finding studies has grown into an active
area of research. The dose-finding problem is at its core a percentile estimation problem and is in
line with what the Robbins-Monro method sets out to solve. In this light, it is quite surprising that
the dose-finding literature has developed rather independently of the older stochastic
approximation literature. The fact that stochastic approximation has seldom been used in actual
clinical studies stands in stark contrast with its constant application in engineering and finance. In
this article, I explore similarities and differences between the dose-finding and the stochastic
approximation literatures. This review also sheds light on the present and future relevance of
stochastic approximation to dose-finding clinical trials. Such connections will in turn steer dose-
finding methodology on a rigorous course and extend its ability to handle increasingly complex
clinical situations.

Key words and phrases
Coherence; Dichotomized data; Discrete barrier; Ethics; Indifference interval; Maximum
likelihood recursion; Unbiasedness; Virtual observations

1. Introduction
Dose-finding in phase I clinical trials is typically formulated as estimating a pre-specified
percentile of a dose-toxicity curve. That is, the objective is to identify a dose θ such that π(θ)
= p, or equivalently,

(1)

where π(x) is the probability of toxicity at dose x and is assumed continuous and increasing
in x. Percentile estimation, often seen in bioassay, is a well-studied problem for which
statisticians have an extensive set of tools; see Finney (1978) and Morgan (1992). There are,
however, two practical aspects of clinical studies that distinguish phase I dose-finding from
the classical bioassay problem. First, the experimental units are humans. An implication is
that the subjects should be treated sequentially with respect to some ethical constraints (e.g.
Section 2.3.1). As such, dose-finding is as much a design problem as an analysis problem.
Second, the actual doses administered to the subjects are confined to a discrete panel of
levels, denoted by {d1,…, dK}, with π(d1) < ⋯ < π(dK). Therefore, it is possible that π(dk) ≠
p for all k, and the working objective then is to identify the dose
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(2)

Apparently, the continuous dose-finding objective θ and the discrete objective ν are close to
each other. However, in this article, we will see that discretized versions of methods
developed for θ are not necessarily good solutions for ν. This special section of Statistical
Science also consists of four other articles that review some benchmarks in the recent
development of the so-called model-based methods for dose-finding studies. In a nutshell, a
model-based method makes dose decisions based on the explicit use of a dose-toxicity
model. That is, the toxicity probability at dose x, π(x), is postulated to be F(x, ϕ0) for some
true parameter value ϕ0. This is in contrast to the class of algorithm-based designs whereby a
set of dose-escalation rules are pre-specified for any given dose without regard to the
observations at the other doses. Section 2 of this article will present a brief history of the
development of the modern dose-finding methods and define the scope of this special issue.

In addition, this article complements the other articles in two ways. First, it consolidates the
key theoretical dose-finding criteria that are otherwise scattered in the literature (Section
2.3). Second, it compares and contrasts the dose-finding literature with the large literature on
stochastic approximation (Section 3); the former primarily addresses the discrete objective ν,
whereas the latter deals with θ. While this literature synthesis is of intellectual interest, it
also sheds light on how we may tailor the well-studied stochastic approximation method to
meet the practical needs in dose-finding studies (Section 4). Section 5 will end this article
with some future directions in dose-finding methodology.

2. Modern Dose-Finding Methods
2.1 A brief history

This article uses Storer and DeMets (1987) as a historical line to define the modern
statistical literature of dose-finding. Little discussion and formal formulation of the dose-
finding problem existed in the pre-1987 statistical literature; an exception was Anbar (1984).
While dose-finding in cancer trials were discussed as early as in the 1960s in the biomedical
communities, a well-defined quantitative objective such as (2) was absent in the
communications; see Schneiderman (1965) and Geller (1984) for example. Storer and
DeMets (1987) is the earliest reference, to the best of my knowledge, that engages the
clinical readership with the idea of percentile estimation. The authors point out the arbitrary
estimation properties associated with the traditional 3+3 algorithm used in actual dose-
finding studies in cancer patients. The 3+3 algorithm identifies the so-called maximum
tolerated dose (MTD) using the following dose escalation rules after enrolling every group
of three subjects: let xj denote the dose given to the jth group of subjects and suppose xj = dk,
then

(3)

where nk and zk respectively denote the cumulative sample size and number of toxicities at
dose dk. The trial will be terminated once a de-escalation occurs, and the next lower dose
will be called the MTD. In the sequel, Storer (1989) deduces from the 3+3 algorithm (3) that
a cancer dose-finding study aims to estimate the 33rd percentile (i.e., p = .33). While it has
now emerged that the target is likely lower than the 33rd percentile with p being between .16
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and .25, their work has shaped the subsequent development of dose-finding methods in both
the statistical and biomedical literatures, and the MTD has since been defined invariably as a
dose associated with a pre-specified toxicity probability p.

