
Pattern-mixture models for analyzing normal outcome data with
proxy respondents

Michelle Shardella,*,†, Gregory E. Hicksb, Ram R. Millera, Patricia Langenberga, and Jay
Magazinera
aDepartment of Epidemiology and Preventive Medicine, University of Maryland, Baltimore, MD,
U.S.A
bDepartment of Physical Therapy, University of Delaware, 303 McKinley Lab Newark, DE 19716,
U.S.A

Abstract
Studies of older adults often involve interview questions regarding subjective constructs such as
perceived disability. In some studies, when subjects are unable (e.g. due to cognitive impairment)
or unwilling to respond to these questions, proxies (e.g. relatives or other care givers) are recruited
to provide responses in place of the subject. Proxies are usually not approached to respond on
behalf of subjects who respond for themselves; thus, for each subject, data from only one of the
subject or proxy are available. Typically, proxy responses are simply substituted for missing
subject responses, and standard complete-data analyses are performed. However, this approach
may introduce measurement error and produce biased parameter estimates. In this paper, we
propose using pattern-mixture models that relate non-identifiable parameters to identifiable
parameters to analyze data with proxy respondents. We posit three interpretable pattern-mixture
restrictions to be used with proxy data, and we propose estimation procedures using maximum
likelihood and multiple imputation. The methods are applied to a cohort of elderly hip-fracture
patients.
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1. Introduction
In studies of older adults, researchers aim to identify mutable factors related to disability.
Disability is not directly quantifiable, therefore measurement scales have been developed
using multiple self-reports, resulting in approximately continuous, normally distributed
variables. One disability measure involves summing scales of dependency in performing
instrumental activities of daily living (IADLs), e.g. shopping, managing money, etc. [1].

Some study subjects may be unwilling or unable (e.g. due to dementia) to provide self-
reports about disability. In this case, a proxy, such as a relative or other caregiver, is asked to
respond in the subject’s place [2]. In most studies, proxy data are not collected for subjects
who provide self-reports. Thus, for each subject, only one of the subject or proxy respondent
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contributes data. Typically, the data are analyzed by singly imputing the missing subject
response with the proxy response. This method implicitly assumes that the proxy and subject
have equal response distributions for subjects who do not respond [2-4]. At best, when the
assumption is valid, this single imputation results in underestimated variances for parameter
estimates, because proxy data are treated as perfect correlates of subject data rather than
estimates measured with error [4]. When the assumption is false, this approach produces
biased parameter estimates [3,4]. Therefore, alternative analytic methods are needed.

Validation studies consisting of subject–proxy pairs have shown that proxies of older adult
subjects tend to report worse subject physical disability than subjects themselves [5-8].
However, these assessments can only be generalized to subjects who are able and willing to
provide self-reports. The data structure precludes validating proxy responses as surrogates
for the subjects who require proxies; i.e. subjects who do not respond [9].

Few statistical methods address data from proxy respondents. Huang et al. [10] proposed a
multivariate general linear model for cross-over trials that simultaneously models proxy and
subject data assuming that subject data are missing at random (MAR) [11]. In aging
research, the MAR assumption is implausible, as the sickest and most cognitively impaired
subjects are more likely to require proxies than those who are healthy. Snow et al. [8]
posited a measurement model under the implausible assumption that subject and proxy data
are perfectly correlated. Even if true, perfect correlation does not imply unbiased parameter
estimation [12]. The challenge of using proxy data to handle missing data is that observed
proxy and subject data are not sufficient to identify the distribution of missing subject data.

This paper has two goals. First, by treating the problem as one of missing data, we use
pattern-mixture models [13-15] to propose identifying restrictions for the data distribution
among subjects for whom only proxy data are available. Second, we use the models to
perform estimation using maximum likelihood (ML) or multiple imputation (MI). This
approach involves deriving estimates under a given assumption about missing subject data.
We also briefly describe how to derive a single estimate by averaging over an analyst-
specified distribution of assumptions. Additionally, we extend the methods to use data from
proxy–subject validation subsamples, where data from proxies are collected for a random
subsample of subjects who provide data. The proposed methods are applied to the second
cohort of the Baltimore Hip Studies (BHS-2), a study of physical recovery from hip fracture.
Throughout the paper, we focus on studies where subject data are the gold standard rather
than studies where proxies and subjects are two raters of a latent construct. Snow et al. [8]
explicate this distinction.

