° NAT/O

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

N, NIH Public Access

(<
A 5 Author Manuscript
P repSS

Published in final edited form as:
Physiol Meas. 2010 June ; 31(6): 729-748. doi:10.1088/0967-3334/31/6/001.

Measurement uncertainty in pulmonary vascular input
impedance and characteristic impedance estimated from pulsed-
wave Doppler ultrasound and pressure: clinical studies on 57
pediatric patients

Lian Tianl, Kendall S Hunter213, K Scott Kirbyz, D Dunbar Ivy2, and Robin Shandas1:2:3.4

1Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309,
USA

2Department of Pediatric Cardiology, The Children’s Hospital, University of Colorado at Denver,
Aurora, CO 80045, USA

3Department of Bioengineering, University of Colorado at Denver, Aurora, CO 80045, USA

Abstract

Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and
disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic,
pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine,
involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured
velocity to non-invasively estimate instantaneous flow has made impedance measurement more
practical. One critical concern remains with clinical use: the measurement uncertainty, especially
since previous studies only incorporated random error. This study utilized data from a large
pediatric patient population to comprehensively examine the systematic and random error
contributions to the total impedance uncertainty and determined the least error prone methodology
to compute impedance from among four different methods. We found that the systematic error
contributes greatly to the total uncertainty and that one of the four methods had significantly
smaller propagated uncertainty; however, even when this best method is used, the uncertainty can
be large for input impedance at high harmonics and for the characteristic impedance modulus.
Finally, we found that uncertainty in impedance between normotensive and hypertensive patient
groups displays no significant difference. It is concluded that clinical impedance measurement
would be most improved by advancements in instrumentation, and the best computation method is
proposed for future clinical use of the input impedance.
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1. Introduction

Pulmonary arterial hypertension (PAH) is an important cause of morbidity and mortality in
children and adults. PAH is characterized by high blood pressure in the pulmonary
circulation that yields increases in right ventricular (RV) afterload, and is associated with
arterial remodeling and eventual failure of the RV. Current diagnosis of PAH is executed
through the measurement of pulmonary vascular resistance (PVR), which is the viscous
hydraulic opposition to the mean blood flow. However, PVR, a measure based on the
assumption of steady hemodynamics, can only provide limited information about overall
pulmonary vascular function due to its neglect of the pulsatile components of blood flow
(Grant and Lieber 1996, Weinberg et al 2004). Alternatively, pulmonary arterial (PA) input
impedance (Z), which represents the opposition to both the mean and pulsatile components
of flow, has been shown to be a much better measure of RV afterload and to better
characterize pulmonary vascular function (Milnor et al 1969, Milnor 1975, Grant and Lieber
1996, Weinberg et al 2004). Perhaps as a result, it also better predicts clinical outcomes
(Hunter et al 2008). The correct measurement of input impedance is thus highly important
for accurate diagnosis of PAH. Magnetic resonance imaging (MRI) has been used to
evaluate the blood flow very accurately through ensemble imaging. However, this technique
does not provide beat-to-beat measurements of flow, and thus cannot assess the biological
variability. Additionally, MRI is very expensive and time consuming, and thus is not
routinely used in most hospitals or research centers in the USA. Recently, our group has
developed a new method to measure impedance using pulsed-wave (PW) Doppler-measured
instantaneous velocity and pressure measurements; flow was derived from the PW
measurement (Weinberg et al 2004). This new method is relatively simple and easy to
implement especially for pediatric patients compared to other techniques, and has shown
promise for future clinical application in evaluating the pulmonary vascular function from
the standpoint of standard of care in pediatrics.

Impedance has shown promise for routine use in clinical settings. The impedance at the
zero-frequency harmonic (Zg) correlates well with the distal vascular resistance (PVR).
Some have postulated that the first harmonic (Z41, Weinberg et al 2004) or the sum of the
first two harmonics (Z; + Z,, Hunter et al 2008) is representative of pulmonary vascular
stiffness. Notably, this impedance sum has been shown to better predict pediatric patient
outcomes in PAH (Hunter et al 2008). On the systemic side, the increase of systemic input
impedance modulus and the shift of the first minimum impedance modulus and phase to
higher harmonic have been used to represent the stiffening of ascending aorta (Milnor
1975). The wave reflection, which is estimated as the difference between maximum and
minimum input impedance, has been associated with left heart failure (Pepine et al 1978).
Others have proposed the use of the characteristic impedance, which provides an indirect
measurement of vascular compliance and has been used to evaluate the arterial disease of
the vascular bed (McDonald 1974, Nichols et al 1977, Lucas et al 1988, Finkelstein et al
1988). The characteristic impedance can only be estimated through the measured input
impedance due to the presence of reflected waves (Bergel and Milnor 1965, McDonald
1974, Grant and Lieber 1996). In a word, the ventricular afterload is better defined by the
impedance spectrum rather than pressure or ventricular wall stress (Patel et al 1963, Milnor
1975, Nichols et al 1980).

