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Abstract
Objective: The objective of this paper is to improve the visualization and detection of tissue 
folds, which are prominent among tissue slides, from the pre-scan image of a whole slide image by 
introducing a color enhancement method that enables the differentiation between fold and non-fold 
image pixels. Method: The weighted difference between the color saturation and luminance of the 
image pixels is used as shifting factor to the original RGB color of the image. Results: Application of 
the enhancement method to hematoxylin and eosin (H&E) stained images improves the visualization 
of tissue folds regardless of the colorimetric variations in the images. Detection of tissue folds after 
application of the enhancement also improves but the presence of nuclei, which are also stained dark 
like the folds, was found to sometimes affect the detection accuracy. Conclusion: The presence of 
tissue artifacts could affect the quality of whole slide images, especially that whole slide scanners select 
the focus points from the pre-scan image wherein the artifacts are indistinguishable from real tissue 
area. We have a presented in this paper an enhancement scheme that improves the visualization and 
detection of tissue folds from pre-scan images. Since the method works on the simulated pre-scan 
images its integration to the actual whole slide imaging process should also be possible.
Key words: Digital pathology, enhancement, image analysis, image quality, luminance, saturation, 
tissue fold detection, virtual slide, visualization, whole slide imaging

INTRODUCTION

Digital imaging has been found to be useful in virtually 
all of medical fields. In recent years, the introduction 
of high resolution, automated whole slide imaging has 
enabled pathologists to conveniently view and browse 
digital versions of glass slides on computer monitors and 
across computer networks - a task that used to require the 
direct examination of the physical slide, locally through 
a microscope.[1-3] Digital images allow the development 
of digital algorithms for tissue analysis,[4-7] hence are 

obvious candidates for computational analysis. The 
practical application of multispectral and hyper-spectral 
imaging to pathology has also attracted the attention of 
several researchers, particularly its usefulness in bringing 
out details that are otherwise inconspicuous with the 
conventional RGB color imaging.[8-10]

In order for whole slide imaging to be fully utilized in 
the clinical (and research) setting, one of the important 
issues that needs to be tackled is the consistency of the 
image quality. As was discussed by Yagi and Gilbertson,[11] 
the digital image quality can be adversely affected by 
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tissue processing artifacts, such as tissue folds, originating 
from histology laboratory. To capture high-resolution, 
whole slide images at high speed, many whole slide 
imaging devices use low resolution, snap-shot, “pre-scan” 
image prior to high-resolution digitization. The pre-
scan image is used to: (1) identify the location of tissue 
sections on the slide and (2) select focus points on the 
slide for auto-focusing. The number of auto-focus points 
varies by specimen and device, but tends to range from 
tens to hundreds. The data generated from these auto-
focused points is used to guide the working distance 
during high-resolution, high-speed scan. The selection of 
auto-focusing points is therefore critical to the focus and 
quality of the whole slide image.

The digital algorithm involved in the selection of 
optimum focus points should be carefully designed. 
Tissue areas affected by artifacts, such as tissue folds 
or air bubbles, have different focus depths compared to 
normal tissue areas. Hence when a focus point is selected 
from the affected areas, the quality of the scan in the 
neighboring areas degrades, i.e. becomes blurred. In the 
case of tissue folds whose color histogram overlaps with 
that of the tissue itself, there is a high probability that 
the scanner may actually select focus points on top of 
them.

