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Implications of Three-Step Swimming Patterns in Bacterial Chemotaxis
Tuba Altindal,* Li Xie, and Xiao-Lun Wu
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania
ABSTRACT We recently found that marine bacteria Vibrio alginolyticus execute a cyclic three-step (run-reverse-flick) motility
pattern that is distinctively different from the two-step (run-tumble) pattern of Escherichia coli. How this novel, to our knowledge,
swimming pattern is regulated by cells of V. alginolyticus is not currently known, but its significance for bacterial chemotaxis is
self-evident and will be delineated herein. Using a statistical approach, we calculated the migration speed of a cell executing the
three-step pattern in a linear chemical gradient, and found that a biphasic chemotactic response arises naturally. The implication
of such a response for the cells to adapt to ocean environments and its possible connection to E. coli’s response are also
discussed.
INTRODUCTION
Existing observations made in Escherichia coli have
shown that sensing and motility impose different require-
ments on bacterial chemotactic response (1,2). The debate
on this interesting issue was initiated by the observation of
Block et al. (3), who discovered that the experimentally
measured chemotactic response function R(t) integrated
over time t is zero. In physical terms, R(t) can be thought
of as the Green’s function of the chemotactic network
when subjected to an impulsive or a d-in-time perturba-
tion. The importance of this null integrated effect goes
without saying, and was immediately recognized by the
investigators as the bacterium’s means of sensing. In their
words (3), ‘‘the bacterium compares the information
received in the past one second with that received over
the previous three seconds.’’ In effect, the double-lobe
response function, which is displayed in Fig. 1 c, allows
the bacterium to react to fast temporal variations of
a chemical signal c(t) but not to its direct-current compo-
nent, enabling the cell to adapt to a wide range of chem-
ical concentrations.

Using a macroscopic diffusion argument, it was sug-
gested by Schnitzer et al. (4) that a finite memory time
is required for a bacterium to migrate in a linear chemical
gradient; without the memory effect (or R(t) x d(t)), it
was concluded that the chemotactic coefficient k ¼ V/Vc
or the drift velocity V would be zero, where V is in the
direction of the chemical gradient Vc. However, de Gen-
nes (5) pointed out that the macroscopic diffusion
approach ignored important correlations between bacterial
swimming and the underlying chemical gradient. By
taking into account such correlations, de Gennes showed
that the optimal (or a fast) response for migration in
a linear gradient is an exponential function with a decay
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rate determined by the cell’s memory time t. He further
pointed out that the double-lobe response function
observed in E. coli could only reduce the migration speed
in the gradient.

Contributing to this stimulating debate is the finding of
Clark and Grant (1), who argued that whereas a cell needs
a fast drift speed in a concentration gradient, it is equally
important for the cell to localize once the top of the gradient
is reached. They showed that the single-lobe function
proposed by de Gennes is inadequate for cell localization.
By imposing the corequirements of being able to localize
as well as to migrate, they demonstrated that the optimal
response function is biphasic, which is in remarkably
good agreement with the one measured in the experiment
(3). This observation led Clark and Grant to conclude that
the biphasic response in E. coli perhaps reflects a compro-
mised need of the cells in different environments. A recent
study also suggested that the laboratory observed bacterial
response corresponds to the maximin strategy that ensures
the highest minimum uptake of nutrient for any profile of
concentration (2).

Recently, we found that the swimming pattern of the
marine bacterium Vibrio alginolyticus is a cyclic three-
step process (6), where a cell swims forward for a time
interval Df and it then backtracks by reversing the motor
direction for a time Db. However, upon resuming forward
swimming, the bacterial flagellum flicks, causing the cell
body to veer in a new direction. This type of motility pattern
is very different from that of E. coli, which exhibit a run-
tumble pattern.