2. Methods
In this section we introduce methods for studies without validation data.

2.1. Notation and models
Let Y(s)i and Y(p)i denote subject and proxy responses, respectively, of the ith subject–proxy
pair, i=1,…,n. Let R(s)i be the binary indicator for the ith subject response, where R(s)i=1
when Y(s)i is observed, and R(s)i=0 when Y(p)i is observed. Let Y(obs)i be the observed
outcome for the ith pair, where Y(obs)i=Y(s)iR(s)i+Y(p)i(1−R(s)i); i.e. exactly one of Y(s)i or
Y(p)i is observed for the ith pair. Let Xi=(X1i, …,Xqi) be a row vector of q fully observed
covariates. The pair Yi=(Y(s)i,Y(p)i) is assumed to follow a bivariate normal distribution
conditional on Xi with mean vector (Xi β, Xiα), where β and α are column vectors of length
q, and variance–covariance matrix Σ, where
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and σ(dd′)=Cov(Y(d)i,Y(d′)i ∣Xi), for d,d′ ∈ {s,p}.

We suppress the subscript i in the notation for the time being. The analysis goal is to
estimate the regression equation E[Y(s) ∣X]=Xβ. Let R(s) ∣X~ind Bernoulli (πs∣x), where
Prob(R(s)=1∣X)=πs∣x. The distribution of Y(s) can be rewritten as a mixture of those with
observed and missing subject responses:

where f (Y(s) ∣X,R(s)=r) is normal with mean Xβ(r) and variance,

, for d,d′ ∈ {s,p}, r ∈ {0,1}. In studies with missing data,
pattern-mixture modeling would typically proceed by relating f(Y(s) ∣X,R(s)=0) to f (Y(s)
∣X,R(s)=1). For example, the assumption that normal Y(s) is MAR is specified via the pattern-

mixture restriction . Pattern-mixture models have also been proposed
to handle nonignorably missing data [13-15]. However, these approaches do not utilize
information available from proxy respondents.

Proxy data, when available, are typically used to singly impute the missing subject data. If f

(Y(p) ∣X,R(s)=r) is normal with mean Xα(r) and variance , then imputing the missing
subject data with proxy data and using ordinary least squares to regress Y(obs) on X are
tantamount to assuming the pattern-mixture restriction

(1)

If equation (1) holds, then single imputation produces unbiased estimates of β and α(ss). Let

 denote the correlation of Y(s) with Y(p) conditional on X for those

with R(s)=r. Unless , standard errors of regression parameters will be underestimated
using single imputation even if equation (1) holds [4]. If β(0)≠α(0), this approach will
produce biased estimates of β.

The benefit of proxy data is that pattern-mixture restrictions relative to MAR need not be
specified. In this paper, we develop methods that can use observed subject and proxy data to
model Y(s) under a range of assumptions including MAR, equation (1), and departures from
MAR and equation (1). We first consider the following assumptions:

(2)

(3)
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(4)

When equations (2)-(4) are assumed,  is identified by , and  is identified by

. However, , cannot be identified by the data and must be specified by the

analyst. Equations (2)-(4) imply that . Assuming that equations (2)-(4) hold, we
posit additional pattern-mixture restrictions to identify β(0), and therefore identify β.

2.1.1. Class of selection bias pattern-mixture models—Each model in the class of
selection bias pattern-mixture models posits that the mean of Y(s) among subjects with
R(s)=0 is a location transformation of the mean of Y(s) among subjects with R(s)=1.
Specifically,

(5)

where λ1 is an unidentifiable analyst-specified q-vector that measures the difference in
parameters between those with missing and observed Y(s). For normal f (·∣X) assuming
equation (2), setting λ1=0q, a length-q vector of 0, is equivalent to MAR. Setting λ1 ≠=0q
specifies nonignorable missingness [13-15]. Throughout, we call a model defined by
equations (2) and (5) for specified λ1 Model 1. Model 1 has previously been proposed to
handle missing data without proxy data [13], but it is included here to compare and contrast
with pattern-mixture models that use proxy data.