Image artifacts can also have an adverse effect on the 
image segmentation results. Spatial or morphology 
filtering are the popular approaches to minimize the 
segmentation errors due to artifacts.[12-17] For image 
analysis in pathology, the architectural, textural, and 
morphological patterns of the tissue components are 
exploited to delineate the true tissue area from the image 
artifacts. On the assumption that cells are regularly 
distributed, Guesebroek[13] proposed a distance graph 
algorithm to identify regions of interest, while errors 
caused by tissue artifacts were corrected by deletion 
operations. The utilization of the texture and morphology 
patterns of cells as features was also explored by Karacali 
and Tozeren[17] to locate regions of interest. Statistical 
classifier and clustering algorithms using the unique 
staining patterns of the tissue components as feature 
variables are also popular approach to differentiate 
tissue structures from the background.[14,16,17] Petushi 
et al.[16] converted the original RGB color representation 
of the H&E stained image pixels to CIELab color 
representation, and the regions of interest, i.e. chromatin 
rich and stromal region, were identified by clustering 
the a and b chromaticity components in the CIELab 
color space. Moreover, thresholding and clustering the 
difference between the color saturation and luminance 
of the pixels were utilized by Palokangas[14] to segment 
the tissue folds to exclude them from the image analysis 
results of an H&E stained image.

Color enhancement while it improves the visual feel of 

an image can also serve as a pre-processing step for the 
detection and segmentation of an object of interest. For 
medical images, color enhancement can be a very valuable 
tool to visualize, detect, or segment specific structures. 
Several published papers addressed the enhancement of 
medical images from different imaging modalities. To 
enhance the structures in endoscopic images, Ohyama  
et al,[18] proposed the Laplacian color enhancement. 
Retinal images suffer non-uniform illumination and 
hence Gopal and Jayanthi[19] introduced a way to enhance 
retinal images by considering the geometry of the 
retina. Color enhancement techniques that apply spatial 
transforms in conjunction with color transforms are also 
being employed.[20,21]

The objective of this paper is to improve the visualization 
and detection of tissue folds from low- pixel resolution 
images (pre-scan or thumbnail images) so that this 
information can be used to avoid tissue folds in the 
whole slide imaging auto-focusing process and thereby 
improving the quality of high-pixel resolution whole slide 
images.[22] We present and discuss a color enhancement 
method,which ]we initially proposed[22], which gives 
preferential emphasis on tissue folds. In that method, 
the weighted difference between color saturation and 
luminance of the image pixels was used as shifting 
factor to the original RGB color values of the pixels. The 
physical basis on using the luminance and saturation for 
the detection of tissue folds in low-resolution images is 
that the amount of dye that the tissue can absorb is a 
function of its thickness. Tissue folds, being thicker than 
immediately the surrounding area, absorb more dye and 
therefore appear darker (lower luminance) and express 
stronger color saturation compared to adjacent non-
folded areas. The proposed enhancement method can 
be integrated to the software-driven processes involved 
in scanning the glass slides to produce better quality 
images. It can also serve as a pre-processing step to 
further improve the quantification of nuclei area, and the 
segmentation of other related tissue structures.

MATERIALS AND METHODS

Tissue Sections and Slides
Twelve, de-identified, H&E stained slides were received 
from the histology laboratory at the Massachusetts 
General Hospital. The slides had been cut manually, 
stained, and cover-slipped by an automated device. They 
represented a range of tissues including breast, liver, and 
esophagus.

Imaging System
Two different whole slide imaging systems were used to 
scan the H&E stained tissue slides. One was the NDP 
(Nanozoomer Digital Pathology) whole slide scanner 
(Olympus, USA) and the other was the DX40 scanner 
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(Dmetrix Inc., Tucson, AZ, USA). These systems can 
scan in color (RGB) mode at a spatial resolution of 
0.50 μm/pixel for the Dmetrix40 and 0.420 μm/pixel 
for the NDP scanner at an optical magnification of 
20×. Both scanners also have features for manual or 
automatic selection of tissue areas. While the selection 
of focus points (vide supra, introduction) is always done 
automatically in the case of the DX40 system, the NDP 
system allows the option of user selection of focus points 
(from low resolution, pre-scan image) or automatic, 
machine-defined focus points. In our experiment the 
focus points were machine-defined, since our concern 
was to evaluate the effectiveness of the proposed tissue-
fold enhancement algorithm. 

