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Abstract

Studies of older adults often involve interview questions regarding subjective constructs such as
perceived disability. In some studies, when subjects are unable (e.g. due to cognitive impairment)
or unwilling to respond to these questions, proxies (e.g. relatives or other care givers) are recruited
to provide responses in place of the subject. Proxies are usually not approached to respond on
behalf of subjects who respond for themselves; thus, for each subject, data from only one of the
subject or proxy are available. Typically, proxy responses are simply substituted for missing
subject responses, and standard complete-data analyses are performed. However, this approach
may introduce measurement error and produce biased parameter estimates. In this paper, we
propose using pattern-mixture models that relate non-identifiable parameters to identifiable
parameters to analyze data with proxy respondents. We posit three interpretable pattern-mixture
restrictions to be used with proxy data, and we propose estimation procedures using maximum
likelihood and multiple imputation. The methods are applied to a cohort of elderly hip-fracture
patients.
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1. Introduction

In studies of older adults, researchers aim to identify mutable factors related to disability.
Disability is not directly quantifiable, therefore measurement scales have been developed
using multiple self-reports, resulting in approximately continuous, normally distributed
variables. One disability measure involves summing scales of dependency in performing
instrumental activities of daily living (IADLs), e.g. shopping, managing money, etc. [1].

Some study subjects may be unwilling or unable (e.g. due to dementia) to provide self-
reports about disability. In this case, a proxy, such as a relative or other caregiver, is asked to
respond in the subject’s place [2]. In most studies, proxy data are not collected for subjects
who provide self-reports. Thus, for each subject, only one of the subject or proxy respondent
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contributes data. Typically, the data are analyzed by singly imputing the missing subject
response with the proxy response. This method implicitly assumes that the proxy and subject
have equal response distributions for subjects who do not respond [2-4]. At best, when the
assumption is valid, this single imputation results in underestimated variances for parameter
estimates, because proxy data are treated as perfect correlates of subject data rather than
estimates measured with error [4]. When the assumption is false, this approach produces
biased parameter estimates [3,4]. Therefore, alternative analytic methods are needed.

Validation studies consisting of subject—proxy pairs have shown that proxies of older adult
subjects tend to report worse subject physical disability than subjects themselves [5-8].
However, these assessments can only be generalized to subjects who are able and willing to
provide self-reports. The data structure precludes validating proxy responses as surrogates
for the subjects who require proxies; i.e. subjects who do not respond [9].

Few statistical methods address data from proxy respondents. Huang et al. [10] proposed a
multivariate general linear model for cross-over trials that simultaneously models proxy and
subject data assuming that subject data are missing at random (MAR) [11]. In aging
research, the MAR assumption is implausible, as the sickest and most cognitively impaired
subjects are more likely to require proxies than those who are healthy. Snow et al. [8]
posited a measurement model under the implausible assumption that subject and proxy data
are perfectly correlated. Even if true, perfect correlation does not imply unbiased parameter
estimation [12]. The challenge of using proxy data to handle missing data is that observed
proxy and subject data are not sufficient to identify the distribution of missing subject data.

This paper has two goals. First, by treating the problem as one of missing data, we use
pattern-mixture models [13-15] to propose identifying restrictions for the data distribution
among subjects for whom only proxy data are available. Second, we use the models to
perform estimation using maximum likelihood (ML) or multiple imputation (MI). This
approach involves deriving estimates under a given assumption about missing subject data.
We also briefly describe how to derive a single estimate by averaging over an analyst-
specified distribution of assumptions. Additionally, we extend the methods to use data from
proxy-subject validation subsamples, where data from proxies are collected for a random
subsample of subjects who provide data. The proposed methods are applied to the second
cohort of the Baltimore Hip Studies (BHS-2), a study of physical recovery from hip fracture.
Throughout the paper, we focus on studies where subject data are the gold standard rather
than studies where proxies and subjects are two raters of a latent construct. Snow et al. [8]
explicate this distinction.

2. Methods

In this section we introduce methods for studies without validation data.

2.1. Notation and models

Let Y(s)i and Y(p); denote subject and proxy responses, respectively, of the ith subject—proxy
pair, i=1,...,n. Let Rs); be the binary indicator for the ith subject response, where R)i=1
when Y/s); is observed, and Rs)i=0 when Y p); is observed. Let Y(qps); be the observed
outcome for the ith pair, where Y (ohs)i=Y(5)iR(s)i*Y (p)i(1~R(s)i); i-€. exactly one of Y(s); or
Y(p)i is observed for the ith pair. Let Xj=(Xy;, ...,Xqi) be a row vector of g fully observed
covariates. The pair Yi=(Y s);,Y(p)i) is assumed to follow a bivariate normal distribution
conditional on X; with mean vector (X; 8, Xja), where  and o are column vectors of length
g, and variance—covariance matrix X, where
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and O'(ddf)ZCOV(Y(d)i,Y(dr)i |Xi), ford,d € {S,p}.