By way of introduction, a typical trajectory of V. algino-
lyticus and that of E. coli are presented, respectively, in
Fig. 1, a and b. For the V. alginolyticus’ trajectory (Fig. 1 a),
the forward and the backward segments are designated by
green and red, respectively, for clarity. We termed this
novel, to our knowledge, swimming pattern a run-reverse-
flick process.
doi: 10.1016/j.bpj.2010.11.029
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FIGURE 1 Bacterial swimming trajectories of V. alginolyticus (a) and

E. coli (b). The cells have been selected among many because they are

more or less swimming in the focal plane, 50–100 mm above the glass

coverslip. The starting points for both trajectories are indicated by the

two large solid dots. The time lapse between adjacent dots are 0.067 s

and 0.13 s for panels a and b. The red and green segments in panel a desig-

nate the backward and forward swimming intervals, and transitions from

backward to forward cause flicking, randomizing the swimming direction.

Unlike a transition from forward to backward, which has a directional

change Dq x p (or backtracking), a backward to forward transition is

random with Dq uniformly distributed between 0 and 180�. (c) A hypothet-

ical response function R(t) of E. coli based on the model of Tu et al. (13) is

plotted as the dark curve, and the cell is stimulated at t¼ 0 with a brief pulse

of attractant (red curve). Here, RðtÞ ¼ R0½ 1tm expð� t
tm
Þ � 1

tz
expð� t

tz
Þ�,

where we set R0 ¼ 1, and used the typical E. coli methylation time (tm ¼
3 s) and phosphorylation time (tz ¼ 0.5 s) (13,14).
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The last (flicking) step is functionally equivalent to a
tumble in E. coli, allowing the bacterium to randomly
select a direction, and a new cycle ensues. Despite the
fact that run and reverse intervals, Df and Db, as well as
the flicking angle Dq are stochastic, the three-step cycle
is deterministic and has been observed in different V. algi-
nolyticus strains and in a swimming buffer with and
without a chemical gradient (6). In a steady state without
a chemical gradient, we found that the probability density
functions P(Db) and P(Df) are statistically independent and
have long exponential tails (or a Poissonian-like behavior)
with the mean intervals tb x tf x 0.3 s. However, when
a point source of chemoattractant is present, the cells can
quickly migrate along the gradient and form a tight pack
around the source.

The biochemical network that regulates the activity of
E. coli motor is reasonably well understood (7). Although
this is not the case for V. alginolyticus, it cannot deter
our progress because we know that even for very diverse
microorganisms, such as E. coli and Bacillus subtilis that
are roughly one billion years apart according to the
recently constructed phylogenetic tree (8), the fundamental
mechanism of regulation is still similar, i.e., a ligand
binding to a receptor triggers a cascade of chemical reac-
tions. The end-product of the reaction is a chemically
modified protein, called the response regulator (CheY-P),
that binds to the motor, causing it either to rotate counter-
clockwise (B. subtilis) or clockwise (E. coli). The basic
aim of different microorganisms is also the same, namely
guided by chemical signals—the cell is directed toward
the source of chemoattractant and away from chemorepel-
lent. According to the phylogenetic tree (8), V. alginolyti-
cus appears to be much closer to E. coli than B. subtilis,
suggesting that there is much in common between these
two bacterial species. Indeed, in V. alginolyticus, one can
identify chemotaxis genes that are largely homologous to
E. coli with the exception of cheV that is absent in
E. coli but is present in B. subtilis. A recent study moreover
showed that the phosphorylated CheY in V. alginolyticus
causes the polar flagellar motor to reverse the direction
from counterclockwise (CCW) to clockwise (CW), similar
to E. coli (9).

It is clear that the three-step swimming pattern is
significantly different from the well-studied two-step
swimming pattern of run-and-tumble, and it has strong
implications for bacterial chemotaxis, which can be char-
acterized by an effective diffusion coefficient D and a drift
velocity V in the presence or absence of a chemical
gradient. The calculation below illustrates that cells
executing the three-step swimming pattern can exhibit
rich chemotactic behaviors, and the variations can be
acted on by natural selection so that a particular response
emerges. Below we will illustrate these new aspects of
bacterial chemotaxis based on our findings of the three-
step process.