O'Quigley and colleagues proposed the continual reassessment method (CRM) in 1990. The
CRM is the first model-based method in the modern dose-finding literature. The main idea
of the method is to treat the next subject or group of subjects at the dose with toxicity
probability estimated to be closest to the target p. Precisely, suppose we have observations
from the first j groups of subjects and compute the posterior mean ϕ̂j of ϕ given these
observations. Then the next group of subjects will be treated at

(4)

A similar idea is adopted in most model-based designs proposed since 1990. One example is
the escalation with overdose control (EWOC) by Babb et al. (1998), who apply the continual
reassessment notion but estimate the MTD with respect to an asymmetric loss function
which places heavier penalties on over-dosing than under-dosing. O'Quigley and Conaway
(2010) and Tighiouart and Rogatko (2010) in this special issue review the CRM and the
EWOC and their respective extensions. Another CRM-like design is the curve-free method
by Gasparini and Eisele (2000) who estimate the dose-toxicity curve using a Bayesian
nonparametric method in an attempt to avoid bias due to model misspecification. Leung and
Wang (2001) propose an analogous frequentist version that uses isotonic regression for
estimation. Other model-based designs include the Bayesian decision-theoretic design
(Whitehead and Brunier, 1995), the logistic dose-ranging strategy (Murphy and Hall, 1997),
and Bayesian c-optimal design (Haines et al., 2003).

The late 1990s saw an increasing interest in algorithm-based designs. Durham et al. (1997)
propose a biased coin design by which the dose for the next subject is reduced if the current
subject has a toxic outcome, and the dose is escalated with a probability p/(1 − p) otherwise.
The biased coin design is a randomized version of the Dixon and Mood (1948) up-and-down
design. Motivated by its similarity to the traditional design, Cheung (2007) studies a class of
stepwise procedures that includes (3) as a special case. Yet another algorithm-based method
is proposed by Ji et al. (2007) who make interim decisions based on the posterior toxicity
probability interval associated with each dose. The impetus for these algorithm-based
designs is simplicity: the decision rules can be charted prior to the trial, so that the clinical
investigators know exactly how doses will be assigned based on the observed outcomes.

In order to make dose-finding techniques relevant to clinical practice, statisticians have
responded to the realistically complicated clinical situations such as time-to-toxicity
endpoints (Cheung and Chappell, 2000) and combination treatments (Thall et al., 2003).
While the core dose-finding objective remains a percentile estimation problem, the
complexity of dose-finding methods has grown rapidly in the literature, with most
innovations taking the model-based approach. Thall (2010) in this special issue will review
the major development of these complex designs.

Most (model-based) designs in the literature up to this point take the myopic approach by
which the dose assignment is optimized with respect to the next immediate subject without
regard to the future subjects. Bartroff and Lai (2010) in this issue break away from this
direction and propose a model-based method from an adaptive control perspective. While
this work attempts to solve a specific Bayesian optimization problem, it also sets a new
direction in the modern dose-finding techniques; see Section 3 of this article.
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2.2 Why model-based now
A model-based design allows borrowing strength from information across doses. This
characteristic appeals to statisticians and clinicians alike, especially because of the typically
small-to-moderate sample sizes seen in early-phase clinical studies. As clinicians begin to
appreciate the crucial role of dose-finding in the entire drug development program and the
value of statistical inputs to reconcile the ethical and research aspects in early phase trials,
their discussions have revolved around model-based innovations such as the CRM (Ratain et
al., 1993) and the EWOC (Eisenhauer et al., 2000). The increasing number of applications in
actual trials (Muller et al., 2004) indicates the clinical awareness and readiness for these
model-based methods.