2.1.2. Class of proxy bias pattern-mixture models—Each model in the class of
proxy bias pattern-mixture models posits that the mean of Y(s) among subjects with R(s)=0 is
a location transformation of the mean of Y(p) among subjects with R(s)=0. Specifically,

(6)

where λ2 is an unidentifiable analyst-specified q-vector that measures degree of bias
introduced by proxy data. Setting λ2=0q simplifies to the assumption of no proxy bias and
implies that singly imputing Y(p) for missing Y(s) leads to unbiased estimates of β. However,

unless , single imputation will lead to biased estimates of σ(ss). Throughout we
denote a model defined by equations (2)-(4) and (6) for specified λ2 Model 2.

2.1.3. Class of subject-adjusted proxy pattern-mixture models—Each model in
the class of subject-adjusted proxy pattern-mixture models posits that the mean of Y(p) does
not depend on R(s), conditional on Y(s). Specifically,

(7)

We note that . Define

. Equations (2)-(4) imply that γ(0)=γ(1)=γ; therefore, equation (7)
implies α(0) − γβ(0)=α(1) − γβ(1)=λ3, an unidentifiable q-vector. As a result,
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(8)

a location-scale transformation from α(0). Equation (7) with equations (2)-(4) is analogous to
a previously published pattern-mixture restriction for bivariate normal data with only one
potentially missing component [14]. However, because both components are never observed
at the same time in this case, the restriction in equation (7) is underidentified, hence λ3.

Equation (7) is only useful if . If , then it implies α(1)=α(0), but β(0) is left
unspecified. We denote a model defined by equations (2)-(4) and (8) for specified λ3 Model
3.

Model 3 is an extension of the linear non-additive outcome measurement error model with
constant variance [16]. When λ3=0q, Model 3 is equivalent to the measurement error model
which assumes that f(Y(p) ∣X,R(s)=r,Y(s))=f (Y(p) ∣R(s)=r,Y(s)). Weaker assumptions such as

departures from equation (7) can also be considered. For example, if , then

two sets of unidentifiable q vectors  and  need to be specified. Such a model is more
flexible than Model 3, but at the cost of parsimony.

2.2. Estimation: Maximum likelihood
The mean of Y(s) as a function of X is a weighted average of the two missing-data patterns:

Except for low-dimensional categorical X, πs∣x is usually modeled as a non-linear function of
X using, e.g. logistic or probit regression, producing parameters of E[Y(s) ∣X] that are
difficult to interpret. To circumvent this problem, the model is reformulated as mixtures of f
(Y(s),Y(p),X,R(s))=f (Y(s),Y(p) ∣X,R(s))f (X ∣R(s))Prob(R(s)=r). Xi is assumed to be multivariate
normal to obtain the empirical mean vector and variance–covariance matrix of Xi given R(s),
because these quantities are used to estimate linear regression parameters β. Multivariate
normal is often not a plausible assumption; however, previous research suggests that mis-
specifying the distribution of covariates as multivariate normal in missing-data problems has
negligible impact on regression parameter estimates [17]. Estimation of β proceeds by re-

expressing it as , where Σ(xx) is the q×q variance–covariance matrix of X and
Σ(xs) is the q×1 covariance matrix of X with Y(s) [18]. The observed-data likelihood and

estimator, β ̂, are provided in Appendix A. Appendix A also shows that  is only explicitly
used in ML estimation of Model 3.

Estimates of β based on Model l are conditioned on λl, l=1,2, 3. Presenting multiple
estimates as part of a sensitivity analysis treats all values of λl as exchangeable, although
often some values are considered more plausible than others. Also, multiple estimates may
not satisfy subject-matter scientists. One solution to both problems is to specify a
distribution for λl, fλl(·), defined over a range of plausible values of λl, such that fλl (·∣X)=fλl
(·). Integrating Σ(xs) over fλl (·) produces a single β that is a weighted average of λl-specific
β’s. Let μλl denote the expected value of λl from fλl(·). Integrating over λl results in replacing
λl with μλl when specifying β(0).
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2.3. Estimation: Multiple Imputation
Multiply imputing missing Y(s) involves a two-step procedure for creating each completed