Clearly the uncertainty associated with each of the pulmonary vascular uses noted above is
important to the clinical application of this routine PW and pressure measurement. There are
systematic errors (or biases) associated with the measuring instruments, analytical random
error introduced by the chance fluctuations in the environment or other factors from one
measurement to the next, and biological random error due to the individual’s variation
around their homeostatic state; these errors will be propagated to the input impedance. As a
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result, the measured input impedance may have very large uncertainty, especially at high
harmonics. Precisely quantifying the uncertainty in input impedance can provide confidence
and guidance for its application to clinical medicine. In our previous work (Weinberg et al
2004, Hunter et al 2008), only the random error was considered in calculating the
uncertainty in input impedance. To the best of our knowledge, no work has been published
that comprehensively studies the uncertainty in the input impedance as measured by the
combination of PW Doppler-approximated instantaneous flow and invasively measured
pressure. Therefore, the goals of this study were (1) to develop formulations for the
calculation of uncertainty in input impedance incorporating both systematic and random
errors, (2) to investigate the uncertainty in input impedance and determine up to which
harmonic of impedance that can be used properly for clinical application and (3) to
determine if the characteristic impedance, which is calculated from the higher harmonics of
impedance, may be accurately used from these measurements.

2. Methods

We first studied the systematic uncertainty in the pressure and flow spectra moduli by
comparing each systematic uncertainty to its respective spectrum modulus for each
harmonic up to the tenth. The contribution of the systematic error to the total uncertainty in
input impedance was then investigated to see if the systematic error was negligible. Thirdly,
the percent total uncertainties in input impedance calculated from four different methods
were compared to determine the method with the lowest percent total uncertainty. Finally,
systematic uncertainty in the pressure and flow spectra moduli and total uncertainty in input
impedance were compared between normotensive and hypertensive groups to explore how
the uncertainty was affected by patient condition.

2.1. Clinical data acquisition

After institutional review board approval and informed consent and assent had been
obtained, clinical data were obtained during routine cardiac catheterization of patients as
part of their regular evaluation and treatment at the Children’s hospital in Denver, CO. A
total of 57 patients (median age 6.46 years, range 0.33-21 years, 25 females) were
considered, of whom 13 patients were with normal mean PA pressures (median age 5.69
years, range 0.92-16 years, 9 females) and 44 patients with PAH (median age 6.68 years,
range 0.33-21 years, 16 females). The data used for calculation in this paper were obtained
at a room air (baseline) condition for all patients, i.e. no vasoreactivity data were used.

The pressure within the middle section of main PA was measured with standard fluid-filled
catheters (Transpac 1V, Abbott Critical Care Systems, Abbott Park, IL, USA). PW Doppler
velocity at the midline of the middle section of main PA was measured with a commercial
ultrasound scanner (Vivid 5, GE Medical Systems Inc., Waukesha, WI, USA) from a
parasternal short-axis view as described previously (Weinberg et al 2004). Four different
Vivid 5 systems were used, depending on clinical availability; all had nearly identical data
acquisition characteristics. By performing anatomic assessment of the MPA as well as color
Doppler flow imaging prior to PW Doppler imaging, the angle between flow in the MPA
and the ultrasound beamline (i.e. the Doppler angle) was minimized. For the purpose of
error estimation, we assume that the Doppler angle was always less than 5° for all clinical
measurements; this results in less than 0.4% error in the Doppler signal, which was not
considered in our study. Cardiac output (CO) at room air condition was measured three
times for each patient by Fick’s method with measured oxygen consumption in cases where
intracardiac shunts were in place and by thermodilution otherwise (Calysto 1V, Witt
Biomedical, FL), and the mean CO was used for calculations. We recall that the
instantaneous flow rate Q(t) was calculated by multiplying the Doppler-measured velocity
V(t) by a constant area correction factor:
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Q(D=Acorr V(1), ()

where the constant Ago,r is obtained from

Aeorr=CO/V, (2)

in which V'is the time-averaged PW Doppler velocity. Note that the above calculation
assumes that the instantaneous cross-section area is constant over time and the spatial profile
of the velocity is nearly constant across the vessel (Womersley 1955), which together have
been shown previously to be acceptable approximations (Weinberg et al 2004). The
recorded pressure and calculated flow time histories were then separated and collected into
individual cardiac cycle-based electrocardiographic (ECG) gating; more detail may be found
elsewhere (Hunter et al 2008).