Similar to cells of E. coli, the flagellar motor of V. algi-
nolyticus has two lifetimes for the state of rotations: one
(tf) for the CCW interval and one (tb) for the CW interval,
where the subscripts f and b stand for forward and back-
ward swimming, respectively. To modulate their chemo-
tactic behaviors, these lifetimes are affected by the local
concentration of chemoeffectors and cells’ adaptation
mechanism. Unlike E. coli, however, CW rotation in
V. alginolyticus causes the cell to backtrack. Both swim-
ming intervals are expected to depend on the ligand
concentration c(t), which we assume to be chemoattractant.
For small c(t), we assume that a linear response is appli-
cable and hence,

1

tf ðtÞ ¼ 1

tf

2
41� Z t

�N

dt0Rf ðt � t0Þcðt0Þ
3
5; (1)

1

tbðtÞ ¼ 1

tb

2
41� Z t

�N

dt0Rbðt � t0Þcðt0Þ
3
5; (2)

where tf and tb are the steady-state values, and Rf(t) and
Rb(t) are the memory (or the response) functions, which
are not necessarily the same for the two swimming intervals.
In the above, an exposure to the ligand causes the forward
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lifetime to increase, and is consistent with our observations
in V. alginolyticus (6). Linearity of Eqs. 1 and 2 suggests that
it is possible to examine one delay time q at a time and sum
up all possible delays at the end.

Following de Gennes, we write Rs(t) ¼ asd(t – q),
where the strength of the response as(s ¼ f, b) has the
dimension of volume. Next, we consider a cell moving
in a chemical gradient as depicted in Fig. 2. Our aim is
to calculate the displacement xi along the gradient in
one cycle, Df þ Db, which leads to a mean drift velocity
V ¼ xi=ðtf þ tbÞ after averaging over Df and Db. Because
a cell randomizes its swimming direction at the end of the
backward interval by a flick, the motions in two consecu-
tive cycles are uncorrelated. This allows us to place the
origin of time (t ¼ 0) at the beginning of the forward
run. Assuming that the forward run time is Poisson-
distributed, the surviving probability of a cell swimming
forward up to Df is given by
FIGURE 2 Migration of V. alginolyticus in a linear chemical gradient. (a)

(Dashed blue line) In the spatial domain, the chemical gradient is specified.

(Green and the red arrows) Forward and backward swimming segments

along the gradient. (The color usage in the arrows is consistent with that

in Fig. 1.) The values Df and Db are, respectively, the forward and backward

swimming time intervals, and vfi and vbi are, respectively, the forward and

backward velocity components along the chemical gradient. Note that

backtracking means vb
!¼ �vf

!. (b) The bacterial chemotactic network

processes the chemical information in the temporal domain, and the

concentration detected by the cell is depicted in panel b, where q is the

memory time of the bacterium. I and II are chemosensing in the current

cycle, and I0 is due to the previous cycle.
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Df

� ¼ exp
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4�

ZDf

0

dt0
1

tf ðt0Þ

3
5xexp

�
� Df

tf

�

�
2
41 þ af

tf

ZDf�q

�q

dt0cðt0Þ
3
5;

(3)

and the probability that it stops immediately after Df is
–vPf(Df)/vDf. Likewise, the surviving probability of a cell
swimming backward from Df to Df þDb is given by

Pb

�
Db;Df

� ¼ exp

2
64� ZDf þDb

Df

dt0
1

tbðt0Þ

3
75xexp

�
� Db

tb

�

�

2
641 þ ab

tb

ZDf þDb�q

Df�q

dt0cðt0Þ

3
75;

(4)

and the stopping probability at the end of the backward run
is �vPbðDb;Df Þ=vDb:

It follows that the net mean displacement in one cycle is
given by

xihxfi þ xbi ¼
*ZN

0

dDf

�
� vPf

�
Df

�
vDf

�
vfiDf

+
þ
*ZN

0

dDf

�
�
� vPf

�
Df

�
vDf

�ZN
0

dDb

�
� vPb

�
Db;Df

�
vDb

�
vbiDb

+
;

(5)

where xfi and xbi represent, respectively, the mean displace-
ment during the forward (Df) and the backward (Db)
swimming interval, and h.i designates the angular
average for vfi and vbi. For the linear gradient depicted in
Fig. 2, the concentration experienced by the cell can be rep-
resented as

cðtÞ ¼ c0 þ Vc$vfi$t for 0%t < Df

and

cðtÞ ¼ c0 þ Vc$vfi$Df þ Vc$vbi$
�
t � Df

�
for Df%t < Df þ Db:

Because c0 is determined by the velocity in the previous
cycle, it does not contribute to the above integrations after
angular averaging. Although the calculation of Eq. 5 is
tedious, which is given in Appendix A, the final result is
straightforward:
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xi ¼
�
af t

2
f

D
v2fi

E
exp

�
� q

tf

�
þ ab

�
t2f t

2
b

tf � tb

�
vfivbi

	

�
�
1

tb
exp

�
� q

tf

�
� 1

tf
exp

�
� q

tb

��

þ t2b
�
v2bi
	
exp

�
� q

tb

�
�
Vc:

(6)

The first term in the curly brackets of Eq. 6 is the
displacement during the forward interval, and the second
term is the displacement during the backward interval. It
is noteworthy that during the second interval, there is a cross
term proportional to

t2f t
2
b

tf � tb

�
vfivbi

	� 1

tb
exp

�
� q

tf

�
� 1

tf
exp

�
� q

tb

��
;

which results from the delay, i.e., even though the cell is
moving backward, in the early episode of that interval, the
cell still remembers the concentration sensed during the
previous forward swimming. This gives rise to anticorrela-
tion, because hvfi vbii < 0, which contributes to a negative
displacement. This important correlated motion adds rich-
ness to bacterial chemotaxis and is what makes V. alginoly-
ticus behave differently from E. coli. We noted that Eq. 6
yields the result

xi ¼
h
af t

2
f

D
v2fi

E
þ abtb

�
tb
�
v2bi
	 þ tf

�
vfivbi

	�i
Vc

in the limit of no memory, q / 0. It is interesting that even
when there is no memory, the cross term survives because
there is no direction randomization after a forward run.
Moreover, the displacement during the backward interval
can contribute positively or negatively to the net mean
displacement, depending on the mean lifetimes tf and tb,
and the swimming velocities v/f and v

/
b. We found the swim-

ming pattern of V. alginolyticus is approximately symmetric
with tf x tb and j~vf jxj~vbj (6), and hence

xixaf t
2
f

D
v2fi

E
Vc:

The corresponding quantity for E. coli is

xi ¼ af t
2
f

D
v2fi

E
f0Vc

when q / 0, where the subscript f stands for the forward
run (or CCW rotation) and

f0 ¼ tCCW=ðtCCW þ tCWÞ

is the CCW bias. Because near a steady state f0 x 0.5 or
~0.8 according to Block et al. (3) and Korobkova et al.
(10), respectively, E. coli cells produce a smaller displace-
ment than V. alginolyticus within one swimming cycle if
everything else is equal. Using vfi ¼ �vbi ¼ vi and summing
up all possible delays in Eq. 6, we found that the mean
displacement is given by

xi ¼
8<
:t2f

ZN
0

dqRf ðqÞexp
�
� q

tf

�
þ t2b

ZN
0

dqRbðqÞ

�
�
exp

�
� q

tb

�
� t2f
tf � tb

�
1

tb
exp

�
� q

tf

�

� 1

tf
exp

�
� q

tb

��
9=
;�

v2i
	
Vc:

(7)

The average drift speed in the gradient is

VðhkVcÞ ¼ xi=
�
tf þ tb

�
;

which allows the chemotactic coefficient k to be calculated.
In E. coli, k is proportional to the diffusion coefficient
Dx
1