Whole Slide Images
The images were scanned by our laboratory technical 
staff or by pathology residents rotating in the laboratory. 
Our aim was to evaluate the ability of the proposed 
enhancement scheme to identify tissue folds in low 
resolution, pre-scan images (so that the technique could 
be used, eventually, by whole slide images to identify the 
location of tissue folds prior to a high resolution, whole 
slide scan). However, we did not have access to the actual 
raw pre-scan images from the scanners in this experiment. 
Therefore, as proxy to the true pre-scan images, we used 
the lowest digital resolution available through the viewer 
software available through each of the devices. For the 
NDP viewer, these were JPEG images sampled by the 
NDP software to a display resolution of typically 20 μm/
pixel. For the DX40, these were TIFF images at typically 
10 μm/pixel. We do not believe that this is a limitation 
on the results of the study since whole slide imagers use 
different approaches and formats for their low-resolution 
pre-scan images.

Color Enhancement 
One of the effective ways to increase the color contrast of 
an image, while maintaining its hue, is to transform the 
original RGB color of the image to HSV (hue, saturation, 
value) color space and modify only the saturation or 
luminance component of its pixel.[23] The relation 
between RGB and HSV color spaces is defined as follows:

H= cos-1β  (1) 

where 
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Since the HSV color components share very weak 

correlation, we can manipulate one of the color 
components by one of several techniques that are 
commonly applied to gray-level enhancement processes 
without necessarily affecting the other components. The 
saturation and luminance enhancement is conventionally 
done by undertaking forward and reverse color 
transformation between RGB and HSV color spaces. 
In the forward color transformation the original RGB 
colors of the pixels are converted into their HSV color 
equivalent, i.e. RGB to HSV, where the color saturation or 
luminance of the image pixels is independently modified. 
The reverse color transformation, i.e. HSV to RGB, is 
then undertaken to view the effect of the modification 
(enhanced image). However, through scaling and 
shifting[23] these forward and reverse color transformations 
can be bypassed. Consider a pixel’s luminance that is 
represented by the length of the vector CP in Figure 1a. 
The luminance of the image can be directly modified by 
scaling the vector CP. Furthermore, shifting the vector 
OQ in Figure 1b closer or away from the gray line will 
reduce or increase the saturation of the image. That is, 

Figure 1: Illustrations on the effect of color shifting and scaling[23]. 
(a) The RGB color cube illustrating the effect of scaling to the 
luminance of the image. The length of vector CP is related to the 
luminance of the image pixel and the triangle with vertices at 
the maximum values of the R, G, and B axes is called the Maxwell 
triangle. Scaling the RGB values increases or decreases the length 
of the vector which would in turn vary the luminance of the image 
pixel; (b) An illustration on the effect of shifting. While shifting the 
original color vector OQ to OQ’ reduces the saturation of the image 
pixel, shifting the vector OQ farther from the gray line and closer 
to the RGB cube increases the saturation of the pixel. Hence the 
saturation of an image can be manipulated by shifting the color 
vector by an appropriate amount

a

b
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moving the vector OQ closer to the gray line will reduce 
the image color saturation and moving the vector away 
from the gray line and closer to the RGB cube boundary 
increases the saturation of the pixel. Scaling and shifting 
therefore can effectively enhance the luminance and 
saturation of the image without necessarily undertaking 
the forward and reverse color transformations, i.e. RGB to 
HSV then HSV to RGB.