2.2. Basics of error propagation

Consider a general data reduction equation:

y=y(X1,X2,..., X,A), )

with associated standard random errors (6%, 85, ..., 6%) and standard systematic errors
(87,63, ...,8) for each variable, and the associated degrees of freedom

W}, v5, .. ) and (v7, 03, .., v)). Assuming there are no random error/systematic error
correlations, the standard total error 6y and uncertainty uy in y under the first-order Taylor
series approximation are (ANSI/ASME 1997, Coleman and Steele 1999)

L L L L
_ JisR 5 e y 9y sk Oy 9y ss
8,=(68) +(55) -\J;; 5Jk+;;(9xj s

0x; Oxy,

Uy=ty,950y, (5)

where the superscripts R and S refer to random and systematic errors, respectively, 5 = (81-)2
for j = k and is the covariance of the errors in x; and x for j # K, t, g5 is the t value from
Student’s t distribution with v degrees of freedom for a 95% confidence level and v is the
number of degrees of freedom associated with 3y and is calculated from the generalized
Welch-Satterthwaite formula that can accommodate the correlated components of
uncertainty (Willink 2007).

Note that if the standard systematic error for all the N measured results of x; is the same as

5?, the standard systematic error in x; is 5? with infinite degrees of freedom (Dieck 1997).

However, if the standard systematic error for each X} is (5§)" which is different for different
n, the standard systematic error in X; is then estimated as (Coleman and Steele 1999)
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N

$.2
5‘; = 2(6] )n

n=1 /(N_ 1)’ (6)

with (N — 1) degrees of freedom.

We define the contribution of the systematic error to the total uncertainty as

O
(65) +(87)” )

If we have another function, z = z(X1, Xo, ..., X_), then the covariance between y and z on the
first-order approximation is (Freund and Walpole 1987)

L

dy 0., dy 0z
6“::}—21;(% Ox Ol ZZ@V Dx jSA

(8)

2.3. Systematic uncertainty in pressure and flow spectra moduli and phases

S

Ppk)

o 2
P(k)zP,\,(k)+1P,(k)=NZexp —1Fnk P(n), k=0,1,...,N-1,

For N time-domain measurements of pressure, P(n), the spectrum for this quantity waveform
is obtained by applying the discrete Fourier transform as

N-1

n=0 9)

where the overhat indicates a Fourier-transformed quantity and k is an integer and denotes
the zero-frequency harmonic of the spectrum when k = 0 and the kth harmonic of the
spectrum when 1 <k < (N — 1)/2.

The systematic error in pressure arises from the offset, accuracy of the transducer sensitivity,
digital-to-analog conversion, etc. The offset of the transducer and the error in the transducer
sensitivity are both small compared to the resolution of the digital-to-analog conversion
performed by the ultrasound system (Vivid 5). Therefore, the error considered in this study
is due to digital-to-analog conversion and thus depends on the type of the digital-to-analog
converter used in the ultrasound system. The standard systematic error in pressure in the

time domain is thus constant (denoted as 6f) for all the pressure data points in the same
patient and there is no correlation between any two pressure data points. As a result, the
standard systematic errors in the real part, Pr(k), the imaginary part, Py(k), the modulus, |P
(k)| and the phase, ¢p(k), of P(k) for a cardiac cycle with N time-domain data points are
calculated by using the theory in section 2.2 as

[ &/VYN, k=0 0, =0
6§/\/2N, k#0, PPy (10)

6 =
§/V2N, k#0, “A®
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5 = 85 /YN, k=0 5 - 0, k=0
A | 63/ V2N, k#0, ¢® | &5 /(IP(k) V2N), k#0. (11)

For velocity, the standard systematic error is constant (denoted as 53) for all the velocity data
points in the same patient and there is no correlation between any two velocity data points.
The systematic error in velocity considered here is a function of the pulse repetition
frequency (PRF), which is changed for each subject to maximize velocity range. Thus, the
error can be different for different patients. However, each flow data point is calculated from
equations (1) and (2). The standard systematic error of a flow is calculated by using the
theory in section 2.2 as