data set. Step 1 is to estimate the parameters ( ), and step 2 is to impute
the missing data, conditional on parameter estimates [4]. We propose a normal imputation
method that leads to an approximate Bayesian analysis (see Appendix A). Unlike maximum

likelihood, Appendix A shows that  is used in estimation for Models 1–3 to impute
missing Y(s) given observed Y(p). The MI algorithm in Appendix A is conditional on λl for
Model l, l=1,2, 3. Adding a step where λl is simulated from fλl (·) produces estimates that
average over fλl (·). The simulated λl is used to specify β(0) according to pattern-mixture
restrictions. The data provide no information about λl, thus fλl (·∣Y(obs),X)=fλl (·).

3. Proxy–subject validation data
Until now, we have considered the study design in which only one of the subjects or proxies
provides a response. In this section, we accommodate studies that include a random
validation subsample from subjects with R(s)=1, where both the subject and proxy provide
responses. Several gerontologic studies have used this design to quantify proxy bias
[5,6,19], however none have used validation data in analyses to correct for proxy bias.

We introduce new notation for validation data. Let R(p) indicate whether a proxy provides a
response, where R(p)=1 denotes observed Y(p), and R(p)=0 denotes unobserved Y(p). Without
validation data, R(s)=1−R(p). However, with validation data, R(s)R(p)=1 indicates inclusion in
the validation sample, and R(s)(1−R(p))=1 indicates exclusion from the validation sample.
Validation proxies are only randomly selected among subjects with R(s)=1. Let
πp∣s=Prob(R(p)=1∣R(s)=1) be the investigator-defined probability of selection into the
validation sample. Now, Y(obs)i equals either (Y(s)i, Y(p)i), Y(s)i, or Y(p)i depending on whether
R(s)iR(p)i=1, R(s)i(1−R(p)i)=1, or (1−R(s)i)=1, respectively.

An implication of using validation data is that previously unidentifiable parameters are now
estimable, and weaker assumptions can be posited for parameters that remain unidentifiable.
Given that selection into the validation sample is random and Y is assumed to be bivariate

normal, f (Y ∣X,R(s)=1,R(p)=r)=f (Y ∣X,R(s)=1) for r∈{0,1}. Therefore,  and  can be
estimated by observations in the validation sample, and equation (4) can be relaxed. In this

case, equations (2) and (3) imply . Let Model V(l), l=2, 3, denote
Model l with equation (4) relaxed. Validation data can help to inform a sensitivity analysis.
When Model V(2) is posited, it is natural to treat λ2=0q as an ‘anchor’ and to perform a
sensitivity analysis around departures from the assumption β(0)=α(0). With validation data,
one can estimate β(1) and α(1). Thus, one can treat λ2=β(1)−α(1) as the anchor and perform a
sensitivity analysis around the assumption β(0)−α(0)=β(1)−α(1). When Model V(3) is posited,
λ3=0q is also the natural anchor for sensitivity analysis, which implies that Y(p) is
conditionally independent of X given Y(s) and R(s) (i.e. measurement error model). With
validation data, one can estimate λ3=α(1)−γβ(1). In this case, departures from equation (7)
can be more easily considered, where λ(0) is an unidentifiable q-vector that can be anchored
at λ(1). Estimation of these parameters using ML and MI via Gibbs sampling [20] is in
Appendix B.

Another implication of validation data is that associations of proxy characteristics (e.g. age,
relationship, and living arrangement with subject) with Y(s) can be identified when R(s)=1.
Thus, proxy characteristics can easily be included as auxiliary data. When Z is a categorical
proxy characteristic, the analyst can estimate E[Y(s)−Y(p)∣X,Z=z,R(s)=1] and
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E[Y(p)∣X,Y(s),Z=z,R(s)=1] to find Z-specific λ2 and λ3, respectively. When Z is continuous, a
two-stage linear model can estimate Z-adjusted λ2 or λ3. In this case, β(0) is determined by
relating E[Y(d)∣Z, X,R(s)R(p)=1], d∈ {p, s} to E[Y(s)∣Z, X,R(s)=0].