We suppress the subscript i in the notation for the time being. The analysis goal is to
estimate the regression equation E[Y s) IX]=Xg. Let R(s) IX~jng Bernoulli (zs)x), where
Prob(Rs)=1IX)=rgx. The distribution of Y(s) can be rewritten as a mixture of those with
observed and missing subject responses:

f(Y(S)|X)=ﬂ'5|Xf(Y(s)]X, R(s)zl)-l-(l - ﬂ'x|x)f(Y(5)|X, R(A-):O),

where f (Y(s) IX,R(s)=r) is normal with mean X5(") and variance,

O'EQ)’ U:;QFCOV(YM»’ YanlX,Risy=r), for d,d’ € {s,p}, r € {0,1}. In studies with missing data,

pattern-mixture modeling would typically proceed by relating f(Y ) IX,R(5)=0) to f (Y(s)
IX,R(s)=1). For example, the assumption that normal Y ) is MAR is specified via the pattern-

. - D (D 0 (0) .
mixture restriction (3", G'(SS))—(ﬂ( ), T ss)). Pattern-mixture models have also been proposed

to handle nonignorably missing data [13-15]. However, these approaches do not utilize
information available from proxy respondents.

Proxy data, when available, are typically used to singly impute the missing subject data. If f

(Yp) IX,;R(s)=r) is normal with mean Xa( and variance CTE;;,), then imputing the missing
subject data with proxy data and using ordinary least squares to regress Y gps) on X are
tantamount to assuming the pattern-mixture restriction

© (O, ©0) 0
B o) =@, o). ()

If equation (1) holds, then single imputation produces unbiased estimates of £ and osg). Let

@ (M) 1
(@ 557 (o))

(r ___(n

2
Pisp)= (sp) denote the correlation of Y with Y ;) conditional on X for those

with R(g)=r. Unless Pf?},fl, standard errors of regression parameters will be underestimated
using single imputation even if equation (1) holds [4]. If f©#«(©), this approach will
produce biased estimates of S.

The benefit of proxy data is that pattern-mixture restrictions relative to MAR need not be
specified. In this paper, we develop methods that can use observed subject and proxy data to
model Y(s) under a range of assumptions including MAR, equation (1), and departures from
MAR and equation (1). We first consider the following assumptions:

M __(©0)
(55~ 7 (ss)’ @

M _
p)~" (sp)’ €)

9
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When equations (2)-(4) are assumed, ‘7:?;) is identified by UESIS)), and 02},},) is identified by
022;,). However, 0:;},,, r € {0, 1}, cannot be identified by the data and must be specified by the

analyst. Equations (2)-(4) imply that P&fﬂfg). Assuming that equations (2)-(4) hold, we
posit additional pattern-mixture restrictions to identify 4%, and therefore identify j.

2.1.1. Class of selection bias pattern-mixture models—Each model in the class of
selection bias pattern-mixture models posits that the mean of Y sy among subjects with
R(5)=0 is a location transformation of the mean of Y () among subjects with R(s)=1.
Specifically,

BO - pP=a,, ®)

where 14 is an unidentifiable analyst-specified g-vector that measures the difference in
parameters between those with missing and observed Y ). For normal f (-1X) assuming
equation (2), setting 4;=0g, a length-q vector of 0, is equivalent to MAR. Setting 4, #=0y
specifies nonignorable missingness [13-15]. Throughout, we call a model defined by
equations (2) and (5) for specified 11 Model 1. Model 1 has previously been proposed to
handle missing data without proxy data [13], but it is included here to compare and contrast
with pattern-mixture models that use proxy data.

2.1.2. Class of proxy bias pattern-mixture models—Each model in the class of
proxy bias pattern-mixture models posits that the mean of Y(s) among subjects with R(5)=0 is
a location transformation of the mean of Y ;) among subjects with R(5)=0. Specifically,

ﬁ(O) - a(O):/l'Zs (6)

where 1, is an unidentifiable analyst-specified g-vector that measures degree of bias
introduced by proxy data. Setting 1,=0q simplifies to the assumption of no proxy bias and
implies that singly imputing Y for missing Y(s) leads to unbiased estimates of 4. However,

o __©O . . . . . .
unless 7, =% ), single imputation will lead to biased estimates of o(ss). Throughout we
denote a model defined by equations (2)-(4) and (6) for specified 1, Model 2.