Let us consider f to denote the RGB color vector of an 
image I, f= (f1, f2, f3)

T where f1, f2, f3 correspond to the 
red, green, and blue pixel values, i.e. 0≤ƒk≤1 k=1,2,3 
(1=red, 2=green, 3=blue) then scaling and shifting of 
the original RGB color components can be expressed by 
equations 4 and 5, respectively:

f′ = γf (4)

f′ = f +σ, (5)

where the constants γ and σ denote the scaling and 
shifting factors, respectively. While scaling changes the 
luminance of the image, shifting, on the other hand, 
changes the saturation of the image. Since in this 
example the color pixels are provided with the same 
scaling or shifting factor, the image hue is unchanged. 
The scaling and shifting factors can also be represented 
by any suitable functions: 

ƒk= γ(ƒk)ƒk  k=1,2,3 (6)

ƒ′k = ƒk+Ó(ƒk)     k=1,2,3 (7)

where γ(ƒk) and Ó(ƒk), respectively, denote the scaling 
and shifting functions. However, since these scaling and 
shifting functions do not necessarily result to the same 
value for all k=1,2,3, the red, green, and blue color 
components of a pixel could be modified at different 
degrees, thus changing the hue of the image.[24]

Enhancement of  Tissue Folds
We employed shifting to enhance the presence of tissue 
folds. In this case, our main concern lay in the appropriate 
shifting function that would minimize the changes in 
hue while accentuating the spectral color of the folds. 
To satisfy this condition, the gray level value of a pixel at 
each color channel should be shifted by the same amount. 
Because of the thickness of tissue folds they generally 
exhibit higher saturation and lower luminance compared 
to normal tissue areas such that by taking the difference 
between the saturation and luminance components of the 
pixel as shifting factor, the colorimetric attributes of tissue 
folds can be accentuated. Taking this into consideration, 
equation (7) can be expressed as:

ƒ′k = ƒk +Ó(ƒsv)   k=1,2,3, (8)

where ƒsv= S(x,y)−V(x,y) and S(x,y) and V(x,y) correspond 
to the pixel’s color saturation and luminance at location 
x, y, respectively. Here, pixels at different spatial locations 
experience differing color shifts depending on the nature 

of the tissue structure to which the pixel belongs. 
Moreover, the polarity of the shift can be either negative 
or positive. It is negative when the pixel’s color saturation 
is lower than its luminance, e.g. white areas; and positive 
when the pixel’s color saturation is higher than its 
luminance, e.g. tissue folds. Apparently it is the difference 
between the saturation and luminance, ƒsv, which controls 
the polarity of the shifts. To further modify the color 
saturation of the image pixels we introduced a constant 
to vary the magnitude of the shifting factor in equation 8:

ƒ′k = ƒk+αkó(ƒsv)   k=1,2,3,  (9)

where αk ∈ ℜ and α1 = α2 = α3 = α.

Let us examine how the enhancement formulation in 
equation (9) affects the color saturation of an image 
pixel. Neglecting the x, y location of the pixels for 
simplification of expression, the new color saturation can 
be expressed as follows:
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Let us represent the change in saturation by the 
following:

∆S=S′–S (11)

If R is the minimum then,
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The same derivation can be undertaken when G or B is 
the minimum. Since the term (2R–G–B), or (2G–R–B)  as 
in the case when G is the minimum, or (2B–R–G)  when 
B is the minimum is always negative, it is the product 
between the enhancement coefficient α and σ(ƒsv) that 
commands the change in the color saturation. If the 
product is greater than zero the saturation decreases or 
vice versa. On the other hand, we can easily derive the 
change in luminance i.e. ∆V=V′–V from equation (3):

∆V=α(S–V). (13)

This shows that while saturation decreases when α>0  
and (S–V)>0 the luminance increases, which implies 
that an increase in the color saturation correspondingly 
decreases the luminance of an image pixel, or vice versa.
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The diagram in Figure 2 illustrates the enhancement 
procedure to detect tissue folds in whole slide images. In 
the diagram f(x, y)o corresponds to the vector representing 
the original R, G, and B color values of an image pixel at 
locations x, y, and f(x, y)e to the enhanced color values; 
S(x, y) and V(x, y) are the corresponding color saturation 
and luminance values of the image pixel at locations x, y, 
respectively. The color saturation and luminance of the 
pixel is first calculated, and then the difference between 
them is weighted and added to the original RGB color 
values of the pixel.