3
f0

�
v2
	
tf ;

and one finds

k ¼ D

Z N

0

Rf ðqÞexp
�
� q

tf

�
dq:

For an organism exhibiting the three-step swimming
pattern, the diffusivity is given by

D ¼ �
v2i
	�tf � tb

�2
tf þ tb

¼ 1

3

�
v2
	�tf � tb

�2
tf þ tb

; (8)

and the chemotaxis coefficient can be written as

k ¼ D�
tf � tb

�2
8<
:t2f

ZN
0

dqRf ðqÞexp
�
� q

tf

�

þ t2b

ZN
0

dqRbðqÞ
�
exp

�
� q

tb

�
� t2f
tf � tb

�
�
1

tb
exp

�
� q

tf

�
� 1

tf
exp

�
� q

tb

��
9=
;:

(9)

This calculation leads to two possible scenarios (or funda-
mental hypotheses) for bacterial chemotaxis: 1), indepen-
dent and 2), shared chemosensing.

In the first case, the response functions in the forward and
backward intervals are uncorrelated, i.e., Rf(q) and Rb(q)
have different functional forms, so that the sensing system
breaks the time reversal symmetry. To achieve such
a control, the flagellar motor cannot only passively receive
signals from the chemotaxis network; the status of the motor
must also be made known to the chemotaxis regulatory
network. This may be attained either by the flagellar motor
Biophysical Journal 100(1) 32–41
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being a part of the regulatory network or by a feedback
signal via a protein that can reset the chemotactic response.
In short, there will be a backflow of information from the
motor to the chemotaxis network in addition to the normal
chemotaxis regulation. To optimize the drifting velocity,
we applied a variational principle to Eq. 9, which is delin-
eated in Appendix B. We used the constraints that Rf(q)
and Rb(q) have constant variances s2s=tsðs ¼ f ; bÞ (1),
yielding

Rf ðqÞfsf

tf
exp

�
� q

tf

�
; (10)

RbðqÞfsb

tb

�
exp

�
� q

tb

�
� t2f
tf � tb

�
1

tb
exp

�
� q

tf

�

� 1

tf
exp

�
� q

tb

��

:

(11)

It is evident from the optimization procedure that, to
attain the maximum possible drifting speed, the forward
response function Rf(q) should be monophasic but the back-
ward response function Rb(q) can be either monophasic or
biphasic, depending on the ratio of the two lifetimes, b h
tb/tf. Fig. 3 displays (tf/sf)Rf(q) and (tb/sb)Rb(q) for
different values of b ¼ 0.8, 1.2, 1.5, 1.8, and 2.4. The figure
shows that the biphasic character of Rb(q) becomes more
pronounced as b decreases toward unity but disappears alto-
gether for b< 1, where the response is negative for all q. An
analysis shows that the biphasic response occurs in a narrow
range of b (1% b% 2), and outside this range the response
is always monophasic.

This behavior is understandable because when tb is
shorter than tf, the backward interval is strongly influenced
0 2 4 6 8
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FIGURE 3 Chemotactic Strategy I. The bacterium uses separate

response functions, Rf(q) and Rb(q), for chemosensing. The figure shows

the dimensionless forms of the response functions. (Black curve) Rf(q).

(Purple, blue, pink, green, and red curves) Rb(q) with b (h tb/tf) ¼ 0.8,

1.2, 1.5, 1.8, and 2.4, respectively. (Inset) Phase diagram for Chemotactic

Strategy II. It displays the phase boundaries between monophasic (I, III,

IV) and biphasic (II) response regimes when the chemotaxis response obeys

the relation R(q) ¼ Rf(q) ¼ Rb(q)/g.
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by the signal sensed in the previous forward interval due to
the memory effect. To deal with this inconsistency between
sensing and motility, the optimal strategy is a negative
monophasic response, as depicted by the purple curve
(b ¼ 0.8) in Fig. 3. On the other hand, when tb is longer
than tf, the cell would have consistent sensing and motility
so that a monophasic positive response is more favorable,
which is shown by the red curve (b ¼ 2.4) in Fig. 3. In
the limiting case where tb >> tf or tb << tf , Eqs. 9–11
make it clear that the chemotactic coefficient k is domi-
nated, respectively, by the backward or the forward swim-
ming interval. The situation is formally equivalent to
E. coli chemotaxis, where the monophasic response is
optimal for a fast migration in a linear chemical gradient,
as was concluded by de Gennes (5).