2.1.3. Class of subject-adjusted proxy pattern-mixture models—Each model in
the class of subject-adjusted proxy pattern-mixture models posits that the mean of Y ;) does
not depend on R(s), conditional on Y g). Specifically,

E[ Y(p) X, R(S):Os Y(s)]:E[ Y(p)|X, R(s): 1, Y(:)]- (7)

We note that E[Y(p)|X. Ris)=r. Y(s)]=Xa"+c" f;),) X (Y- XB") o x;) r € {0, 1}, Define

7(")=022,)/a’f;2,, r € {0, 1}, Equations (2)-(4) imply that y©@=y(D=y: therefore, equation (7)
implies o — y8=¢(1) — y8)=45 an unidentifiable g-vector. As a result,
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a location-scale transformation from «(9). Equation (7) with equations (2)-(4) is analogous to
a previously published pattern-mixture restriction for bivariate normal data with only one
potentially missing component [14]. However, because both components are never observed
at the same time in this case, the restriction in equation (7) is underidentified, hence A3.

Equation (7) is only useful if T, # 0. 1f o0, =0, then it implies a®M=a(©), but 5 is left
unspecified. We denote a model defined by equations (2)-(4) and (8) for specified /3 Model
3.

Model 3 is an extension of the linear non-additive outcome measurement error model with
constant variance [16]. When 43=0g, Model 3 is equivalent to the measurement error model
which assumes that f(Y () IX,R(5)=r,Y(5))=f (Y(p) IRs)=T.Y(5)). Weaker assumptions such as

departures from equation (7) can also be considered. For example, if o — yﬁ‘~"):/1‘3"’, then
two sets of unidentifiable g vectors /130) and /lgl) need to be specified. Such a model is more
flexible than Model 3, but at the cost of parsimony.

2.2. Estimation: Maximum likelihood

The mean of Y () as a function of X is a weighted average of the two missing-data patterns:

E[YlX]= Y\ [1- mgu] " E[ Y |X. Rsy=r].
rel0.1)

Except for low-dimensional categorical X, zsy is usually modeled as a non-linear function of
X using, e.g. logistic or probit regression, producing parameters of E[Y g) IX] that are
difficult to interpret. To circumvent this problem, the model is reformulated as mixtures of f
(Y)Y (p) XRe)=F (Y(s), Y (p) IX;R(s))f (X IR())Prob(Rs)=r). X; is assumed to be multivariate
normal to obtain the empirical mean vector and variance—covariance matrix of X given R),
because these quantities are used to estimate linear regression parameters . Multivariate
normal is often not a plausible assumption; however, previous research suggests that mis-
specifying the distribution of covariates as multivariate normal in missing-data problems has
negligible impact on regression parameter estimates [17]. Estimation of S proceeds by re-

-1
expressing it as ,B:ZW)Z(W where Xy is the gxq variance—covariance matrix of X and
T (xs) Is the gx1 covariance matrix of X with Ys) [18]. The observed-data likelihood and

estimator, £, are provided in Appendix A. Appendix A also shows that P}Q,) is only explicitly
used in ML estimation of Model 3.

Estimates of £ based on Model | are conditioned on 4, 1=1,2, 3. Presenting multiple
estimates as part of a sensitivity analysis treats all values of 4| as exchangeable, although
often some values are considered more plausible than others. Also, multiple estimates may
not satisfy subject-matter scientists. One solution to both problems is to specify a
distribution for 4, f;,(-), defined over a range of plausible values of 4, such that f;, (-1X)=f;,
(). Integrating Xxs) over f;, () produces a single 3 that is a weighted average of -specific
p’s. Let w;, denote the expected value of 4; from f; (). Integrating over 4 results in replacing
2y with z2;, when specifying 8©).

Stat Med. Author manuscript; available in PMC 2010 December 27.
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2.3. Estimation: Multiple Imputation

Multiply imputing missing Y ) involves a two-step procedure for creating each completed

. . (1 0 . .
data set. Step 1 is to estimate the parameters ( B, o f‘ss)y o :p;z)), and step 2 is to impute

the missing data, conditional on parameter estimates [4]. We propose a normal imputation
method that leads to an approximate Bayesian analysis (see Appendix A). Unlike maximum

likelihood, Appendix A shows that Pi;l),) is used in estimation for Models 1-3 to impute
missing Y(s) given observed Y ). The Ml algorithm in Appendix A is conditional on 4, for
Model |, 1=1,2, 3. Adding a step where /; is simulated from f;; (-) produces estimates that
average over f;; (-). The simulated 4, is used to specify O according to pattern-mixture
restrictions. The data provide no information about 4, thus f;; (:Y(ons),X)=f3; ().