RESULTS

Color Attributes of the Digital Slides
Panel A in Figure 3 shows the RGB color images of two 
tissue slides, which are decomposed into their red, green, 

and blue channel images. These images demonstrate 
that there is no consistent color channel from which 
tissue folds can be extracted, especially when variations 
in staining exist between the slides. A transformation of 
an RGB image to another color space would allow us to 
examine the color attributes of an object from different 
color perspectives. Panel B in Figure 3 displays the color 
saturation and luminance components of the images 
after implementing the color transformation from RGB 
to HSV color space. We can observe that regardless of 
the colorimetric variation between the images, their color 
saturation and luminance share similar tendencies: (i) 
tissue areas occupied by tissue folds appear more saturated 
compared to other tissue areas; and (ii) the luminance of 
folded areas is relatively lower with respect to other tissue 
areas. Moreover, the tissue-fold areas are distinctly marked 
after taking the difference between the color saturation 
and luminance components of the image pixels despite 
the color variations that exist between the images. 

S-V Histograms of the Tissue Folds and Non-folds
Figure 4 displays the normalized S-V histograms of the 
manually labeled tissue fold and non-tissue fold areas 
of the two H&E stained images, which were scanned 

Figure 2: Block diagram of the enhancement procedure to detect 
tissue folds. First the color vector of an image pixel is accessed 
and its saturation and luminance values are calculated. Then the 
difference between the saturation and luminance is weighted and 
added to the original color vector. The process is repeated for all 
image pixels to produce an enhanced image where tissue folds are 
highlighted

Figure 3: Effect of staining variations to the RGB, and saturation and 
luminance color components of whole slide images.(a) RGB channel 
images of two whole slides, i.e. red, green, and blue channel images. 
The image in the upper row was scanned by the DX40 Dmetrix 
scanner and the image in the lower row was scanned by the NDP 
scanner. The varying colorimetric attributes of the scanned images 
may cause difficulty in specifying the effective color channel for fold 
detection/segmentation; (b) Saturation and luminance components 
of the RGB color image and the gray-level presentation of the 
difference between the saturation the luminance images where 
the dark areas correspond to areas in the original image in which 
the saturation of the pixel is less than its luminance

a

b
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by the NDP and Dmetrix scanners, shown in Figure 8. 
These histograms reveal that regardless of the image or 
slide condition, i.e. spectral color variations or staining 
differences, fold pixels are more inclined to acquire 
positive S-V values compared to non-fold pixels. The 
negative S-V of the fold pixels as shown in the histogram 
in Figure 4a represents the small white patches within 
the fold regions that were not carefully differentiated 
in the manual segmentation. Likewise the pixels with 
positive S-V in the histogram of the non-fold pixels could 
represent the hematoxylin-stained nuclei pixels, since like 
the tissue folds they are also stained darker compared to 
eosin-stained tissue structures.

Determination of the Value of α
Determining the effective value of α is important in 

improving the visualization and detection of folds. Even 
if the difference between S and V of the tissue fold 
samples increases linearly with α as illustrated in Figure 
5a, but for most of them their corresponding enhanced 
luminance values do not have a significant increase 
starting from α =1.5, Figure 5b. Hence with respect to 
the image samples that were used in our experiment, the 
value α = 1.5 can be considered as an optimum value to 
emphasize the tissue folds. 

Enhancement of the Tissue Folds
In Figure 6 the resulting enhanced images by setting α 
to 1.5 are shown wherein the solid white areas correspond 
to tissue folds. Comparing these images to their originals 
we can see that tissue folds that were originally obscured 
are now better emphasized. To further investigate the 
result of the enhancement, a magnified view is facilitated 
for selected tissue areas that contain folds. From the 
magnified images we can observe that the colorimetric 
difference between fold and non-fold areas has been 
improved after we applied the proposed enhancement. 
The tissue folds, which are indicated by arrows, can now 

