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Abstract
Initial identification of populations at high risk of gastric 
cancer (GC) is important for endoscopic screening of 
GC. As serum pepsinogen (PG) test-positive subjects 
with progression of chronic atrophic gastritis (CAG) 
show a high likelihood of future cancer development, 
this population warrants careful follow-up observation 
as a high-risk GC group. By combining the PG test 
with Helicobacter pylori  (HP) antibody titers, the HP-
related chronic gastritis stage can be classified, thus 
identifying not only a GC high-risk group but also a 
low-risk group. Among PG test-negative patients with
out CAG, those with high serum PG Ⅱ levels and HP 
antibody titers are thought to have severe gastric mu
cosal inflammation and the risk of diffuse-type GC is 
also high. Meanwhile, in gastric mucosae obtained by 
endoscopic biopsy, HP infection induces aberrant DNA 
methylation in CpG islands in multiple gene regions and 
the extent of methylation clearly correlates with GC risk. 
By quantifying aberrant DNA methylation in suitable 
gene markers, we can determine the extent of the epi
genetic field for cancerization. These novel concepts 
and risk markers will have many clinical applications in 
gastrointestinal endoscopy, including more efficient en

doscopic GC screening and a strategic approach to me
tachronous multiple GCs after endoscopic treatment.
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INTRODUCTION
Owing to the recent advances in minimally invasive and 
radical endoscopic treatments including endoscopic mu­
cosal resection (EMR) and endoscopic submucosal dissec- 
tion (ESD), early gastric cancers (GCs) have been en­
doscopically resected, especially in Japan[1-3]. Following 
advances in new endoscopic treatment, early detection 
and accurate diagnosis of  GC has been increasing in im­
portance. In particular, advances in endoscopic equipment 
and developments in endoscopic image enhancement tech­
nology have greatly contributed to improved diagnosis for 
early GC[4-6]. Furthermore, identifying which populations 
are at high risk for GC plays a key role in endoscopic GC 
diagnosis. This not only assists in endoscopic diagnosis 
but can also contribute greatly to other aspects of  endo­
scopic management of  GC, including the current problem 
of  identifying populations who should be targeted for GC 
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screening[7] and strategic approaches to metachronous mul­
tiple GC after EMR or ESD[8].

Helicobacter pylori (HP) infection is a major risk factor in 
GC development[9]. However, in countries like Japan with 
high HP infection rates, the existence of  HP infection 
alone offers inadequate specificity for the assessment 
of  GC risk. Novel risk markers to identify GC high-risk 
groups based on a detailed natural history of  GC have 
thus long been awaited. In this paper, we discuss the emer­
ging significance of  serum pepsinogen (PG) as a GC risk 
marker for more precise identification of  GC high-risk 
groups. We also discuss our research on DNA methy­
lation in gastric mucosae obtained at endoscopic biopsy as 
a molecular biological marker to evaluate GC risk.

SERUM PG TEST FOR IDENTIFICATION 
OF GC HIGH-RISK GROUPS
Theoretical considerations of the serum PG test
PG is the inactive precursor of  pepsin, a gastrointestinal 
enzyme specifically produced in the gastric mucosae[10]. 
PG is mainly excreted into the stomach lumen but about  
1% of  the total enters into the blood stream and is mea 
surable as serum PG. Changes in serum PG levels re­
flects gastric mucosal morphology and exocrine func 
tion[11,12]. In an endoscopic study with Congo red stain­
ing, an increase in glandular boundary, associated with 
diagnosed progression of  gastric mucosal atrophy, cor­
related strongly with stepwise reductions in serum PG 
Ⅰ levels and the PG Ⅰ/Ⅱ ratio[13]. In other words, mea­
suring serum PG Ⅰ and the PG Ⅰ/Ⅱ ratio offers the 
opportunity to evaluate the progression of  chronic atro­
phic gastritis (CAG), a precursor of  GC[14].