When compared to the simplicity of algorithm-based methods, the model-based approaches
are computationally complex and require special programming before and during the
implementation of a trial. Thanks to the advances of computing algorithms (e.g., Markov
Chain Monte Carlo) and computer technology however, trial planning with extensive
simulation has become feasible. This being the case, a full-scale dynamic programming can
still stretch the computing resource; see Bartroff and Lai (2010) for some comparison of
computational times. In addition, statistician-friendly software has become increasingly
available for the planning and execution of these model-based designs, e.g. the dfcrm
package in R (Cheung, 2008). These indicators of computational maturity transform the
model-based designs into practical tools for dose-finding trials.

Finally, the development of dose-finding theory and dose-response models in the past two
decades lends scientific rigor to the complexity of the model-based methods. Indeed, the
goal of this special issue is to review the theoretical and modeling progress made in the
modern dose-finding literature, and thereby demonstrate the full promise, and perhaps
challenges, of the model-based methods.

2.3 Some theoretical criteria
In a typical dose-finding trial, subjects are enrolled in small groups of size m ≥ 1. The
enrollment plan is said to be fully sequential when m = 1. Let xi denote the dose given to the
ith group of subject(s). Thus, the sequence {xi} forms the design of a dose-finding study. As
most dose-finding methods are outcome-adaptive, each design point xi is random and
depends on the previous observation history. Evaluation of a dose-finding method therefore
involves the study of its design space with respect to some ethical and estimation criteria.
This section will review some key dose-finding criteria including coherence, rigidity,
indifference intervals, and unbiasedness.

2.3.1 Coherence—First, consider fully sequential trials with m = 1, so that each human
subject is an experimental unit. An ethical principle, coined coherence by Cheung (2005),
dictates that no escalation should take place for the next enrolled subject if the current
subject experiences some toxicity, and that dose reduction for the next subject is not
appropriate if the current subject has no sign of toxicity. Precisely, let Yi denote the toxicity
outcome of the ith subject. An escalation for the subject is said to be coherent only when
Yi−1 = 0; likewise, a de-escalation is coherent only when Yi−1 = 1. Extending the notion of
coherence for each move, one can naturally define coherence as a property of a dose-finding
method:

PROPERTY 1 (Coherence). A dose-finding design  is said to be coherent in escalation if with
probability one
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(5)

for all i, where Ui = xi − xi−1 is the dose increment from subject i − 1 to i, and P (·) denotes
probability computed under the design . Analogously, the design is said to be coherent in
de-escalation if with probability one

(6)

for all i.

It is important to note that coherence is motivated by ethical concerns, and hence may not
correspond to efficient estimation of the dose-toxicity curve. For example, in bioassay, an
efficient design obtained by sequentially maximizing some function of the information may
induce incoherent moves, and thus is not appropriate for human trials; see McLeish and
Tosh (1990) for example.

An algorithm-based design can explicitly incorporate dose decision rules that respect the
coherence principles; cf. the biased coin design. For a model-based design, on the other
hand, it is not immediately clear that whether coherence necessarily holds. There are three
general ways to ensure coherence in practice. First, one could adopt model-based methods
that have been proven coherent analytically. This includes the one-stage Bayesian CRM.
Second, one could take a numerical approach. Let N denote the sample size of a trial. Then
the design space is completely generated by the first N − 1 binary toxicity observations, and
thus consists of 2N−1 possible design outcomes. Therefore, one could establish coherence
(for a given N) by enumerating all possible outcomes and verifying that there is no
incoherent move. In some cases, the number of outcomes can be immensely reduced to the
order of N; see Theorem 1 in Cheung (2005). Third, one could enforce coherence by
restriction when the model-based dose assignment is incoherent. Applying coherence
restrictions is common in practice (Faries, 1994) and is the most straightforward approach
for complex designs. On the other hand, the restricted moves need to be examined carefully
lest they should cause an incompatibility problem as defined in Cheung (2005).

In practice, the enrollment plan is often small-group sequential, i.e., m > 1, in order to
reduce the number of interim decisions and hence trial duration. In this case, each group of
subjects may be viewed as an experimental unit. A generalized version of Property 1 can be
stated as:

PROPERTY 1′ (Group coherence). A dose-finding design  is said to be group coherent in
escalation if with probability one

(7)

for all i, where Ui = xi − xi−1 now denotes the dose increment from group i − 1 to i and Ȳi−1
is the observed proportion of toxicities in group i − 1. Analogously, the design is said to be
group coherent in de-escalation if with probability one
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(8)

for all i.

It is easy to see that (7) and (8) reduce to (5) and (6) respectively when m = 1 for p ∈ (0, 1).