Figure 4: Histograms of the S-V of tissue folds and non-tissue folds 
of the images shown in Figure 8. (a) Histogram of the manually 
segmented tissue folds. We can see that although the tissue folds 
were segmented from slides having differing staining conditions 
and were scanned using different scanners they showed similar 
tendencies - folds tend to acquire positive S-V values. The pixels 
that acquired negative S-V values in the plot could correspond to 
pixels that belong to patches of non-folded areas which were not 
carefully delineated by the manual segmenter. (b) Histogram of 
non-folded areas. In contrast to folded areas, the non-folded areas 
are more inclined to acquire negative values. The pixels with positive 
S-V values could correspond to nuclei areas, since like tissue folds 
nuclei are also stained darker compared to other tissue components

Figure 5: Plots showing the variations in the difference between the 
saturation and luminance, i.e. S-V and the luminance (V) of the fold 
pixels against different values of the enhancement coefficient, α. 
Each plot was produced by taking the average of 500 1×1 pixel fold 
samples for each image. (a) Plot illustrating the tendencies of the 
S-V values for the two set of images, i.e. scanned by Dmetrix and 
that of NDP scanner, for different values of α. (b) Plot demonstrating 
the effect on the luminance of the fold pixels for different values of 
α. It is observed from this plot that the luminance of the pixels do 
not significantly vary beyond α=1.5

a

b

a

b
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be distinctly identified from other tissue components.

Color Variations Between Whole Slide Scanners
Staining variations or differences in the color calibrations 
among scanning devices could both result to color 
variations in the tissue components and in the tissue folds. 
We scanned the same tissue slide using the NDP and 
the Dmetrix whole slide scanners to constrain the cause 
of the color variations to the scanners’ color calibration 
settings. The difference in the color calibrations between 
the two whole slide scanners is clearly demonstrated 
by the images in Figures 7a and 7b. We examined 
the statistics of 500 representative fold samples taken 
from the NDP and Dmetrix scanned images shown in  
Figures 7a and 7b. The plots in Figures 7c and 7d indicate 
that the color saturation setting for the Dmetrix scanner 
is relatively higher compared to the NDP scanner. Since 
the variation tendencies that we observed in the S-V 
values in the plots are similar to the variations observed 
in the original 12 images, Figure 3, we used the same 
value of α, i.e. α=1.5, to highlight the tissue-fold areas. 
The emphasized tissue-fold areas are demonstrated by 
the images in the second column of Figures 7a and 7b.

Detection of  Tissue Folds
The results presented in the previous section demonstrate 
the viability of the proposed enhancement scheme to 
highlight the presence of tissue folds. To determine 
how the enhancement method fares in localizing tissue 
folds, we performed automatic and manual detections 
independently and compared the results. In the manual 
detection we labeled the folds based on the RGB attributes 
of the pixels, while in the automatic detection the 

difference between the enhanced and original luminance 
of the image pixels was utilized as numerical feature:

dV =Ve –Vo (14)

where Ve  is the luminance after enhancement and 
Vo  corresponds to the original luminance (before 
enhancement) of the image pixel. The parameter dV is 
deemed to be greater than zero for pixels that belong to 
fold areas such that:

d 0
otherwise

fold V
not fold

>

   (15)

We evaluated the fold detection results for 28 slides in 
which case 16 more slides were added to the 12 original 
slides from the same scanners. Table 1 shows the overlap 
ratio between the manual and automatic segmentation 
results where we can see that the ratio of some images is 
not as high as the other images. This can be explained by 
considering the segmentation results shown in Figure 8. 
In Figure 8a, folds which occupy smaller areas and folds 
whose color is similar to the neighboring tissue structures 
were not successfully detected with manual detection but 
were detected with automatic detection. Although folds 
could be successfully detected by applying equation (15), 
mislabeling of pixels could sometimes occur as illustrated 
by the resulting image in Figure 8b. Thus the variations 
in the overlap ratio can be accounted to: (i) undetected 