As criteria for the serum PG test used for GC scree­
ning, the combination of  PG Ⅰ ≤ 70 ng/mL and PG 
Ⅰ/Ⅱ ≤ 3.0 is widely accepted as a reference value (PG 
index 1+)[14,15]. Low values based on this reference are 
considered PG test-positive. In addition, to identify more 
severe CAG progression, criteria of  PG Ⅰ ≤ 50 ng/mL 
and PG Ⅰ/Ⅱ ≤ 3.0 (PG index 2+), and PG Ⅰ ≤ 30 
ng/mL and PG Ⅰ/Ⅱ ≤ 2.0 (PG index 3+) are also used. 
Since 1992, when PG assay kits became commercially 
available, a number of  screening services provided by 
work place or community health services have adopted 
this serum test as a filter test[16-22]. 

Accuracy of GC detection using the serum PG test
We conducted a 10 year follow-up observation study 

of  GC occurrence in a cohort of  middle-aged healthy 
men[23-25]. Based on the results, we evaluated the accuracy 
of  each serum PG test index for detecting GC during the 
observation period[25]. Table 1 summarizes the accuracy 
for each PG test index. For the most lenient criteria (PG 
index 1+), sensitivity was 58.7%, specificity was 73.4% 
and positive predictive value was 2.6%. Overall, the results 
showed obviously low sensitivity. Compared to a recently 
reported meta-analysis of  PG test sensitivity[26], these 
results were clearly poor, particularly in terms of  low sen­
sitivity.

One interpretation of  these results is that some GCs 
are easier to detect by barium X-ray and some GCs are 
easier to detect by the serum PG test[22]. In the above-
mentioned meta-analysis, many of  the reviewed reports 
were studies of  populations in whom GC was diag­
nosed over a long period by barium X-rays. Targeting a 
population with a concentration of  GC cases difficult 
to detect by barium X-ray, or in other words, GC easy to 
detect by the serum PG test, these studies analyzed results 
of  GC detection just after introduction of  the serum PG 
test and over a short period. On the other hand, in our 
study, GC cases just after introduction of  the serum PG 
test were excluded and follow-up was continued over a 
period of  10 years. The results of  detecting GC occurring 
during the observation period were thus examined more 
rigorously, better depicting the accuracy of  GC detec­
tion using the serum PG test. Based on these results, the 
serum PG test has limitations when used alone for GC 
screening. This shows the need for more in-depth sys­
tematic screening, including in PG test-negative GC.

GC risk diagnosis using the serum PG test
Previous studies have examined the accuracy of  serum 
PG as a filter test for endoscopy. Recently, as part of  an 
investigation into the natural history of  GC occurrence, 
we examined GC risk in each population identified using 
each serum PG test index[25]. The annual incidence of  GC 
was 0.07% in the atrophy-negative group, compared to 
0.28% in the atrophy-positive (PG index 1+) group, 0.32% 
in the PG index 2+ group and 0.42% in the PG index 3+ 
group. The incidence of  GC thus increased in a stepwise 
and significant manner with CAG progression (Figure 1). 
These results clearly indicate that PG test-positive subjects 
are a high-risk GC group, have a higher future likelihood 
of  developing GC and represent a population requiring 
careful follow-up observation.
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Table 1  Comparison of accuracy of gastric cancer detection by each serum pepsinogen test index

Serum PG test Our results[25] Meta-analysis of reported cases[26]

Sensitivity (95% CI) Specificity (95% CI) Pooled sensitivity (95% CI) Pooled specificity (95% CI)

PG Ⅰ ≤ 70 and PG Ⅰ/Ⅱ ≤ 3 (PG index 1+) 58.70% (45.6-70.8) 73.40% (72.1-74.6) 77.30% (69.8-83.8) 73.20% (72.8-73.6)
PG Ⅰ ≤ 50 and PG Ⅰ/Ⅱ ≤ 3 (PG index 2+) 49.20% (36.5-62.0) 80.50% (79.4-81.6) 68.40% (59.1-76.8) 69.30% (66.6-70.0)
PG Ⅰ ≤ 30 and PG Ⅰ/Ⅱ ≤ 2 (PG index 3+) 27.00% (16.9-39.9) 92.00% (91.3-92.8) 51.90% (40.3-63.5) 84.40% (83.7-85.0)