2.3.2 Rigidity and sensitivity—A design sequence {xn} is strongly consistent for θ if xn
→ θ with probability one. For trials allowing only a discrete number of test doses as in (2),
consistency means xn = ν eventually with probability one. Consistency, a desirable statistical
property in general, has an ethical connotation in dose-finding studies because it implies all
subjects enrolled after a certain time point will be treated at ν, which is the desired dose.

PROPERTY 2 (Rigidity). A dose-finding design  is said to be rigid if for every 0 < pL < π(ν) <
pU < 1 and all n ≥ 1,

where π(pL, pU) = {x : pL ≤ π(x) ≤ pU}.

It is easy to see that consistency excludes the rigidity problem. In other words, Property 2
implies that a design is inconsistent. In particular, rigidity occurs when a CRM-like
procedure is applied in conjunction with nonparametric estimation. Hence, such a
nonparametric design is inconsistent. This is quite interesting and somewhat counter-
intuitive, because nonparametric estimation is introduced with an intention to remove bias
and to enhance the prospect of consistency.

To illustrate, consider a design that starts at dose level 1, enrolls subjects in groups of size m
= 2, and assigns the next group at arg mink |p̃k − p| where p̃k is an estimate of π(dk) based on
isotonic regression, and the target is p = .20. Now suppose that none of the subjects in the
first group has a toxic outcome. Then suppose the second group enters the trial at dose level
2, with one of the two experiencing toxicity. Based on these observations, the isotonic
estimates are p̃1 = .00 and p̃2 = .50, which bring the trial back to dose level 1. From this
point on, because there is no parametric extrapolation to affect the estimation of π(d2) by the
data collected at d1, the isotonic estimate p̃2 will be no smaller than .50 regardless of what
happens at d1, i.e., |p̃2 − .20| ≥ .30. As a result, |p̃1 − .20| < .30 ≤ |p̃2 − .20| if p̃1 ≤ .20. That
is, the trial will stay at dose level 1 even if there is a long string of non-toxic outcomes there!

This example demonstrates that nonparametric estimation and the sequential sampling plan
together cause rigidity through an “extreme” over-estimate of π(d2) based on small sample
size. The probability of this extreme over-estimation is non-negligible indeed: if dose level 2
is the true MTD with π(d2) = .20, then the probability that the trial is confined to the
suboptimal dose 1 is at least .36 by a simple binomial calculation. Cheung (2002) constructs
a similar numerical example for the Bayesian nonparametric curve-free method, and
suggests that the rigidity probability can be reduced by using an informative prior to add
smoothness to the estimation.

Due to ethical constraints such as coherence and the discrete design space, it may be
challenging to achieve consistency without strong model assumptions. For example, the
CRM has been shown to be consistent under certain model misspecifications, but is not
generally so (Shen and O'Quigley, 1996). In this context, Cheung and Chappell (2002)
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introduced the indifference interval as a sensitivity measure of how close a design may
approach ν on the probability scale:

PROPERTY 3 (Indifference interval). The indifference interval of a dose-finding design  exists
and is equal to p ± δ if there exist N > 0 and δ ∈ (0, p) such that

Apparently, the smaller the half-width δ of a design's indifference interval is, the closer the
design converges to the MTD; whereas a large δ indicates the design is sensitive to the
underlying π. The sensitivity of the design  can thus be measured by δ. Specifically, a
design with half-width δ (for some δ < p) will be called a δ-sensitive design.

It is clear that if a design  is consistent for ν, then it is δ-sensitive; i.e., one may choose δ
so that π(ν) ∈ p ± δ. Also, if  is δ-sensitive, then it is non-rigid. Thus, while consistency
appears to be too difficult and non-rigidity too non-discriminatory for a dose-finding design,
δ-sensitivity seems to be a reasonable design property. Cheung and Chappell (2002)
prescribed a way to calculate the indifference interval of the CRM, i.e., the CRM is δ-
sensitive. Moreover, Lee and Cheung (2009) showed that the CRM can be calibrated to
achieve any δ level of sensitivity. However, it should be noted that indifference interval is an
asymptotic criteria. As such, a small δ does not necessarily yield good finite sample
properties.