In case 2, that of shared chemosensing, the bacterium
uses a single response function R(q), albeit the amplitudes
of the responses may be different in the two directions,
Rf(q) ¼ Rb(q)/g ¼ R(q). A simple reason for g s 1 could
be due to different swimming speeds vf and vb, but other
possibilities may also exist. For this type of sensing, there
is no breaking of time reversal symmetry because the
chemotaxis network processes information received during
the forward and the backward interval equally, and there
is no need for a backflow of information. Using Eq. 9, we
found

k ¼ D�
tf � tb

�2
ZN
0

dqRðqÞ
�
t2f exp

�
� q

tf

�
þ gt2b

�
exp

�
� q

tb

�

� t2f
tf � tb

�
1

tb
exp

�
� q

tf

�
� 1

tf
exp

�
� q

tb

��
�
:

(12)

Applying the variational principle again (see Appendix
B), we found that the drift velocity is optimized by the
following response function

RðqÞf s

tf þ tb

�
exp

�
� q

tf

�
þ g

�
tb
tf

�2�
exp

�
� q

tb

�

� t2f
tf�tb

�
1

tb
exp

�
� q

tf

�
� 1

tf
exp

�
� q

tb

��
�
:

(13)

As displayed in Fig. 4, R(q) can be monophasic or
biphasic, depending on g as well as the time ratio bh tb/tf.
The biphasic regime is bounded by

1� b

b
%g <

1

bð1� bÞ for 0%b < 1

and

gR0 for 1 < b%2;

which is displayed in the inset of Fig. 3. The inset shows that
the parameter space (g, b) consists of four different regimes
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with I, III, and IV being monophasic and II, biphasic. Our
theory hence predicts that if a bacterium uses a single
response function, for very short (b << 1) or very long
(b >> 1) backward swimming intervals, the biphasic
response is not a good chemotactic strategy for migration
in a linear chemical gradient. The biphasic response
emerges only when tf and tb are close (or b x 1), which
is the case in V. alginolyticus (6). It is conspicuous that in
the limits b / 1 and g / 1, R(q) calculated using Eq. 13
is identical to the solution of a critically damped harmonic
oscillator, which has the interesting property ofZ N

0

ð1� q=tÞexpð�q=tÞdq ¼ 0;

i.e., the response is precisely adaptive.
The above two hypotheses are testable by laboratory

experiments where the bacteria are subject to a defined
chemical stimulation, and one measures the switching rate

sðtÞ ¼ 2=
�
tf ðtÞ þ tbðtÞ

�
and the forward swimming bias

fðtÞ ¼ tf ðtÞ=
�
tf ðtÞ þ tbðtÞ

�
as a function of time. For a weak stimulation, the above
calculation allows us to find

sðtÞ ¼ s0

2
41� f0

Z t

�N

Rf ðt � t0Þcðt0Þdt0

� ð1� f0Þ
Z t

�N

Rbðt � t0Þcðt0Þdt0
3
5; (14)
2 Z t
fðtÞ ¼ f0
41 þ ð1� f0Þ

�N

�
Rf ðt � t0Þ

� Rbðt � t0Þ�cðt0Þdt0
3
5; (15)

where

s0h2=
�
tf þ tb

�
and f0htf=

�
tf þ tb

�

are the steady-state switching rate and the forward bias,
respectively. The expressions are significantly simplified if
the perturbation is d-in-time, c(t)¼ c0d(t), and they are given
by

sðtÞ ¼ s0
�
1� c0

�
f0Rf ðtÞ þ ð1� f0ÞRbðtÞ

�

; (16)

fðtÞ ¼ f0

�
1 þ c0ð1� f0Þ

�
Rf ðtÞ � RbðtÞ

�

: (17)