4. Simulation studies
We performed two sets of simulation studies, one with and one without validation data, to
compare the proposed ML and MI methods with two common alternatives: linear regression
with only subject data (subjects requiring proxies excluded) and linear regression with proxy
data substituted for missing subject data (i.e. single imputation). For each set of simulations,
Nsim=1000 ‘studies’ were simulated consisting of either n=100 or 250 subjects. For each
subject, R(s) was simulated from a Bernoulli distribution with πs=0.65. Conditional on R(s), a
covariate X2 was simulated from a Bernoulli distribution with probability 0.4+0.2R(s).
Conditional on R(s) and X2, a covariate X1 was simulated from a normal distribution with
mean 2.5+0.5X2−R(s)−0.25X2R(s) and variance 1.5−0.5R(s). When R(s)=1, Y(s) was simulated

from a normal distribution with mean X1+X2, β(1)=(1, 1) and . When R(s)=0, Y(p) was
simulated from a normal distribution with mean 0.5X2+0.5X1, i.e. α(0)=(0.5,0.5), and

. We specified equations (2)-(4) to be true, and considered two values of , 0.5
and 0.8. We estimated β for three true values of β(0): β(1), α(0), and α(0)+0.75. When

β(0)=β(1), λ1=(0, 0), and β=1.0. When β(0)=α(0), λ2=(0, 0) and, when ,
λ3=(0.19,0.19) or (0.01,0.01), respectively, resulting in β=(0.61,1.19). Lastly, when

β(0)=α(0)+0.75, λ2=(0.75,0.75), and, when , λ3=(−0.26, −0.26) or (−0.72,

−0.72), respectively, resulting in β=(1.34, 0.64). Assumed  is not used in subject only,
subject+proxy, or ML estimation of Models 1 and 2. Observed Y(p) was used to simulate

missing Y(s) in MI estimation of Models 1-3, which required specification of .

When validation data were included, the simulation procedure was modified. In particular,
when R(s)=1, R(p) was simulated from a Bernoulli distribution with πp∣s=0.6, and when
R(s)R(p)=1, (Y(s),Y(p)) was simulated from a bivariate normal distribution with mean
(Xβ(1),Xα(1)), and variance–covariance matrix Σ(1). When β(0)=β(1) was specified, we set
α(1)=β(1). Otherwise, when β(0)=α(0) or β(0)=α(0)+0.75, α(1) was specified so that
β(1)−α(1)=β(0)−α(0). For both simulation studies (with and without validation data), MI was
performed by imputing 20 sets of missing Y(s). Standard errors for ML were estimated using
150 bootstrap samples.

4.1. Simulation results without validation data
When validation data were not simulated, λ1, λ2, and λ3 were treated as fixed quantities.
Table I shows that the proposed ML and MI methods produced negligible bias and good
coverage when β(0) was correctly specified. Linear regression using only subject data
performed well only when β(0)=β(1). Also, linear regression using single imputation
performed well only when β(0)=α(0). Bias and coverage for all methods, however, were
sensitive to misspecification about β(0). For Models 1 and 2, using Y(p) to impute missing
Y(s) provided no efficiency benefits over ML estimation. Estimates produced using Model 3
were less efficient than those produced using Model 2, because, when Model 3 is posited, β ̂

depends on  and . However, standard errors from Model 3 assuming  were

smaller than those assuming . This is not surprising, because β(0) in Model 3 has an

inverse relationship with . When there are no validation data,  is treated as a
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constant. Therefore, higher  in absolute value leads to lower variability of estimated β(0)

and therefore lower variability of estimated β, because β is a weighted average of β(0) and
β(1). Additionally, results using Model 3 under correct assumptions were more accurate
when n=250 than when n=100.

To further investigate model and method performance for smaller sample sizes, we repeated
the simulation study with n=50. The largest magnitudes of bias observed using ML on
Models 2 and 3 were 6 and 10 per cent, respectively; and the largest magnitudes of bias
observed using MI on Models 2 and 3 were 2 and −14 per cent, respectively.