3. Proxy—subject validation data

Until now, we have considered the study design in which only one of the subjects or proxies
provides a response. In this section, we accommodate studies that include a random
validation subsample from subjects with Rs)=1, where both the subject and proxy provide
responses. Several gerontologic studies have used this design to quantify proxy bias
[5,6,19], however none have used validation data in analyses to correct for proxy bias.

We introduce new notation for validation data. Let Rp) indicate whether a proxy provides a
response, where R(p)=1 denotes observed Y(p), and R(p)=0 denotes unobserved Y ). Without
validation data, R(5)=1—Rp). However, with validation data, R(5)R(p)=1 indicates inclusion in
the validation sample, and R)(1—-R(p))=1 indicates exclusion from the validation sample.
Validation proxies are only randomly selected among subjects with Rs)=1. Let
mpis=Prob(Rp)=1IR(5)=1) be the investigator-defined probability of selection into the
validation sample. Now, Y qps)i €quals either (Y(s)i, Y(p)i), Y(s)i» OF Y(p)i depending on whether
R()iRp)i=L, R)i(1-Rp)i)=1, or (1-R(s)i)=1, respectively.

An implication of using validation data is that previously unidentifiable parameters are now
estimable, and weaker assumptions can be posited for parameters that remain unidentifiable.
Given that selection into the validation sample is random and Y is assumed to be bivariate

normal, f (Y IX,R(5)=1,Rp)=r)=f (Y IX,R)=1) for r€{0,1}. Therefore, 08,;,) and U&),) can be

estimated by observations in the validation sample, and equation (4) can be relaxed. In this

. . 0
case, equations (2) and (3) imply PES;,,:PI;;)» 0':;,[),)/0'12,,. Let Model (1), 1=2, 3, denote

Model | with equation (4) relaxed. Validation data can help to inform a sensitivity analysis.
When Model V(2) is posited, it is natural to treat 1,=0q as an ‘anchor’ and to perform a
sensitivity analysis around departures from the assumption A=), With validation data,
one can estimate 1) and (1. Thus, one can treat 2,=(1)—a(1) as the anchor and perform a
sensitivity analysis around the assumption (0—a(@=pM0—¢1). When Model V(3) is posited,
43=0q is also the natural anchor for sensitivity analysis, which implies that Y p is
conditionally independent of X given Y(s) and R(s) (i.e. measurement error model). With
validation data, one can estimate A3=a()—yp(). In this case, departures from equation (7)
can be more easily considered, where A is an unidentifiable g-vector that can be anchored
at A1, Estimation of these parameters using ML and MI via Gibbs sampling [20] is in
Appendix B.

Another implication of validation data is that associations of proxy characteristics (e.g. age,
relationship, and living arrangement with subject) with Y(s) can be identified when R(s)=1.
Thus, proxy characteristics can easily be included as auxiliary data. When Z is a categorical
proxy characteristic, the analyst can estimate E[Y)~Y )IX,Z=2,R5=1] and

Stat Med. Author manuscript; available in PMC 2010 December 27.
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E[Y(p)!X,Y(s),Z=2,R(5)=1] to find Z-specific /1, and A3, respectively. When Z is continuous, a
two-stage linear model can estimate Z-adjusted 4, or 3. In this case, A is determined by
relating E[Yq)lZ, X,R(5)Rp)=1], d€ {p, s} to E[Y(5)IZ, X,R(5)=0].

4. Simulation studies

We performed two sets of simulation studies, one with and one without validation data, to
compare the proposed ML and MI methods with two common alternatives: linear regression
with only subject data (subjects requiring proxies excluded) and linear regression with proxy
data substituted for missing subject data (i.e. single imputation). For each set of simulations,
Nsim=1000 ‘studies’ were simulated consisting of either n=100 or 250 subjects. For each
subject, R(s) was simulated from a Bernoulli distribution with z5=0.65. Conditional on Rs), a
covariate X, was simulated from a Bernoulli distribution with probability 0.4+0.2Rs).
Conditional on Rs) and X5, a covariate X; was simulated from a normal distribution with
mean 2.5+0.5X,—R(5)—0.25X;Rs) and variance 1.5-0.5Rs). When R(5)=1, Y(s) was simulated

from a normal distribution with mean X;+X,, p=(1, 1) and UE;)_E 1. When R(s)=0, Y(p) Was
simulated from a normal distribution with mean 0.5X,+0.5X, i.e. a(®=(0.5,0.5), and