Figure 6: Enhancement results. (a) Results for NDP scanned 
images; (b) Results for Dmetrix DX40 scanned images. The solid 
white areas in the enhanced images are associated to tissue folds. 
The tissue folds which appear occluded in the original image since 
they share close colorimetric attributes to their neighboring areas 
are better emphasized in the enhanced images. The folds that are 
indicated by the arrows in the magnified enhanced images further 
show how tissue folds become well differentiated after application 
of the enhancement

Figure 7: Original and enhanced Images of the same tissue slide 
scanned by the two scanners used in the experiment, i.e. Dmetrix 
and NDP whole slide scanners, and their corresponding S-V 
statistics. (a) Scanned by NDP scanner; (b) Scanned by Dmetrix 
scanner; (c) Plot showing the mean and the standard deviations; (d) 
other statistics demonstrated by a box plot. It is noted that while 
the same slide was scanned by both machines the images acquired 
different colorimetric attributes. However, despite the difference 
in the color attributes in the scanned images, the folds are still 
highlighted in the enhanced images. The mean of the calculated S-V 
samples show small discrepancy between the NDP and Dmetrix 
samples although the images were produced by scanning the same 
slide. Also the maximum S-V value is higher for the image scanned 
by the Dmetrix scanner which can imply that images scanned by 
Dmetrix scanner exhibit relatively higher saturation

a b

a c

b d
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tissue-fold areas in the manual detection were detected 
in the automatic detection; or (ii) mislabeling of pixels.

Application to Other Stained Images
The current method can also be applied to tissue 
images other than H&E stained images such as 
immunohistochemical (IHC) stained images with 
hematoxylin counter stain. We applied the present 
enhancement scheme to a liver tissue slide stained with 
FOXP3, Figure 9a, and we found the effective value of 
α to be 1.2 for tissue folds to be clearly delineated from 
other tissue structures.The result shows, Figure 9b, that 
as long as the current assumption holds true, i.e. tissue 
folds have higher color saturation than its luminance 
and are more saturated compared to other tissue areas, 
similar results can also be produced for tissue slides 
stained with other types of stain. When the colorimetric 
characteristics of tissue folds deviate from the present 
assumption, i.e. folds appear brighter rather than 
darker compared to other tissue structures, the tissue 
folds may not be properly highlighted with the current 
enhancement scheme.

DISCUSSION

Tissue artifacts occur during the preparation of the 
histopathology slides and although measures are 
undertaken to reduce their occurrence, they still are 
common among pathology laboratories. These artifacts 
might not greatly matter to pathologists viewing the 
slides directly under a microscope, but when these slides 

become subject for whole slide scanning and especially 
when further digital image analysis is undertaken, the 
presence of these artifacts is not desirable. In fact 
according to the initial investigation done by Yagi and 
Gilbertson,[11] the presence of tissue artifacts, including 
folds, can impact the quality of whole slide images. 
Although common among tissue slides the detection 
of tissue artifacts such as folds is not yet popularly 
addressed, especially detecting the folds from pre-scan 
image of the whole slide image. Segmentation of tissue 
folds from high resolution n×m images sampled from 
N×M whole slide images however was considered by 

Figure 8: Fold detection results. Column 1 represents the original 
RGB image. Column 2 represents the saturation of the pixels 
that were detected manually and Column 3 shows the gray level 
representation of the difference in the luminance, i.e. Ve–Vo, in the 
automatic detection. (a) Detection results showing some areas 
that were not successfully detected manually but were detected 
automatically. (b) Detection results showing some mislabeling of 
tissue pixels in the automatic detection result. These mislabeled 
pixels are believed to belong to nuclei as these tissue components 
exhibit comparable saturation characteristics to the folds