4.2. Simulation results with validation data
The parameters λ2 and λ3 were estimated using the validation data. Table II shows that in
most cases when β(0) was correctly specified, the proposed methods produced results with

small bias and good coverage. However, when , both ML and MI estimation of
Model V(3) produced results with large bias. Also, when n=100, MI estimation of Model
V(2) produced some results with non-negligible bias. Bias and coverage were sensitive to
misspecification about β(0). Standard errors for Models V(2) and V(3) were larger than those

for Models 2 and 3, respectively, due to extra variability from estimating λ2, λ3, and 
versus plugging in analyst-specified fixed values. Unlike estimation of Model 2, standard

errors from both ML and MI estimation of Model V(2) were smaller when  than

when .

We also repeated the simulation study with n=50. The largest magnitude of bias observed

using ML on Model V(2) was 3 per cent. When , biases over 100 per cent were

observed using ML on Model V(3); however, when , the largest bias was 13 per
cent. The largest magnitude of bias observed using MI on Model V(2) was 4 per cent. When

, the largest bias observed using MI on Model V(3) was 24 per cent; however, when

, the largest bias was 6 per cent.

5. Data application: BHS-2
We applied the proposed methods to BHS-2, a study of older adults’ physical recovery from
hip fracture. The analysis goal was to determine the relationship between patient sex and age
at the time of fracture with disability for 12 months post-fracture, where disability was
measured as the number of IADLs that the patient requires human or equipment assistance
to perform. The scale (range: 0–7) consisted of seven tasks: using the telephone, managing
money, managing medications, traveling to places outside of walking distance, shopping,
preparing meals, and doing housework (see [19]). Analyses included 248 hip-fracture
patients (41 men, 207 women) aged ≥65 years. Among 248 patients, 169 patients provided
responses about IADLs, and proxies provided IADL reports for the other 79 patients,

. Among the 169 patients who provided self-reports, proxies for 91 patients

also provided IADL reports, . We performed two sets of analyses. The first

analysis ignored validation data, thus  (or ), λ2, and λ3 were analyst-specified. In a
previously published validation study of a different cohort of hip-fracture patients,
Magaziner et al. [5] found a correlation of 0.70 between subject and proxy IADL reports.
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Sex- and age-specific proxy bias has not been reported among hip-fracture patients.
However, proxy bias has been reported for subgroups defined by other characteristics [5].
Thus, we specified assumptions about proxy bias for characteristics that are associated with
age and sex. One characteristic associated with patient sex is living arrangement of the
proxy with the patient. It has been shown that men tend to be younger than women at the
time of fracture [21], and women have longer life expectancy than men. We presumed that
proxies living with patients were often spouses, whereas proxies not living with patients
were often offspring or unrelated care givers. Therefore, we expected that proxies living
with patients were most often wives of male patients, whereas proxies not living with
patients were most often offspring or unrelated care givers of female patients. Thus, bias
from proxies who lived with the patient was thought to approximate proxy bias among male
patients. Analogously, bias from proxies who did not live with the patient was thought to
approximate proxy bias for female patients. Magaziner et al. [5] found that among patients
living with proxies, patients reported an average of 0.49 fewer IADL dependencies than
proxies, and among patients not living with proxies, patients reported an average of 0.23
fewer IADL dependencies than proxies. Thus, the magnitude of proxy bias was −0.49−
(−0.23)=−0.26. Also, we presumed that proxies overreport patient IADLs compared with
patients themselves at all ages, but that the magnitude of overreporting diminishes with
older patient ages. The maximum value for IADL dependency was 7, thus the ceiling effect
may limit the level of bias for the oldest patients. The ages of patients spanned 30 years
(from 66 to 96 years) in this study. As an approximation, we specified that the degree of
overreporting (bias) decreases by 0.01 IADL dependencies per year of age. We performed a
sensitivity analysis where we assumed that λ2=(0, 0), (−0.26,0.01), or (−0.52,0.02); where
the second set were historical values derived from Magaziner et al. [5], and the third set is

twice the historical values. We also assumed and , the historical value and

half the historical value, respectively. MI for all three models depended on  to impute

missing Y(s) using observed Y(p). In contrast, ML estimation depended on  only for

Model 3. We estimated λ3 by . That is, the same sets of
values for β(0) were assumed using both Models 2 and 3. We performed two other analyses,
one assuming that β(0)=β(1), and another assuming that λ3=(0, 0) (i.e. the outcome
measurement error model [16]). The second set of analyses included validation data by

estimating λ2 as β ̂(1)−α̂(1)and estimating λ3 as .