0':2;)=1-5. We specified equations (2)-(4) to be true, and considered two values of sz,), 0.5

and 0.8. We estimated £ for three true values of 5©): g0, (9, and «(0+0.75. When

pO=pD), 11=(0, 0), and f=1.0. When S®=a(), 7,=(0, 0) and, when £{5,=0.50r 0.8,
23=(0.19,0.19) or (0.01,0.01), respectively, resulting in f=(0.61,1.19). Lastly, when

pO0=¢0+0.75, 1,=(0.75,0.75), and, when p{;’,):O-S or0.8 15=(—0.26, —0.26) or (—0.72,

—0.72), respectively, resulting in f=(1.34, 0.64). Assumed sz,) is not used in subject only,
subject+proxy, or ML estimation of Models 1 and 2. Observed Y ;) was used to simulate

missing Y(s) in Ml estimation of Models 1-3, which required specification of Pf;))).

When validation data were included, the simulation procedure was modified. In particular,
when R)=1, R(p) was simulated from a Bernoulli distribution with s=0.6, and when
R(S)Rgp):l, (Y(s),Y(p)) was simulated from a bivariate normal distribution with mean

(XpM) X)), and variance—covariance matrix 1. When g0=51) was specified, we set
aM=p). Otherwise, when =4O or p0=¢(9+0.75, «(1) was specified so that
SD—aM=p0)—4O), For both simulation studies (with and without validation data), MI was
performed by imputing 20 sets of missing Y ). Standard errors for ML were estimated using
150 bootstrap samples.

4.1. Simulation results without validation data

When validation data were not simulated, 11, 42, and A3 were treated as fixed quantities.
Table | shows that the proposed ML and MI methods produced negligible bias and good
coverage when A9 was correctly specified. Linear regression using only subject data
performed well only when g©@=g). Also, linear regression using single imputation
performed well only when f©=¢(9. Bias and coverage for all methods, however, were
sensitive to misspecification about (). For Models 1 and 2, using Y (p) to impute missing
Y(s) provided no efficiency benefits over ML estimation. Estimates produced using Model §
were less efficient than those produced using Model 2, because, when Model 3 is posited, 8

—(1) —~© N ()
depends on O s and & Epz,) However, standard errors from Model 3 assuming P(;pfo-* were
() . . .
smaller than those assuming p(;p,=0-5. This is not surprising, because A in Model 3 has an

. . . . ) C ).
inverse relationship with PE'SP). When there are no validation data, PE'SP) is treated as a

Stat Med. Author manuscript; available in PMC 2010 December 27.
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constant. Therefore, higher PE'S;,) in absolute value leads to lower variability of estimated g©
and therefore lower variability of estimated j, because 4 is a weighted average of #© and
D). Additionally, results using Model 3 under correct assumptions were more accurate
when n=250 than when n=100.

To further investigate model and method performance for smaller sample sizes, we repeated
the simulation study with n=50. The largest magnitudes of bias observed using ML on
Models 2 and 3 were 6 and 10 per cent, respectively; and the largest magnitudes of bias
observed using M1 on Models 2 and 3 were 2 and —14 per cent, respectively.

4.2. Simulation results with validation data

The parameters A, and 13 were estimated using the validation data. Table Il shows that in
most cases when A(©) was correctly specified, the proposed methods produced results with

small bias and good coverage. However, when PEQZ,FO-S, both ML and Ml estimation of
Model V(3) produced results with large bias. Also, when n=100, M1 estimation of Model
V(2) produced some results with non-negligible bias. Bias and coverage were sensitive to
misspecification about A(©). Standard errors for Models V/(2) and V/(3) were larger than those

for Models 2 and 3, respectively, due to extra variability from estimating A,, A3, and UESI;)

versus plugging in analyst-specified fixed values. Unlike estimation of Model 2, standard
errors from both ML and MI estimation of Model V(2) were smaller when PEQ,):O-* than
when PI‘§;)=0«5.

We also repeated the simulation study with n=50. The largest magnitude of bias observed
using ML on Model V(2) was 3 per cent. When pg;):O.S, biases over 100 per cent were
observed using ML on Model V(3); however, when pﬁf,):o.& the largest bias was 13 per
cent. The largest magnitude of bias observed using M1 on Model V(2) was 4 per cent. When
pg,):O.S, the largest bias observed using MI on Model V(3) was 24 per cent; however, when

pg,):o.& the largest bias was 6 per cent.