O(n)

2 2 o 2 . . -(6° 2 n
O LG U I /{V-ZNJ

=1 (12)

1 2 [CO* 2 oM
S _ [ (s S .
where Brcn \/73 (6“’) +[ A (6") / Z:j:lN’} is the standard systematic error in the area

correction factor, Agorr, 6§0 is the standard systematic error in cardiac output and is obtained
from the cardiac output instrumentation manufacturer (Calysto IV, Witt Biomedical, FL), N;
is the number of time-domain data points in the jth cardiac cycle and M is the number of
cardiac cycles. The covariance of the systematic error in Q(n;) and Q(n,) based on equation
8)is

5 B s 2 Vi) +Vm)IAS (55) M
6Q(n1JQ1n:1_V(nl)V(n:)(éAmn-) - [ ( ! ’)] o ‘) CO- ZNj
= (13)

As a result, the standard systematic errors associated with flow spectrum quantities can not
be reduced to simple forms as pressure as shown in equations (10) and (11).

With the standard systematic errors for pressure and flow spectra moduli, we defined the
mean percent systematic uncertainty in the spectrum modulus at the kth harmonic for a
patient as

1 i%\fﬂku
i ’
M 1@l (14)

where [fi(k)| denotes the modulus of pressure or flow spectrum at the kth harmonic and the
number 2 in the above equation is to transfer the standard systematic error which is for a
68% confidence level to the systematic uncertainty for a 95% confidence level.

2.4. Input impedance and the uncertainty
The input impedance is defined as
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P ad P(k)

5] (15)

Given M cardiac cycles of pressure and flow data, we determined four different methods to
calculate the input impedance modulus |Z(k)| and phase ¢(k) and the associated uncertainties.
Since the random analytical error and random biological error cannot be separated, these
two errors are combined together and denoted as the random error. It is noted that the
random error in cardiac output was not considered since the three measured values of
cardiac output are quite close. The four methods of calculation and the corresponding data
reduction equations f(x, y, ...) are as follows.

Method 1. Average of the absolute values or arguments of the complex ratio:

Pi(k Bk
Zi0= ()-f( v=x. u=|E2,

M
=

(16)

¢1(k)—MZArg (Q( )) f(x2)=x2, xp=Arg (@) :

J=1 /() (17)

In the notation, Arg(x) denotes the principal argument of the complex number, x, and is
between —r and =.
Method 2. Absolute value or argument of the average of the complex ratio:

M =

P/(k
220l %ZQ” = (6 )=V,
=1

x=Re @), y=Im (Ii(—k)),
(k) il Q(k)

(18)

dr(k)=Arg [MZP(k)] f(x,y)= Arcran(‘)

Q/(k) (19)

where Arctan(y/x) is the inverse tangent of y/x and is restricted to the range of [—x, ©]. Re(x)
and Im(x) denote the real and imaginary parts of x, respectively. Note that there is no
covariance of random errors in x and y, but the covariance of systematic errors in x and y is
considered.

Method 3. Ratio of the averages of the absolute value or difference of the average phases:
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D Pk x
1Z3(k)| vz 4,,,2@1(1»)@ =fyD=3t

J=
x=P(k)l, y1=10(K). (20)

M
¢3(k):%ZArg(ﬁj(k))—MZArg(Q (k))+C=f(x2,y2)=x2 = y2+C
l:l _ j=1
x=A1g(P(k)), y2=Arg(Q(k)), (21)

where C is a constant (0, 2z, or —2xt) which assures the calculated phase angle ¢3(k) to be
within the principal argument range of [—=, ©r]. Note that there is no covariance of random or
systematic errors in xq and y; or in Xp and y, for x4 and y; or X, and y, are independent.

Method 4. Ratio of the absolute values of the complex average or phase difference of the
complex averages:

MZP *) 4 ZQJ(")

x1=Re(P(k)), yrlm(P(k)), x2=Re(Q(k)), y2=Im(Q(k)), (22)

\Z4(k)|= (X131, %2, 32)=

+C=f(x1,y1, X2, ¥2, )= Arctan( ) Arctan (“)+C,
X1 X

J=1 J=1 (23)

Note that there is no covariance of random errors in any two variables of X1, y1, X2 and y»,
but the covariance of the systematic error in x; and y1 or in xo and y» is calculated.