Table III shows that, when validation data were excluded, the estimated coefficient for sex
ranged from 0.76 to 3.34. The minimum was derived when MI was used with Model 2
assuming that λ2=(−0.52,0.02) and ρ(0)=0.35. The maximum was calculated with ML

assuming Model 3 with λ3=0 and . The estimated coefficient for age ranged from
0.10 using all methods assuming β(0)=β(1) to 0.33 with ML assuming Model 3 and with λ3=0

and . In absolute terms, the coefficient for age was more homogeneous than that
for sex over the range of assumptions. This result is not surprising, because values of λ2 for
age were close to 0. In relative terms, however, both coefficients varied over the

assumptions. For MI estimation of Model 3, assuming  produced smaller standard

errors than assuming . Assumptions about  had a small effect on parameter
estimates and standard errors for Models 1 and 2. When Model 2 was assumed, ML
produced smaller standard errors than MI; however, the opposite was true when Model 3

was assumed. Analysis with validation data resulted in MLEs ,
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β ̂(1)−α̂(1)=(0.52,0.04), and . Thus, assumptions using
validation data differed from those derived from Magaziner et al. [5]. Table III shows that
Models V(2) and V(3) resulted in estimated coefficients for sex of approximately 1.14, and
estimated coefficients for age of 0.14.

When validation data were excluded, Models 2 and 3 were preferred because they were
more flexible than other options considered. Model 2 using ML was advantageous because,
unlike Model 3, it only depended on one sensitivity analysis parameter (λ2), and produced
smaller standard errors than the analogous model estimated using MI. When validation data
were included, Model V(2) was preferred. Differences in estimates between Models V(2)
and V(3) and between ML and MI were negligible, but Model V(2) estimated with ML
produced the smallest standard errors. Qualitative conclusions from BHS-2 were robust to
the assumptions considered: male sex and older age were associated with more IADL
dependencies. However, the magnitude of association was sensitive to the assumptions
examined here.

6. Discussion
This paper proposed methods based on pattern-mixture models to analyze normal data with
proxy respondents. The methods were developed to handle studies both with and without
validation subsamples of incompletely observed proxy respondents. The models proposed
here are distinct from a recently published proxy pattern-mixture model where, unlike this
paper, the authors used the term ‘proxy’ to refer to the function of completely observed
covariates most predictive of the incompletely observed outcome [22].

Previous empirical studies of older adults have found evidence that proxy responses are
systematically biased compared with subject responses [5-8]. Despite these findings, proxy
data are often substituted for missing subject data without considering the implied
assumptions. In contrast, our proposed methods involve explicating assumptions about
missing subject data. The analyst can relate the distribution of missing subject data to
identifiable distributions for observed proxy or subject data.

Although proxy data can also be treated as a source of outcome measurement error [16],
conceptualizing the problem instead as one of missing data is beneficial. In the measurement
error framework, it is common to assume that proxy data are surrogates for patient data (i.e.
λ3=0q in Model 3), in other words that measurement error is nondifferential. A benefit of our
models is that they can easily handle differential measurement error with respect to
covariates and auxiliary variables in the analysis model. Also, standard methods for
measurement error focus on the scenario where Y(p) is observed for all subjects, and Y(s) may
be observed for a random validation subsample; i.e. no selection bias. Our proposed models
handle selection bias in the proxy-data problem, because the distribution of Y(s) may differ
between those with Y(s) observed and those for whom only Y(p) is observed.