2.3.3 Unbiasedness—The performance of a reasonable dose-finding design is expected
to improve as the underlying dose-toxicity curve π becomes steep. This property, called
unbiasedness by Cheung (2007), is formulated as follows:

PROPERTY 4 (Unbiasedness). Let pi = π(di) denote the true toxicity probability at dose di. A
design  is said to be unbiased if

a. P  (xn = dk) is nonincreasing in pi′ for i′ ≤ k, and

b. P  (xn = dk) is nondecreasing in pi for i > k.

For the special case with dk = ν and π(ν) = p, unbiasedness implies that the probability of
correctly selecting ν increases as the doses above the MTD become more toxic (i.e., pi ≫ p),
or the doses below less toxic (i.e., pi′ ≪ p). In other words, the design will select the true
MTD more often as it becomes more separated from its neighboring doses in terms of
toxicity probability. A design that satisfies this special case is called weakly unbiased.

One may argue that δ-sensitive designs (e.g. the CRM) are asymptotically weakly unbiased,
in that they will be consistent if the underlying dose-toxicity curve π becomes sufficiently
steep around the MTD; see Figure 1 for an illustration. Unbiasedness has been established
only for few designs in the dose-finding literature; an example is the class of stepwise
procedures (Cheung, 2007). In practice, extensive simulations are usually required, and are
often adequate, to confirm that a design is (weakly) unbiased.

3. Stochastic Approximation
3.1 The Robbins-Monro (1951) procedure

Robbins and Monro (1951) introduce the first formal stochastic approximation procedure for
the problem of finding the root of a regression function. Precisely, let M(x) be the mean of
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an outcome variable Y = Y(x) at level x, and suppose M(x) = α has a unique root θ and supx
E{Y2(x)} < ∞. Then the stochastic approximation recursion approaches θ sequentially:

(9)

for some constant b > 0. It is well established that xn → θ with probability one. If in
addition, the constant b is chosen properly (namely b < 2M′(θ) ≡ 2β), then n1/2(xn − θ) will
converge in distribution to a normal variable with mean 0 and variance σ2{b(2β − b)}−1

where σ2 = limx → θ var {Y(x)}; see Sacks (1958) and Wasan (1969).

It is immediately clear that (9) is applicable to address objective (1) in a clinical trial setting
with M = π and α = p. For one thing, the recursion output is coherent (Property 1) thus
passing the first ethical litmus test. It is also easy to see that a small-group sequential version
of (9), i.e., replace Yi with Ȳi, is group coherent (Property 1′). There are, however, several
practical considerations.

The choice of b is crucial. In view of efficiency, the asymptotic variance is minimized when
we set b = β, which is typically unknown in most applications. This leads to the idea of
adaptive stochastic approximation where b is replaced by a sequence bi that is strongly
consistent for β (Lai and Robbins, 1979). However, when the sample size is small-to-
moderate, the numerical instability induced by the adaptive choice bi may offset its
asymptotic advantage. In this article, for a reason described in Section 4.2, we assume that a
good choice of b is available.

The next practical issue is that (9) entails the availability of a continuum of doses. This is
seldom feasible in practice. In drug trials, dose availability is often limited by the dosage of
a tablet. For treatments involving combination of drugs administered multiple times over a
fixed period, each subsequent dose may involve increasing doses and/or frequency of
different drugs. For example, Table 1 describes the dose schedules of bortezomib used in a
dose-finding trial in patients with lymphoma (Leonard et al., 2005). The first three levels
prescribe bortezomib at a fixed dose 0.7 mg/m2 with increasing frequency, whereas the next
two increments apply the same frequency with increasing bortezomib doses. While we are
certain that the risk for toxicity increases over each level, there is no natural scale of dosage
(e.g. mg/m2). Thus, assuming that the toxicity probability π(x) is well-defined on a
continuous range of x is artificial.

To tailor the stochastic approximation for the discrete objective ν, an obvious approach is to
round the output of (9) to its closest dose at each iteration. For example, suppose that the
dose labels are {1,…,K}, i.e., dk = k. Then a discretized stochastic approximation may be
expressed as