Mathematically, the above four methods apply the non-associative operators of average,
absolute or argument, and ratio (division) to obtain modulus or phase. As a result of the
operator’s non-associativity, the propagation of error is different for each method. The
above four methods represent all possible ways to calculate the impedance given the
definition of impedance by equation (15). For the first two methods, the complex impedance
for each cycle is first calculated. Then, in method 1, the impedance modulus and phase of
each cycle are calculated before the average values are obtained. In contrast, first the
average complex impedance is obtained for all the cycles in method 2 and then the
impedance modulus and phase are calculated. In methods 3 and 4, the average spectra
moduli and phases for pressure and flow are calculated separately before the impedance
modulus and phase are obtained. In method 3, the pressure and flow spectra moduli and
phases are calculated before the average spectra moduli and phases are obtained, while in
method 4, the average pressure and flow spectra are obtained for all the cycles before the
pressure and flow spectra moduli and phase are calculated.

We define the percent total uncertainty in impedance modulus as the total uncertainty
divided by the modulus, as shown previously. However, use of this definition with phase
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will lead to a huge percentage because the phase can be very small. Thus, the percent total
uncertainty in impedance phase is defined as the total uncertainty divided by 2x.

2.5. Characteristic impedance

Many methods exist in the literature to estimate the characteristic impedance (Bergel and
Milnor 1965, McDonald 1974, Finkelstein et al 1988, Weinberg et al 2004, Segers et al
2007) from experimental measurements. However, the superiority of any single method has
not been established. The characteristic impedance is estimated here by averaging the
impedance moduli from the first minimum up to the eighth harmonic, |Z¢| = (|Z1st minimuml +
... +|Zg|)IN, where N is the number of impedance moduli in the calculation. The uncertainty
in characteristic impedance is calculated through the error propagation for each method.

2.6. Statistical analysis

All the data are presented as mean + SD unless specified otherwise. The one-way ANOVA
test was used to compare the mean contributions of systematic uncertainty to the total
uncertainty in impedance from the four methods, and to compare the mean percent total
uncertainty in impedance from the four methods. The paired t-test was performed to identify
differences of the means of the percent total uncertainty in impedance between any two
methods. The two-sample t-test and equivalence test were used to compare the uncertainties
between normotensive and hypertensive groups. The confidence level was set at 95% for all
tests. Finally, we chose 20% error as our maximum acceptable error, and showed this 20%
demarcation as a line in many results.

3. Results
3.1. Pooled data

The bias for pressure, 265, varies modestly due to the four different ultrasound systems and
has an average of 0.385 + 0.009 mmHg for all the patients. The bias for velocity, 265, varies

V1

patient-to-patient due to changes in the velocity range and pulse repetition frequency
settings during acquisition of the spectral image and has an average of 1.13 + 0.26 cm s ™1

for all the patients. The bias for cardiac output, 26?0, is 10% of the cardiac output (CO).

In general, the modulus of the pressure or flow spectrum decreases quickly as the harmonic
number increases for the first several harmonics and exhibits small oscillations within the
higher harmonic region (>fourth harmonic). As a result, the modulus can be smaller than the
systematic uncertainty at a certain harmonic, but larger than the systematic uncertainty at the
next higher harmonic. Presumably due to the biological variation and random process of the
measurement, it is also possible that moduli at a harmonic from one or several measured
cardiac cycles for a patient are smaller than the associated systematic uncertainty, but the
moduli computed for other cycles are larger than the systematic uncertainty at that
harmonic.

The percent systematic uncertainties in pressure and flow spectra moduli are shown in figure
1 plotted using the boxplot function in Matlab (similar plots for following figures unless
specified otherwise). For each box, the central mark is the median, the edges of the box are
the 25th (g7) and 75th percentiles (g3). The + symbols represent the outliers that are outside
the whisker range [g1 — 1.5(03 — g1) a3 + 1.5(g3 — q1)] (Tukey 1977,McGill et al 1978). For
pressure (figure 1(a)), the averages are 0.13% + 0.06%, 0.75% + 0.48%, 1.7% £ 1.1%, 5.7%
+4.9% and 5.6% * 4.6% for the zero-frequency, first, second, third and fourth harmonics,
respectively. The error clearly increases from the fifth to the eighth harmonic; the median of
these errors is still below or at 20%, but select patients have errors over 20% or even 50%.
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For the ninth and the tenth harmonics, the error medians are over 30% and there are many
data points that exceed 100%, with several outliers over 200%. For flow (figure 1(b)), the
average are 10.0% =+ 0.0028%, 10.0% + 0.0073%, 10.0% + 0.035%, 10.6% * 1.7% and
10.6% = 0.78% for the zero-frequency, first, second, third and fourth harmonics,
respectively. From the fifth to the tenth harmonic, all the medians are smaller than 20% but
with more and more outliers over 20% as the harmonic number increases. There are only
two outliers greater than 50% at each of the ninth and tenth harmonics.