Simulation studies showed that, in general, our proposed methods produce results with low
bias and good coverage when proxy bias is correctly specified. However, some caveats
should be kept in mind. Estimation with Model V(3) using validation data is only advisable
when the proxy and subject responses are highly correlated conditional on covariates; and
MI estimation of Model V(2) is only advisable with large samples. These findings illustrate
that while validation data can be a valuable resource, if it is of low quality and quantity, it
can negatively impact model performance. Also, the simulations showed that when sample
sizes are as small as 50, Models 2 and V(2) are generally more reliable than Models 3 and
V(3), respectively, because β(0) in Models 3 and V(3) depend multiplicatively on inverse
variances or covariances.
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Despite these caveats, our approach provides more flexibility in performing sensitivity
analyses about proxy bias than standard ad hoc methods such as analyzing only subject data
or singly imputing proxy data for missing subject data. The BHS-2 data analysis highlights
the benefit of validation proxies, because including validation proxy data allows weaker
assumptions to be made about parameters. However, the proposed models only handle proxy
bias for normal outcomes. Future research involves extending the methods for non-normal
outcomes and addressing proxy bias in covariates. The missing-data framework will ease
extensions for handling additional missing data (i.e. when responses from subjects and
proxies are both not available). Wang et al. [23] developed a selection model to
simultaneously handle missing data and measurement error; however, this model was based
on the surrogacy assumption and does not consider the scenario where only one of the
subject or proxy response is observed.

Lastly, although our approach facilitates a sensitivity analysis about the magnitude of proxy
bias among those with missing Y(s), it may be difficult to determine a range of plausible
values for unidentifiable parameters. Validation data are particularly beneficial here,
because they can help provide plausible anchors for these parameters. When validation data
are not available, historical validation studies, such as those used in the BHS-2 example, can
provide initial assumptions. Otherwise, subject-matter experts are generally regarded as the
best source of information for sensitivity analyses [24].

Appendix A: Estimation without validation data

A.1. Maximum likelihood
Let n1 be the number with R(s)=1, and denote n0=n−n1. Let Prob(R(s)=1)=πs, and

. The observed-data likelihood is

(A1)

where f (Y(d)i∣Xi, R(s)i) is normal, d∈{p, s} and f (Xi∣R(s)i) is multivariate normal with mean

and variance–covariance . Plug MLEs from equation (A1) into Σ(xs):

(A2)

where  and .

A.2. Multiple imputation

First, draw  from , where  is the mean-squared error from

regressing Y(s) on X among those with R(s)=1, and  is a chi-square random variable with η

degrees of freedom. Second, draw β(1) from . Next, draw

 from , where  is the mean-squared error from regressing Y(p) on
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X among those with R(s)=0. Then, draw α(0) from . Use
simulated parameters and assumed model to find β(0). Simulate missing Ys from a normal

distribution with mean  and variance .
Repeat the steps M times to create M completed data sets, and calculate final parameter and
standard error estimates using the usual combining rules [4].

Appendix B: Estimation with validation data

B.1. Maximum likelihood
Let n11 be the number in the validation sample, let n10=n1−n11 be the number with R(s)=1

not selected into the validation sample, and let . The observed-
data likelihood is

(B1)

Plug MLEs from equation (B1) into equation (A2) to estimate β.

B.2. Multiple imputation

Draw M-independent simulations of (α(0), ) as described in Appendix A. Use Gibbs
sampling to simulate (β(1), α(1), Σ(1)), because more observations are available to estimate

β(1) and  than that are available to estimate α(1), , and , complicating the
posterior distributions [20]. When R(s)=1, treat Y(p) as data missing according to a known
mechanism. Let (β(1), α(1)) have priors proportional to a constant that are independent of
Σ(1)−1, which has a Wishart prior, W(ν,A), with ν degrees of freedom, and 2×2 symmetric
positive-definite prior precision matrix A. Yi is a 2-vector, thus ν ≥2. First, specify initial

values for the Y(p) where R(s)(1−R(p)=1. Let  denote the vector of completed proxy

data (observed and imputed) at the jth iteration, where  if R(s)iR(p)i=1. Continue
iteration j by simulating (β(1j),α(1j), Σ(1j) from

where e(j) is n1×2 with ith row ( ), β ̂(1) is MLE of β(1), and α̂(1j)

is MLE of α(1) using . Begin iteration j+1 by drawing  from
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After completing the Gibbs sampler, select M draws of the simulated parameters spaced far
enough apart between iterations to avoid autocorrelation. Set β(0) according to the assumed
model, and draw M independent sets of Y(s) as in Appendix A
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