(10)

where C(x) is the rounded value of x if .5 ≤ x < K + .5, and is set equal to 1 and K
respectively if x < .5 or > K + .5. Unfortunately, the discretized stochastic approximation is
rigid (Property 2). To illustrate, consider applying (10) with b = .2 and a target p = .20 in a
trial with x1 = 1 and m = 2. Then no toxicity event in the first group, i.e., Ȳ1 = 0, gives x2 =
2. Further suppose that the second group has a 50% toxicity rate (Ȳ2 = 0.5). This will bring
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the trial back to x3 = C(2 − 0.75) = 1; it is easy to see that the remaining subjects will
receive dose 1. To see how rigidity occurs for a general variable type, we observe that since
xi is an integer, the update xi+1 according to (10) will stay the same as xi if |(ib)−1(Ȳi − p)| <
0.5, whose probability approaches 1 at a rate of O(i−2) according to Chebyshev's inequality
if Yi has a finite variance. If Yi is bounded (e.g., binary), the term C {(ib)−1(Ȳi − p)} will
always be zero as i becomes sufficiently large, and will not contribute to future updates. This
problem, called discrete barrier, is thus built by rounding and the fact that the design points
take on a discrete set of levels. In the context of the CRM, Shen and O'Quigley (1996) point
out similar difficulties in establishing the theoretical properties of dose-finding methods due
to the discrete barrier. This is where the modern dose-finding literature departs from the
elegant stochastic approximation approach.

3.2 Stochastic approximation and model-based methods
The Robbins-Monro stochastic approximation is a nonparametric procedure in that the
convergence results depend only very weakly on the true underlying M(x). For the case of
normal Y, interestingly Lai and Robbins (1979) show that the recursion output in (9) is
identical to the solution xĩ+1 of

(11)

which amounts to maximum likelihood estimation of θ under a simple linear regression
model. This connection between the stochastic approximation and a model-based approach
motivates the study of the maximum likelihood recursion in Wu (1985), Wu (1986), and
Ying and Wu (1997) for data arising from the exponential family. In particular, for binary Y,
Wu (1985) proposes the logit-MLE that uses the logistic working model

(12)

and replaces the estimating equation (11) with . Here, we focus on
the non-adaptive version, i.e., where b̃ is a fixed constant. A maximum likelihood version of
the CRM (4) would clearly yield the same design point as xĩ+1 if the design space was
continuous. In this regard, the likelihood CRM is an analogue of the logit-MLE for the
discrete objective ν.

In order to establish the asymptotic distribution of the logit-MLE (and the maximum
likelihood recursion in general), Ying and Wu (1997) show that the sequence xĩ+1 is
asymptotically equivalent to an adaptive Robbins-Monro recursion; see the proof of
Theorem 3 in Ying and Wu (1997). While the justification of the model-based logit-MLE
relies on its asymptotic equivalence to the non-parametric Robbins-Monro procedure, Wu
(1985) showed by simulation that the former is superior to the latter in finite-sample settings
with binary data. Similarly, O'Quigley and Chevret (1991) demonstrated that the CRM
performs better than the discretized stochastic approximation (10) for the objective v.

These observations regarding the stochastic approximation, the logit-MLE, and the CRM
bear two practical suggestions. First, in typical dose-finding trial settings with binary data
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and small sample sizes, a model-based approach seems to retain some information that is
otherwise lost when using nonparametric procedures. This speculation is made without
assuming much confidence about the working model. Second, one may study the theoretical
(asymptotic) properties of the modern model-based method (e.g., CRM) by tapping the rich
stochastic approximation literature, thus giving guidance on the choice of design parameters
such as b̃ in (12). This can be achieved, of course, only if we can resolve the discrete barrier
—we will return to this in Section 4.2.

3.3 Stochastic approximation and adaptive control
Maximum likelihood recursion attempts to optimize the prospect for the next subject by
setting the next design point at the current estimate of θ, and is myopic in that it does not
consider the dose assignments of future subjects. The Robbins-Monro procedure is therefore
myopic by (asymptotic) equivalence. Lai and Robbins (1979) study the adaptive cost control

aspect of the stochastic approximation for normal Y where  is defined as
the cost of a design sequence {xi} at stage n. Specifically they show that the cost of (9) is of
the order σ2 log n if b < 2β. Under some simple linear regression models, Han et al. (2006)
show that the myopic Bayesian rule is optimal when the slope parameter is known. This
suggests that the myopic Robbins-Monro method may also have good adaptive control
properties.

The control aspect of the stochastic approximation is less clear for binary data. Bartroff and
Lai (2010) address the control problem by using techniques in approximate dynamic
programming to minimize some well-defined global risk, such as the expectation of the
design cost Cn. The authors demonstrate reduction of the global risk by non-myopic
approaches when compared to the myopic ones including the stochastic approximation and
the logit-MLE. The scope of the simulations, however, is confined to situations where the
logistic model correctly specifies π. In addition, their approach is intended for the
continuous objective θ, instead of v.