The average contribution of the systematic error to the total uncertainty in impedance
modulus and phase for the grouped data as computed by the four methods is presented in
figure 2. The systematic error of the modulus (figure 2(a)) provides average contributions of
at least 70% to the total uncertainty in the zero-frequency, first and second harmonics,
respectively, for all four methods, and contributes about 40% (methods 3 and 4) to 50%
(methods 1 and 2) to the total uncertainty for harmonics up to the tenth. For the phase
(figure 2(b)), the average contribution of the systematic error increases from about 8% to
about 45-60% as harmonic increase from the first to the tenth. The mean contributions of
the systematic error show no significant differences between the four methods to compute
moduli at the zero-frequency, first and second harmonics (P > 0.4, ANOVA), but are
significantly different from the third to the tenth harmonic (P < 0.04, ANOVA) and for
phase for all the harmonics up to the tenth (P < 0.003, ANOVA).

Representative plots of input impedance and its associated total uncertainty calculated with
the four methods are shown in figure 3. In general, the impedance moduli and phases
obtained from the four methods are very similar and have very small uncertainty up to the
fourth harmonic, but differences between each method begin to emerge and overall
uncertainty increases in the higher harmonics.

The group average percent total uncertainty in input impedance for four methods are shown
in figure 4. The average percentages increase with the harmonic number for both impedance
modulus and phase for all four methods. For modulus (figure 4(a)), the mean percentages for
the four methods are very close up to the third harmonic and show no significant difference
(P > 0.2, ANOVA). Method 3 has the smallest percent total uncertainty at harmonics higher
than the third, and is significantly different from the other three (P < 0.031, paired t-test)
except for the mean percentages between method 3 and method 1 at the ninth harmonic (P =
0.197, paired t-test) and the mean percentages between method 3 and method 4 at the
seventh harmonic (P = 0.112, paired t-test). For phase (figure 4(b)), the mean percentages
for the four methods are very close up to the fourth harmonic and show no significant
difference (P > 0.08, ANOVA). Methods 1 and 3 give very close mean percentages although
they are significantly different (P < 0.05, paired t-test). Methods 2 and 3 have significant
differences in the mean percentages from the fifth to the tenth harmonic (P < 0.02, paired t-
test). Methods 3 and 4 show no significant difference in the mean percentages from the fifth
to the tenth harmonic (P > 0.07, except for P = 0.0053 at the eighth harmonics, paired t-test),
but the means and the variations of percentages of method 3 are always smaller than those of
method 4.

The percent total uncertainty in characteristic impedance calculated from the four methods is
shown in figure 5. The mean percentages of the four methods display significant differences
(P <0.05, ANOVA). Method 3 has the smallest variation of the percentages (25% + 6.7%)
and has much lower median and mean percentages than the three other methods. The
difference in the percentage between method 3 and the other three methods is significant (P
< 0.015, except for P = 0.061 between method 3 and method 1, paired t-test).
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3.2. Comparison of normotensive and hypertensive groups

To study the difference of the uncertainty between normotensive and hypertensive groups,
we selected 10 patients from the normotensive group with mean PA pressures less than 20
mmHg and 26 patients from the hypertensive group with mean PA pressures over 27 mmHg
and compared their impedance errors. All other patients had mean PA pressures of 24 or 25
mmHg and were excluded from the study to better clarify the effects of a more severe
disease state on the uncertainty.

The percent systematic uncertainty in pressure spectrum modulus is shown in figure 6. The
percentage differences between normotensive and hypertensive groups are significant for the
zero-frequency, first, second, seventh, eighth and ninth harmonics (P < 0.025, t-test). No
significant differences are seen for other harmonics, but both the mean and median
percentages in the hypertensive group are smaller than those in the normotensive group. The
percent systematic uncertainty in flow spectrum modulus is also studied (not shown) and
there are no significant differences between the two groups for all the harmonics up to the
tenth (P > 0.06, t-test, except for the zero-frequency and the first harmonics). However,
these mean percentages at the zero-frequency and the first harmonics are nearly identical to
10.0% due to the fixed systematic error in cardiac output with a negligible random error.