5. Data application: BHS-2

We applied the proposed methods to BHS-2, a study of older adults’ physical recovery from
hip fracture. The analysis goal was to determine the relationship between patient sex and age
at the time of fracture with disability for 12 months post-fracture, where disability was
measured as the number of IADLSs that the patient requires human or equipment assistance
to perform. The scale (range: 0-7) consisted of seven tasks: using the telephone, managing
money, managing medications, traveling to places outside of walking distance, shopping,
preparing meals, and doing housework (see [19]). Analyses included 248 hip-fracture
patients (41 men, 207 women) aged =65 years. Among 248 patients, 169 patients provided
responses about IADLs, and proxies provided IADL reports for the other 79 patients,

—~ 169

ﬂs:Eﬂlﬁx. Among the 169 patients who provided self-reports, proxies for 91 patients

— 91
also provided IADL reports, 7pls=7.5=0-34. We performed two sets of analyses. The first

analysis ignored validation data, thus };';) (or PEQ,)), A2, and Az were analyst-specified. In a
previously published validation study of a different cohort of hip-fracture patients,
Magaziner et al. [5] found a correlation of 0.70 between subject and proxy IADL reports.

Stat Med. Author manuscript; available in PMC 2010 December 27.
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Sex- and age-specific proxy bias has not been reported among hip-fracture patients.
However, proxy bias has been reported for subgroups defined by other characteristics [5].
Thus, we specified assumptions about proxy bias for characteristics that are associated with
age and sex. One characteristic associated with patient sex is living arrangement of the
proxy with the patient. It has been shown that men tend to be younger than women at the
time of fracture [21], and women have longer life expectancy than men. We presumed that
proxies living with patients were often spouses, whereas proxies not living with patients
were often offspring or unrelated care givers. Therefore, we expected that proxies living
with patients were most often wives of male patients, whereas proxies not living with
patients were most often offspring or unrelated care givers of female patients. Thus, bias
from proxies who lived with the patient was thought to approximate proxy bias among male
patients. Analogously, bias from proxies who did not live with the patient was thought to
approximate proxy bias for female patients. Magaziner et al. [5] found that among patients
living with proxies, patients reported an average of 0.49 fewer IADL dependencies than
proxies, and among patients not living with proxies, patients reported an average of 0.23
fewer IADL dependencies than proxies. Thus, the magnitude of proxy bias was —0.49—
(—0.23)=—0.26. Also, we presumed that proxies overreport patient IADLs compared with
patients themselves at all ages, but that the magnitude of overreporting diminishes with
older patient ages. The maximum value for IADL dependency was 7, thus the ceiling effect
may limit the level of bias for the oldest patients. The ages of patients spanned 30 years
(from 66 to 96 years) in this study. As an approximation, we specified that the degree of
overreporting (bias) decreases by 0.01 IADL dependencies per year of age. We performed a
sensitivity analysis where we assumed that 1,=(0, 0), (—0.26,0.01), or (—0.52,0.02); where
the second set were historical values derived from Magaziner et al. [5], and the third set is

twice the historical values. We also assumed and (,=0-70 or 0.35, the historical value and
half the historical value, respectively. Ml for all three models depended on 98,) to impute
missing Y(s) using observed Y p). In contrast, ML estimation depended on ng,) only for

. —~0) _ () [0 ~D\L~0), , .
Model 3. We estimated 23 by @~ Pisp) \ ¥om @ss)) @7+) Thay is, the same sets of
values for 5(©) were assumed using both Models 2 and 3. We performed two other analyses,

one assuming that #(®=4(1), and another assuming that /3=(0, 0) (i.e. the outcome

measurement error model [16]). The second set of analyses included validation data by
estimating 4, as fA—aMand estimating /3 as @ — 5*(;;)/583;87“

Table I11 shows that, when validation data were excluded, the estimated coefficient for sex
ranged from 0.76 to 3.34. The minimum was derived when MI was used with Model 2
assuming that 1,=(—0.52,0.02) and p(®=0.35. The maximum was calculated with ML

assuming Model 3 with 13=0 and PI?))=0~35. The estimated coefficient for age ranged from
0.10 using all methods assuming #©=4®) to 0.33 with ML assuming Model 3 and with 13=0

(0) ..
and £(;,=0-35, In absolute terms, the coefficient for age was more homogeneous than that
for sex over the range of assumptions. This result is not surprising, because values of 1, for
age were close to 0. In relative terms, however, both coefficients varied over the

. . . . 0
assumptions. For MI estimation of Model 3, assuming P[S},)ZO-70 produced smaller standard

. 0 . 0
errors than assuming /J:?s}),)=0-35. Assumptions about PES},) had a small effect on parameter
estimates and standard errors for Models 1 and 2. When Model 2 was assumed, ML

produced smaller standard errors than MI; however, the opposite was true when Model 3

- i : 1
was assumed. Analysis with validation data resulted in MLEs .77(51),):0-87,
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f0—g(1=(0.52,0.04), and @ — @%@QQ@“#—OS& —0.03), Thus, assumptions using

validation data differed from those derived from Magaziner et al. [5]. Table 11l shows that
Models V(2) and V(3) resulted in estimated coefficients for sex of approximately 1.14, and
estimated coefficients for age of 0.14.