PG: pepsinogen.
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Identification of GC high-risk groups using a 
combination of the serum PG test and HP infection 
diagnosis
Next, in the same populations, the relationship between 
HP infection, a major cause of  chronic gastritis, and GC 
risk was also examined[23,24]. To diagnose HP infection, 
we used anti-HP antibody titers which, like serum PG, 
are easily measured using blood samples. The stage of  
HP-related chronic gastritis was classified into 4 stages 
based on the combination of  both test results: Group A 
[HP(-), PG(-)]; Group B [HP(+), PG(-)]; Group C [HP(+), 
PG(+)]; and Group D [HP(-), PG(+)] (Figure 2). Group 
A comprised of  HP non-infected healthy men. Group B 
showed established HP infection but without CAG. Group 
C had CAG. Group D had severe intestinal metaplasia due 
to progression of  CAG but HP had been spontaneously 
eliminated, representing so-called metaplastic gastritis. 
Annual incidences of  GC were: Group A, 0%; Group B, 
0.11%; Group C, 0.24%; and Group D, 1.31%. Thus, with 
HP infection and CAG progression, the rate increased in 
a stepwise and significant manner. Moreover, in the non-
infected healthy Group A, GC did not occur in a single 
case during 10 years of  follow-up observation. Based on 
the above results, using a combination of  the serum PG 
test and HP infection diagnosis, not only high-risk groups, 
but also a low-risk group, can theoretically be identified.

Points to consider in the serum PG test-negative GC
The serum PG test is highly useful as a GC risk marker 
but the occurrence of  GC (particularly diffuse-type GC) 
in the PG test-negative group (Group B in HP-related 
chronic gastritis stage) cannot be ignored. In our study, 
even using the most balanced PG test criteria in terms 
of  test accuracy (PG index 1+), about 40% of  GCs that 
occurred represented PG test-negative GC. This point 

must be clearly kept in mind when assessing GC risk using 
the serum PG test.

We therefore evaluated the occurrence of  GC in the 
PG test-negative group in further detail. Specifically, we 
examined the incidence of  GC in 3 PG test-negative sub­
groups: α group (PG Ⅰ ≤ 70 ng/mL and PG Ⅰ/Ⅱ > 3); 
β group (PG Ⅰ > 70 ng/mL and PG Ⅰ/Ⅱ > 3); and γ 
group (PG Ⅰ > 70 ng/mL and PG Ⅰ/Ⅱ ≤ 3). In the γ 
group, with a higher serum PG Ⅱ and presumably severe 
gastric mucosal inflammation, the incidence of  GC was 
0.2%, thus identifying a new GC high-risk group mainly 
at risk of  developing diffuse-type GC[25]. The rate in the 
γ group, although not high among the serum PG test-
negative group, does indicate a subgroup to which careful 
attention should be paid. In addition, the group with high 
HP antibody titers (a marker which, like serum PG Ⅱ 
levels, reflects the degree of  gastric mucosal inflammation) 
had a higher incidence of  GC compared to a group with 
lower titers[24]. Furthermore, in this group, HP eradication 
therapy can be highly effective in preventing GC[27].

ABERRANT DNA METHYLATION AND GC 
RISK
Aberrant DNA methylation in cancers
Epigenetic abnormalities are also important as cancer gene 
abnormalities in addition to gene structural abnormalities 
such as mutations and chromosomal deletions. DNA 
methylation represents one type of  epigenetic informa­
tion. DNA methylation occurs physiologically and is 
observed at CpG sites where cytosine (C) is located ad­
jacent to guanine (G) in gene sequences. CpG sites occur 
with low frequency in the genome but areas with a high 
density of  CpG sites are occasionally encountered as 
so-called CpG islands (CGIs). When a CGI is in a gene 
promotor region and is entirely methylated, transcription 
of  downstream genes to mRNA is potently inhibited (si­
lencing). DNA methylation together with mutations and 
chromosomal deletions is a major factor in gene inactiva­
tion in many cancers[28-31].