The average contribution of the systematic error to the total uncertainty in input impedance
for the two groups calculated from method 3 is shown in figure 7. The mean contributions
show a significant difference for moduli at the fourth, seventh to tenth harmonics and for
phases at first to fourth, sixth, ninth and tenth harmonics (P < 0.05, t-test). Though no
significant differences were seen in the moduli and phases for other harmonics, the mean
contributions in the normotensive group are larger than those in the hypertensive group.

The average percent total uncertainty in input impedance for the two groups calculated from
method 3 is shown in figure 8. The mean percentages show significant differences between
the two groups in the moduli at the seventh to the ninth harmonics (P < 0.04, t-test), and are
not significantly different between the two groups for moduli for the other harmonics and
for phases for all the harmonics up to the tenth (P > 0.066, t-test). The percent total
uncertainty in characteristic impedance calculated from method 3 shows no significant
difference between the two groups (P = 0.55, t-test, figure not shown). The equivalence test
(Hatch 1996) was also performed for the comparison of the average percent total
uncertainties in input impedance and characteristic impedance for the two groups assuming
the equivalence interval equal to 20% of the average value of the normotensive group. The
mean percentages show no statistical equivalence between the two groups for all the
impedance moduli and phases except for the impedance moduli at the zero-frequency and
the first harmonics at the o = 0.05 level.

4. Discussion

The uncertainty of input impedance and characteristic impedances in the pulmonary
circulation system is critical given that the magnitude of the uncertainty can affect accurate
interpretation of impedance for the diagnosis of PAH. This paper provides the first
comprehensive and detailed study on the uncertainty in the pressure and flow spectra
moduli, the input impedance and the characteristic impedance. Several important results
have been found as follows.

The studies of the systematic error and its contribution to the total error (figures 1, 2)
indicate that the systematic error must be considered when calculating the uncertainty;
indeed, for the majority of harmonics studied, it represented the primary source of modulus
error. For example, simply due to catheter precision, the pressure data from approximately
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the eighth harmonic and higher must be used with caution. The percent systematic
uncertainty in flow spectrum modulus is about 10% up to the fourth harmonic, which is
larger than that for pressure, but increases only moderately up to the tenth harmonic. The
relatively large percent systematic uncertainty in the flow spectrum modulus even at low
harmonics is the primary reason that the systematic error is the majority of the total
uncertainty in input impedance. Clearly only considering the random error can dramatically
underestimates the uncertainty, and the easiest means to improve impedance measurement
uncertainty is to improve instrument precision.

We found significant differences between the four methods to compute impedance. The
comparisons between the four methods strongly indicate that method 3, which obtains the
impedance modulus from the ratio of the average of the absolute values of the pressure and
flow spectra, gives the lowest percent total uncertainty in input impedance and characteristic
impedance modulus overall. Therefore, method 3 is potentially the best technique to
estimate the input impedance of these four methods. Previous studies have used method 1
which obtains the impedance modulus from the average of impedance moduli of all
measured cycles (e.g., Bergel and Milnor 1965, Nichols et al 1977) and method 3 (e.g.,
Weinberg et al 2004, Hunter et al 2008); however, methods 1 and 3 are equivalent only for
the uncertainty in input impedance phase, while method 1 has much larger uncertainties for
input impedance modulus at high harmonics and characteristic impedance modulus. From a
practical standpoint, any method may be used if only the first several harmonics are
required. However, in that the values and errors of the four methods begin to strongly differ
above the third harmonic, use of method 3 over the other methods has the effect of making
characteristic impedance a quantitative, rather than screening level (qualitative)
measurement.

Many previous studies did not perform the calculation of the uncertainty incorporating the
two kinds of error before the usage of the input impedance (e.g., Weinberg et al 2004,
Hunter et al 2008). The omission of the large uncertainty may lead to misleading
conclusions, particularly in the high harmonics. Indeed, caution must still be exercised in the
usage of the input impedance even though method 3 is applied. For example, the mean
percent total uncertainties in input impedance and characteristic impedance moduli are over
50% for harmonic higher than the eighth and 25% + 6.7%, respectively.