Further research on the use of non-myopic approaches in dose-finding is warranted,
especially for practical situations with a discrete set of test doses. The design cost at stage n

for the discrete objective v can be analogously defined as . Then a dose-
finding design  is consistent if and only if  is finite almost everywhere. As
mentioned earlier, the myopic CRM is not necessarily consistent (as it tries to treat each
subject at the current “best” dose). By contrast, designs that spread out the design points
(e.g., the biased coin design) allow consistent estimation of ν at the expense of the enrolled
subjects. Neither guarantees a finite . An optimal  for the infinite-horizon control of

 thus seems to resolve the inherent tension between the welfare of enrolled subjects (i.e.,
the cost is kept low) and the estimation of ν (i.e., xn is consistent).

4. Ongoing Relevance
4.1 Binary versus dichotomized data

As mentioned above, with a binary outcome and small samples, the Robbins-Monro
procedure is generally less efficient than model-based methods, and hence may not be
suitable for clinical dose-finding where the study endpoint is classified as toxic and non-
toxic. In many situations, however, the binary toxic outcome T is defined by dichotomizing
an observable biomarker expression Y, namely, T = 1(Y > t0) for some fixed safety threshold
t0, where 1(E) denotes the indicator of the event E. The biomarker Y apparently contains

Cheung Page 10

Stat Sci. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



more information than the dichotomized T, and may be used to achieve the dose-finding
objective (1) with greater efficiency.

To illustrate, consider the regression model

(13)

where ε has a known distribution G with mean 0 and variance 1. Under (13), the toxicity
probability can be expressed as π(x) = 1 − G [{t0 − M(x)}/σ(x)] and the continuous dose-
finding objective (1) can be shown to be equivalent to the solution to

(14)

where zp is the upper pth percentile of G. To focus on the comparison between the use of Y
and T, suppose for the moment that a continuum of dose x is available. Further suppose that
a trial enrolls patients in small groups of size m. Let xi denote the dose given to the ith
group, and Yij the biomarker expression of the jth subject in the group. With this
experimental setup, we note that

(15)

is an unbiased realization of f(xi), where Si is the sample standard deviation of the
observations in group i. The expectation in (15) can be computed for any given G, because
Si/σ(xi) depends on the error variable ε but not M and σ under model (13). In other words, Oi
is observable and is a continuous variable that can be used to generate a stochastic
approximation recursion

(16)

The design {xn} generated by (16) is consistent for θ under the condition that θ is the unique
solution to (14). This condition holds, for example, when M is strictly increasing and σ is
nondecreasing in x. This is a reasonable assumption for many biological measurements, for
which the variability typically increases with the mean. Furthermore, if b < 2β, where β = f′
(θ) here, then the asymptotic variance of xn is υO = limx→θ var(Oi){b(2β − b)}−1. In
particular, when ε is standard normal,

where
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Now, instead of using the recursion (16), suppose that we apply the logit-MLE based on the

dichotomized outcomes by solving  where F is defined in (12).
Then using the results in Ying and Wu (1997), we can show that  converges in
distribution to a mean zero normal with variance υT = p(1 − p){mb ̃(2β̃ − b̃)}−1 where β̃ ≡ π′
(θ) = βG′(zp)/σ(θ).

The asymptotic variances of υO and υT are minimized when b = β and b̃ = β̃ respectively.
Thus, the optimal choice depends on unknown parameters. For the purpose of comparing
efficiencies, suppose we could set b and b̃ to their respective optimal values. Then the
variance ratio is equal to

(17)

for normal noise, and also represents the asymptotic efficiency of xn relative to xñ. For m =
3, the ratio (17) attains a minimum of 1.238 when p = 0.12 or 0.88. As shown in Figure 2,
the efficiency gain can be substantial for any group sizes larger than 2, especially when the
target p is extreme.