In cancer cells, compared to normal cells, genome-
overall hypomethylation and regional hypermethylation are 
observed. Genome-overall hypomethylation is involved 
in carcinogenesis by causing chromosomal instability[32]. 
Regional hypermethylation refers to aberrant methylation 
of  a specific CGI that is normally unmethylated. If  hyper
methylation is induced in a promotor region CGI of  a 
tumor suppressor gene, gene inactivation occurs. This cau­
ses cell cycle abnormalities, growth signaling abnormalities 
and mutation accumulation, thus playing a role in cancer 
onset and progression. 

In gastrointestinal cancers, including GC, silencing 
of  several important tumor suppressor genes has been 
reported. In particular, in GC, inactivation of  CDKN2A, 
MLH1 and CDH1 due to methylation is more frequent 
than inactivation due mutations or chromosomal dele­
tions[33].
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Figure 1  Kaplan-Meier analysis of gastric cancer development in subjects 
classified using the index of the pepsinogen test (modified from Yanaoka 
et al[25]). This shows the annual incidence of gastric cancer (GC) in each 
population identified based on serum pepsinogen test index criteria in middle-
aged healthy men. With chronic atrophic gastritis progression, incidence of GC 
increased in a stepwise and significant manner. PG: pepsinogen.
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Induction of aberrant DNA methylation in non-cancerous 
gastric mucosae by HP infection
Aberrant DNA methylation is important in GC but the 
mechanisms of  induction have remained unknown. Using 
gastric mucosae obtained by endoscopic biopsy from both 
HP-positive healthy volunteers (individuals without GC) 
and HP-negative healthy volunteers, we used quantitative 
methylation-specific PCR (qMSP) to measure the per­

centage of  DNA molecules with aberrant methylation 
(methylation level, reflecting the percentage of  cells with 
aberrant methylation)[34]. As genes for analysis, we selected 
CGIs from 8 regions of  7 genes found to be methylated 
at high frequency in GC[35]. All of  the eight regions sho­
wed a similar tendency in terms of  methylation levels. 
Among healthy volunteers, methylation levels were 5.4- 
to 303-fold higher in HP-positive individuals than HP-
negative individuals. This suggests that HP infection can 
potently induce aberrant DNA methylation.

Accumulation of aberrant DNA methylation in gastric 
mucosa and GC risk
In addition, to correlate the extent of  aberrant DNA me­
thylation in the gastric mucosae with GC risk, we analyzed 
gastric mucosae in healthy volunteers and non-cancerous 
gastric mucosae in patients with well-differentiated GC. 
In a comparison among HP-negative cases, methylation 
levels were 2- to 32-fold higher in non-cancerous gastric 
mucosae of  GC patients than in gastric mucosae of  heal­
thy volunteers. We also newly collected non-cancerous 
gastric mucosae of  patients with a single GC and those 
with multiple GCs and compared methylation levels in the 
gastric mucosae of  patients with multiple GC (very high 
risk of  GC) and patients with single GC. In HP-negative 
cases, specific gene methylation levels were increased 
in the order of  healthy individual gastric mucosae → 
single GC patient non-cancerous gastric mucosae → 
multiple GC patient non-cancerous gastric mucosae[36]. 
These findings suggested a correlation between gastric 
mucosae methylation levels and GC risk in HP-negative 
cases. However, in HP-positive cases, both GC patients 
and healthy individuals showed potent induction of  
aberrant DNA methylation with almost no difference in 
methylation levels.

When evaluated by each gene, mean methylation 
levels for the tumor suppressor genes CDKN2A and 
MLH1 were very low, so evaluating the correlation with 
GC risk was difficult (Figure 3)[34,37]. However, LOX, 
a tumor suppressor gene, showed relatively high me­
thylation levels. Similarly, the microRNA gene, with tu­
mor suppressor activity, also showed high methylation 

Enomoto S et al . Novel risk markers for gastric cancer

HP-related chronic gastritis staging       Group A HP (-), PG (-)          Group B HP (+), PG (-)          Group C HP (+), PG (+)         Group D HP (-), PG (+)

Ratio to total population                                  20%                                     50%                                  30%                                     0.7%

Annual incidence of gastric cancer                      0%                          Approximately 0.1%            Approximately 0.25%               Approximately 1%