When validation data were excluded, Models 2 and 3 were preferred because they were
more flexible than other options considered. Model 2 using ML was advantageous because,
unlike Model 3, it only depended on one sensitivity analysis parameter (1,), and produced
smaller standard errors than the analogous model estimated using MI. When validation data
were included, Model V(2) was preferred. Differences in estimates between Models V(2)
and V(3) and between ML and MI were negligible, but Model V(2) estimated with ML
produced the smallest standard errors. Qualitative conclusions from BHS-2 were robust to
the assumptions considered: male sex and older age were associated with more IADL
dependencies. However, the magnitude of association was sensitive to the assumptions
examined here.

6. Discussion

This paper proposed methods based on pattern-mixture models to analyze normal data with
proxy respondents. The methods were developed to handle studies both with and without
validation subsamples of incompletely observed proxy respondents. The models proposed
here are distinct from a recently published proxy pattern-mixture model where, unlike this
paper, the authors used the term “proxy’ to refer to the function of completely observed
covariates most predictive of the incompletely observed outcome [22].

Previous empirical studies of older adults have found evidence that proxy responses are
systematically biased compared with subject responses [5-8]. Despite these findings, proxy
data are often substituted for missing subject data without considering the implied
assumptions. In contrast, our proposed methods involve explicating assumptions about
missing subject data. The analyst can relate the distribution of missing subject data to
identifiable distributions for observed proxy or subject data.

Although proxy data can also be treated as a source of outcome measurement error [16],
conceptualizing the problem instead as one of missing data is beneficial. In the measurement
error framework, it is common to assume that proxy data are surrogates for patient data (i.e.
43=0g in Model 3), in other words that measurement error is nondifferential. A benefit of our
models is that they can easily handle differential measurement error with respect to
covariates and auxiliary variables in the analysis model. Also, standard methods for
measurement error focus on the scenario where Y p) is observed for all subjects, and Y(s) may
be observed for a random validation subsample; i.e. no selection bias. Our proposed models
handle selection bias in the proxy-data problem, because the distribution of Y(s) may differ
between those with Y sy observed and those for whom only Yy is observed.

Simulation studies showed that, in general, our proposed methods produce results with low
bias and good coverage when proxy bias is correctly specified. However, some caveats
should be kept in mind. Estimation with Model V/(3) using validation data is only advisable
when the proxy and subject responses are highly correlated conditional on covariates; and
MI estimation of Model V(2) is only advisable with large samples. These findings illustrate
that while validation data can be a valuable resource, if it is of low quality and quantity, it
can negatively impact model performance. Also, the simulations showed that when sample
sizes are as small as 50, Models 2 and V/(2) are generally more reliable than Models 3 and
V(3), respectively, because #© in Models 3 and V/(3) depend multiplicatively on inverse
variances or covariances.
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Despite these caveats, our approach provides more flexibility in performing sensitivity
analyses about proxy bias than standard ad hoc methods such as analyzing only subject data
or singly imputing proxy data for missing subject data. The BHS-2 data analysis highlights
the benefit of validation proxies, because including validation proxy data allows weaker
assumptions to be made about parameters. However, the proposed models only handle proxy
bias for normal outcomes. Future research involves extending the methods for non-normal
outcomes and addressing proxy bias in covariates. The missing-data framework will ease
extensions for handling additional missing data (i.e. when responses from subjects and
proxies are both not available). Wang et al. [23] developed a selection model to
simultaneously handle missing data and measurement error; however, this model was based
on the surrogacy assumption and does not consider the scenario where only one of the
subject or proxy response is observed.

Lastly, although our approach facilitates a sensitivity analysis about the magnitude of proxy
bias among those with missing Y/, it may be difficult to determine a range of plausible
values for unidentifiable parameters. Validation data are particularly beneficial here,
because they can help provide plausible anchors for these parameters. When validation data
are not available, historical validation studies, such as those used in the BHS-2 example, can
provide initial assumptions. Otherwise, subject-matter experts are generally regarded as the
best source of information for sensitivity analyses [24].