4.2 Virtual observations
A particular obstacle to the use of stochastic approximation is the discrete design space used
in clinical studies, which creates the discrete barrier (Section 3.1). To overcome the discrete
barrier, Cheung and Elkind (2010) introduce the notion of virtual observations. Precisely,
the virtual observation of the ith group of subjects is defined as

(18)

where  denotes the assigned dose of the group which can take values on a continuous
conceptual scale that represents an ordering of doses. In the situations where the actual
given dose xi can take on any real value, we have  and Vi ≡ Oi, and thus, the recursion
(16) may be used to approach the target dose θ. When xi is confined to {1,…, K}, Cheung
and Elkind (2010) propose generating a stochastic approximation recursion based on the
virtual observations:

(19)

and treating the next group of subjects at . To initiate the virtual observation
recursion, one may set .
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Cheung and Elkind (2010) prove, under mild conditions, that  generated by (19) is
consistent (hence non-rigid) for θb for some θb = ν ± 0.5, and hence xi+1 for ν. Briefly, for
any given b, consistency will occur if the neighboring doses of the MTD are sufficiently
apart from the MTD in terms of toxicity probability. This is in essence asymptotically
weakly unbiased as defined in Section 2.3.3, and can be easily derived from Propositions 2
and 3 of Cheung and Elkind (2010).

With the use of continuous V's, the notion of coherence needs to be reexamined. In
particular, the virtual observation recursion (19) will de-escalate if the biomarker expression
of the current subjects has a high average (Ȳi) or a large variability (Si). This is a sensible
dose-escalation principle for situations where the variability increases proportionally to the
mean.

The idea of virtual observation is to create an objective function

that is defined on the real line, and has a local slope at {1,…,K}, such that the solution θ of
(14) can be approximated by the solution θb of h(x) = t0. Quite importantly, since now the
objective function h has a known slope b around θb (under some Lipschitz-type regularity
conditions), we can use the same b in the recursion (19) as in the definition of virtual
observations (18). This design feature enables us to achieve optimal asymptotic variance
without resorting to adaptive estimation of the slope of the objective function. It is
particularly relevant to early phase dose-finding studies where adaptive stochastic
approximation can be unstable due to small sample sizes.

5. Looking to the Future
Statistical methodology for dose-finding trials is by its nature an application-oriented
discipline. Consequently, much of the emphasis in the dose-finding literature has been on
empirical properties via simulation. However, as the (model-based) methods become
increasingly complicated, it is imperative to check their properties against some theoretical
criteria so as to avoid pathological behaviors that may not be detected in aggregate via
simulations; rather, pathologies such as incoherence and rigidity are pointwise properties
that can be found by careful analytical study. As a case in point, the virtual observation
recursion (19) is presented in light of the properties described in Section 2.3. Granted, as the
data content becomes richer, these theoretical criteria have to be re-examined. Cheung
(2010), in another instance, extends the notion of coherence for bivariate dose-finding in the
context of phase I/II trials—see Thall (2010) for a review of the bivariate dose-finding
objective—and shows how coherence can be used to simplify dose decisions in the complex
“black-box” approach of the bivariate model-based methods, and to provide clinically
sensible rules.

The idea of virtual observation bridges the stochastic approximation and the modern (model-
based) dose-finding literatures. As the Robbins-Monro method has motivated a large
number of extensions and refinements for a wide variety of root-finding objectives, there
exists a reservoir of ideas from which we can borrow and apply to dose-finding methods for
specialized clinical situations. To name a few, consult Kiefer and Wolfowitz (1952) for
finding the maximum of a regression function, and Blum (1954) for multivariate contour-
finding. While studying the analytical properties of model-based designs in these specialized
situations can be difficult, connection to the theory-rich stochastic approximation procedures
allows us to do so with relative ease and elegance, as is the case for the virtual observation
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recursion (19). In this light, extending the idea of virtual observations for data types other
than continuous and multivariate data appears to be a promising “crosswalk” that warrants
further research.
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Fig 1.
Two dose-toxicity curves under which dose 3 is the MTD with p = .20. A δ-sensitive design
with δ = .06 will eventually select doses 2 or 3 under the shallow curve (Curve 1), but will
be consistent for dose 3 under the steep curve (Curve 2). The horizontal dotted lines indicate
the indifference interval.
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Fig 2.
Asymptotic efficiency of xn based on recursion (16) relative to the logit-MLE xñ.
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Table 1

Dose schedules of bortezomib used in Leonard et al. (2005).

Level Dose and schedule within cycle

1 0.7 mg/m2 on day 1 of each cycle

2 0.7 mg/m2 on days 1 and 8 of each cycle

3 0.7 mg/m2 on days 1 and 4 of each cycle

4 1.0 mg/m2 on days 1 and 4 of each cycle

5 1.3 mg/m2 on days 1 and 4 of each cycle
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