Figure 2  Gastric cancer incidence and Helicobacter pylori-related chronic gastritis stage classification based on a combination of the serum pepsinogen test 
and helicobacter pylori-infection diagnosis (modified from Ohata et al[23]). This shows percentages in each group, among middle-aged healthy men, based on the 
serum pepsinogen test and Helicobacter pylori (HP) antibody titers. As HP-related chronic gastritis stage progressed from Group A to Group D, annual incidence of gastric 
cancer increased in a stepwise and significant manner. PG: pepsinogen. 
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levels[38]. Methylation of  non-tumor suppressor genes 
like THBD was observed in a relatively large number of  
cells. These levels correlated with GC risk (Figure 3). 
Genes methylated by HP infection show specificity. With 
HP infection, resistant genes show no methylation at all 
while susceptible genes display a high frequency of  me­
thylation[39]. Important in this mechanism is a lower expre­
ssion of  methylation-susceptible genes in the gastric mu­
cosae of  healthy individuals[39,40]. Thus, with HP infection, 
gene-specific regional hypermethylation occurs in non-
cancerous gastric mucosa. Furthermore, recent study 
showed that regional (Alu and Sat) hypomethylation is 
induced in gastric mucosae by HP infection during gastric 
carcinogenesis[41].

DNA methylation levels after spontaneous elimination 
and eradication of HP infection
As most patients with intestinal-type GC have a past his­
tory of  HP infection[42], the following changes in methy­
lation levels are postulated to occur in the natural history 
of  GC development. Firstly, methylation levels in the 
gastric mucosae are low in HP-non-infected individuals 
(near 0%). Secondly, with HP infection, DNA methylation 
of  the gastric mucosae is potently induced. Thirdly, with 
progression of  atrophic gastritis, spontaneous elimination 
of  HP infection decreases methylation levels (Figure 4).

In addition, decreased methylation levels after HP 
eradication have been confirmed in specific genes and 
different kinetics for each gene have been shown[43,44]. 
Once methylation has occurred in a cell, it is difficult to 
conceive that demethylation would again occur in the 
same region. The decrease in methylation levels observed 
after HP eradication is thus probably due to cell turnover 
(temporary methylation). Residual aberrant methylation 
even after eradication is thought to reflect methylation in 
gastric gland stem cells (permanent methylation).

Advantages of DNA methylation as a marker of a field 
for cancerization
Individuals with low residual methylation levels (permanent 
methylation levels) after HP elimination or eradication 
have a low risk of  GC. Conversely, those with high levels 
have a higher risk of  GC (Figure 4). Using methylation-
susceptible genes like THBD that are easily methylated at 
high frequency by HP infection, the GC risk in patients 
with high methylation levels is 2- to 3-fold higher than 
that in patients with low methylation levels, if  appropriate 
cut-off  values are established. Moreover, in the case of  
recently discovered genes such as miR124a-1, -2 and -3, 
the GC risk is 5- to 20-fold higher[38].

Aberrant DNA methylation of  the gastric mucosae 
has been strongly suggested to play an important role in 
the formation of  an epigenetic field for cancerization, 
as the so-called epigenetic field defect[38,45,46]. These have 
similarly been found for esophageal cancer[47], colon can­
cer[48], hepatocellular carcinoma[49] and renal cancer[50]. 
Specific clinical applications of  an epigenetic field for 
cancerization include measurement of  methylation levels 
after HP eradication in healthy individuals to predict the 
risk of  GC and measurement of  methylation levels in 
patients who have undergone endoscopic treatment such 
as ESD to predict the risk of  metachronous multiple GC. 
Large-scale prospective clinical trials are currently under­
way to confirm these concepts.

CONCLUSION
In conclusion, we have discussed identifying groups at 
high risk of  developing GC using the serum PG test and 
predicting GC risk based on the accumulation of  aber­
rant DNA methylation in the gastric mucosae from endo­
scopically biopsied tissue (Figure 5). Gastrointestinal endo­
scopists are aiming to improve diagnostic and treatment 
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technology in GC but at the same time, as discussed in 
this paper, a thorough awareness of  new concepts and 
risk markers of  GC is also important. This is anticipated 
to have clinical applications such as in more effective en­
doscopic GC screening, and in establishing appropriate 
follow-up intervals for endoscopy based on individual GC 
risk.
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