Appendix A: Estimation without validation data

A.1l. Maximum likelihood

L(1:¥(obsys X Risp)ar§! (1= )" || | FQElR ) f (¥l Xin Riow) ™ f (¥l X Risy) 07,

Let ny be the number with R(5)=1, and denote ng=n—n;. Let Prob(R)=1)=rs, and

) 0 () _© © O @ D L .
P1=(B"" 0 O 561 T e Hiy 2 4y M0 2y ™). The observed-data likelihood is

(A1)

where f (Y(q)ilXj, R(g)i) is normal, d€{p, s} and f (X{IR(s);) is multivariate normal with mean
! 6]
ﬂz;))and variance—covariance Zm). Plug MLEs from equation (A1) into Xys):

. 1-r (r) . - ’ - .
Z(xs): Z ﬂ;(l B HS) ’[Z(x\')ﬂ(’)-l_(ﬂsx; —,U(_,()) (/l&'?)ﬂ(’) - NO‘(s)))]’

re{0.1) (A2)

1 ) (D) (0) 50
where ﬂ(.v)=ﬂs/léx)+( 1 = 7s)uy and #K'y}j,,—ﬂsu(_\.)ﬂ( (1 = mou B )

A.2. Multiple imputation

. (1) (€))] 2 (1 .
First, draw O (s from S 5,71 = @)/x3, —q, where S g, is the mean-squared error from

regressing Y(s) on X among those with R(s)=1, and )(,27 is a chi-square random variable with 5

— -1
e _
degrees of freedom. Second, draw A1) from MVN B, U(ss)(”lzm)) IR=1) Next, draw

(0

@ from S (0 — 9)/x2,q, where S is th d error f ing Y
®op) rom (pp)\110 q no—q, WnNere ) 1S € mean-squared error rrom regressing )] on
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— ) -1

(
. 0 (U] _
X among those with R()=0. Then, draw & from MVN@"”,o (pm("oz(_m) IR5=0), use
simulated parameters and assumed model to find ©). Simulate missing Ys from a normal

S . 0, ,0 [0 .0 0 . © 0y
distribution with mean X8 +0(g)) \/T {6/, Yip) = X&) and variance o ;) (1 = £;))).

Repeat the steps M times to create M completed data sets, and calculate final parameter and
standard error estimates using the usual combining rules [4].

Appendix B: Estimation with validation data

B.1. Maximum likelihood

Let ny13 be the number in the validation sample, let njg=n3—ny; be the number with R(g=1

. P 1 (1) (1
not selected into the validation sample, and let $2=(¢1. @', o). ‘T(S;yﬂpls). The observed-

data likelihood is

L(¢2;Y (obs)»
X, R(S)vR(p)) a (ﬂ'sﬂpls)"” [ms(1 - ”p]s)]”m(l - 71'3)"0 r[f(XilR(x)i)

_ . Ry —Rio;
XS (¥ (59il X, Risy) RO F(¥ 5300 ¥ il Xis Risyi) SO T F (X (il Xis Risyi) R0, (B1)

Plug MLEs from equation (B1) into equation (A2) to estimate /.

B.2. Multiple imputation

Draw M-independent simulations of (a(?), Uzpz,)) as described in Appendix A. Use Gibbs
sampling to simulate (81, (1), £(1)), because more observations are available to estimate

1 , . D 1 o
B and o) than that are available to estimate o®, 7, and (), complicating the

posterior distributions [20]. When R5)=1, treat Y(p) as data missing according to a known
mechanism. Let (8, oY) have priors proportional to a constant that are independent of
()" which has a Wishart prior, W(v,A), with v degrees of freedom, and 2x2 symmetric
positive-definite prior precision matrix A. Y;j is a 2-vector, thus v >2. First, specify initial
values for the Y(p) where R(s)(1-Rp)=1. Let Y f;;"p v denote the vector of completed proxy
data (observed and imputed) at the jth iteration, where Y(c;,l,l-lp(j)=Y @i iIf Rg)iR(p)i=1. Continue
iteration j by simulating (8,1, =) from

™ ; o]
D W YD, X, Rg=1 ~ Wvtng — 1, (9 eP+a7h) )

—(1) -1

) apeh ; N w_
B a0) T ¥ YT X Rp=1 ~ MYN@ Y BD). ) em ), ) ).

where e0) is n;x2 with ith row (¥ — X8, Y(c:;lp(j) - X;@'%) f) s MLE of 1), and o)

is MLE of «®) using Iﬂj)mp(j). Begin iteration j+1 by drawing Y(C;;np(ﬁ  from
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(1) 1)

mp(ji+1 i i 1n , i (sp) s ap Zop
Yo gD U0, % Yy Xi, Risi(1=Ripi)=1=N | Xia M)+ =2 (¥ = X1, o)) — —2 |
o

a1y pp) apn
(ss) (ss)

After completing the Gibbs sampler, select M draws of the simulated parameters spaced far

en

ough apart between iterations to avoid autocorrelation. Set (%) according to the assumed

model, and draw M independent sets of Y g) as in Appendix A
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