The comparison of uncertainty between normotensive and hypertensive groups shows some
interesting results. Due to higher PA pressure in the hypertensive group and almost the same
systematic errors in pressure for both groups, the percent systematic uncertainty in pressure
spectrum modulus is smaller in the hypertensive group than in the normotensive group;
however, the group flow uncertainties are quite similar. As a result, the contribution of the
systematic error to total uncertainty in input impedance is greater for the normotensive
group than for the hypertensive group. Despite this difference, the systematic error remains
important for uncertainty in the hypertensive group. Finally, the percent total uncertainties in
input impedance and characteristic impedance modulus are neither significantly different
nor statistically equivalent between the two groups for many impedance moduli and phases.
This implies that the percent random uncertainty is larger in the hypertensive group than in
the normotensive group. The reason for such an observation of neither statistically
significant difference nor equivalence in the test likely lies in the lower power of the tests,
likely due to the relatively small sample size. A power analysis using these values as pilot
data shows that the sample sizes of the hypertensive group required for a power of 0.8
should be greater than 35 if the ratio of the numbers for normotensive and hypertensive
groups is kept to be 10/26 and the effect size and the within group standard deviation are
kept the same as the current data.
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Based on the study, there are several schemes that may be useful for reducing the
uncertainty. The 10% systematic uncertainty in cardiac output is not small and contributes
most to the total uncertainty in impedance modulus at the first few harmonics. Secondly, the
systematic uncertainty in pressure is large enough that the uncertainty can exceed the
pressure spectrum modulus at high harmonics. Those errors associated with acquisition
equipment may be reduced as the technique improves. It is noted that transducer-tipped
catheters (Millar Instruments Inc., Houston, TX, USA) can measure the pressure in the large
artery more accurately than the currently used in our studies, but such catheters are relatively
stiff and difficult to apply in pediatric patients and thus are not recommended for routine
use. Finally, collecting additional cardiac cycles, i.e. repeated measurements of pressure and
flow, will reduce the random error and thus the total uncertainty.

There are several limitations in our study. Firstly, only three measurements of cardiac output
were made in the cardiac catheterization laboratory and the mean value of those
measurements may not be truly representative of the patient’s hemostatic state. Moreover,
the random error in cardiac output was not considered in the calculation of uncertainty,
though it was typically very small. Secondly, the constant area correction for flow
calculation can affect the accuracy of impedance modulus and the associated uncertainty,
although such effects may be not very significant, as noted by Weinberg et al (2004).
Thirdly, the normotensive and hypertensive groups have only respectively 10 and 26
patients, which are small in numbers given that there is large variability in the patient data.
All these limitations will be considered in future studies.

5. Conclusion

We have studied the systematic uncertainty in pressure and flow spectra moduli and the
contribution of the systematic error to the total uncertainty in input impedance in a large
pediatric population. The percent total uncertainties in input impedance and characteristic
impedance modulus have been compared between four different methods to determine the
best method. We also have investigated the uncertainty behavior in normotensive and
hypertensive groups. It is found out that the systematic error is very important and needs to
be incorporated in the uncertainty estimation. The input impedance up to the fourth
harmonic can be used with confidence thanks to small uncertainty associated with those
quantities. However, the total uncertainty in input impedance at higher harmonic and the
characteristic impedance can be very large compared to the modulus, and have to be used
with caution. Method 3 (see section 2.4 for details) has been found out to be the best
technique to estimate the input impedance in that it gives the smallest uncertainty overall.
The comparison of the uncertainty between normotensive and hypertensive groups shows
that the systematic error is more important in the normotensive group than in the
hypertensive group, but the random error is larger in the hypertensive group than in the
normotensive group, which results in non-significant differences in the percent total
uncertainties in input impedance and characteristic impedance modulus between the two
groups.
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Figure 1.

The percent systematic uncertainty in (a) pressure and (b) flow spectra moduli.
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Figure 2.

The percentage contribution of the systematic error to the total uncertainty in impedance: (a)
modulus and (b) phase as computed by the four methods. Bars represent the sample standard
deviation.
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Representative plots of input impedance: (a) modulus and (b) phase and the associated total
uncertainties calculated from the four methods. Bars represent the total uncertainty.
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Figure 4.
Percent total uncertainty in input impedance: (a) modulus and (b) phase for the four

methods. Bars represent the sample standard deviation.
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Percent total uncertainty in characteristic impedance modulus calculated from the four
methods.
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Figure 6.
The percent systematic uncertainty in pressure spectrum modulus for (a) normotensive and

(b) hypertensive groups.
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The percentage contribution of the systematic error to the total uncertainty in input
impedance (a) modulus and (b) phase for normotensive and hypertensive groups calculated
from method 3 (see section 2.4 for details). Bars represent the sample standard deviation.
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Figure 8.

Percent total uncertainty in input impedance: (a)modulus and (b) phase for normotensive
and hypertensive groups calculated from method 3 (see section 2.4 for details). Bars
represent the sample standard deviation.
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