Figure 9: Enhancement results for IHC stained slides. (a) Original 
RGB color image; (b) Enhanced image; the folds are indicated by 
arrows

a

b

a b

Table 1  Overlap ratio between results of manual and automatic 
segmentation. While in the manual detection, folds were identified 
by referring to the RGB color image of the tissue slide, the numerical 
feature calculated from the difference between the luminance of the 
enhanced and original images served as features in the automatic 
fold detection.  The low values of the overlap ratio might have been 
caused by mislabeling of image pixels or undetected tissue folds in 
the manual segmentation

sample Overlap ratio  TP/
(FN+TP+FP)

sample Overlap ratio  TP/
(FN+TP+FP)

1 0.3277 15 0.4133
2 0.5977 16 0.1971
3 0.5553 17 0.6017
4 0.3009 18 0.3553
5 0.1151 19 0.3497
6 0.1960 20 0.3718
7 0.0616 21 0.5304
8 0.1025 22 0.5475
9 0.1924 23 0.2189
10 0.0617 24 0.4506
11 0.3065 25 0.4306
12 0.2106 26 0.5238
13 0.6746 27 0.6536
14 0.2397 28 0.7791

TN –True negative; FN- False Negative; FP-False positive; TP-True negative
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Palokangas et al.[14] by clustering the color pixels using 
the k-means clustering algorithm. The main drawback 
of the method is its inability to detect the presence or 
absence of tissue folds before applying the segmentation 
by pixel clustering. The enhancement method introduced 
herein can be incorporated to further improve their 
segmentation method. 

Differences in colorimetric attributes in whole slide images 
can be due to either difference in the stained slide itself 
(histological parameters) or to the parameters of the 
digitization (imaging) process (we will ignore downstream 
parameters such as compression or monitor quality which 
are outside the scope of this paper). However, for images 
created on the same scanner that has been appropriately 
calibrated and using the same acquisition parameters, 
variations in imaging context can be minimized and 
the differences can be solely attributed to histological 
parameters, the most important of which is the staining 
condition. Staining can be affected by a number of factors 
including the tissue itself, the thickness of the tissue section, 
the length of time at which tissue is exposed to stains, etc. 

Limitations and Future Works
Since the color saturation and luminance of a pixel is 
independent from its hue, consistent results were still 
achieved even when differences in staining conditions 
exist among tissue slides. In the technique discussed 
in this paper, the weighting factor α (which modulates 
the importance of saturation and luminance in the 
detection of folds) plays an important role to the 
efficient delineation between fold and non-fold areas. 
In the experiment, α was set to 1.5 for H&E stained 
slides; however, when IHC slides (with light hematoxylin 
counter-stain) were examined, it appeared that the most 
effective value for α seemed to be closer to 1.2. This 
likely has to do with the strength of the counterstain.

Automated use of the current technique not only 
successfully detects large folds clearly visible to the human 
eye, but also objective folds that are inconspicuous and 
which manual methods fail to detect. Application of 
the technique however did result, in some cases, in the 
mislabeling of isolated pixels as tissue folds. This is best 
seen in the third column of Figure 8b. We believe these 
pixels represent large, strongly staining nuclei. This is 
possible since nuclei often stain significantly darker than 
surrounding areas and thus exhibit the same luminance 
and saturation characteristics as the folds. To remove these 
errors (to improve specificity) we have to either re-design 
the detection algorithm, for example integrating a spatial 
filter to minimize the mislabeling of nuclei, or modify 
the assignment of the enhancement coefficients such 
as assigning different coefficients to the saturation and 
luminance and adjusting them in an independent manner 
to allow for effective delineation between folds and nuclei.

CONCLUSION

Histology laboratory artifacts can affect the quality 
of a whole slide image in a variety of ways. One of 
these involves tissue folds and their effect in focusing 
algorithms. In this paper we have addressed the detection 
of tissue folds from the pre-scan image of a whole slide 
image by proposing an enhancement method that 
adaptively shifts the original RGB color of the image 
by an amount equivalent to the difference between 
its saturation and luminance components. Since the 
enhancement method works well on the simulated pre-
scan images, its integration to the actual whole slide 
imaging process should be possible.
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