The calculation shows that if the second scenario is true
and Rf(t)x Rb(t), the forward bias will be weakly dependent
on time t, and the switching rate is simply given by

sðtÞxs0
�
1� c0Rf ðtÞ



:

However, if the first scenario is true, the measured s(t) and
f(t) can be used to find the response function Rf(t) and Rb(t)
using Eqs. 16 and 17. In this case, the following simple rela-
tions result:

Rf ðtÞ ¼ 1

c0

�
fðtÞ
f0

� sðtÞ
s0



; (18)

RbðtÞ ¼ 1

c0

�
1� fðtÞ
1� f0

� sðtÞ
s0



: (19)

An alternative and perhaps more direct way to find Rf(t)
and Rb(t) is to perform conditional stimulation for indi-
vidual cells. The bacterium can be either tethered to a
surface, such as in the experiment of Block et al. (3), or
freely swimming, as in the experiment of Khan et al. (11).
For tethered cells, one can apply a pulse of chemoattractant
at the moment the motor switches from CW (CCW) to
CCW (CW), and record the subsequent swimming interval
D1f (D1b), where the subscript 1 emphasizes the interval
before the first switch. By counting the switching events
up to time t, one can construct a cumulative probability
density function (normalized by the total number of cells)
Js(t), and the time-dependent switching rate can be ob-
tained according to

t�1
s ðtÞ ¼ �d

dt
lnð1�JsðtÞÞ;

where s ¼ f or b. For freely swimming cells, one can use
photoactive serine, which is an attractant to V. alginolyticus,
Biophysical Journal 100(1) 32–41
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to stimulate cells. If the first scenario is true, one should find
that tf

�1(t) and tb
�1(t) have different time dependence, or

equivalently, Rf(t) and Rb(t) have different functional forms.
However, if the second scenario is true, there should be
not much difference between tf

�1(t) and tb
�1(t) or

Rf(t) f Rb(t).
To conclude, the three-step motility pattern of V. algino-

lyticus discovered in our recent experiment (6) allows
significant variations in bacterial chemotactic behaviors.
These variations can be acted on by natural selection and
give rise to distinct phenotypes observed in the wild. Com-
pared to the two-step swimming pattern of E. coli, cells of
V. alginolyticus can engage in chemosensing and migration
in both the forward and the backward swimming intervals,
and hence their duty cycle is ~100% as compared to ~50–
80% in E. coli (3,10). An important aspect in three-step
chemotaxis is backtracking that gives those bacteria heading
down a gradient an opportunity to reexploit what they
find a moment earlier. In our opinion, the full duty cycle,
backtracking, and flicking are defining characteristics of
V. alginolyticus. These significant niches are likely selected
for by the ocean environment where a quick response to
transitory signals is important.

We showed that for a swimmer executing the cyclic
three-step motility pattern, a biphasic response arises natu-
rally without the need to invoke cell localization as sug-
gested for E. coli (1). Moreover, we showed that the
biphasic response is most effective when the forward tf
and the backward tb swimming intervals are comparable.
This makes biological sense, inasmuch as a brief forward
or a brief backward interval contributes little to motility,
and consequently a monophasic response is sufficient for
migration.

This also raises the interesting question why the nonmo-
tile CW interval in E. coli is so long, taking up at least 20%
of the duty cycle. If tumbling is just to change the direction,
would not it be better if the CW interval is shorter?

An interesting possibility is that the ancestral cell that
gave birth to E. coli and V. alginolyticus was a three-step
swimmer. However, when E. coli became specialized in
a different environment, which favored multiple flagella
for motility, they gave up backtracking and flicking, result-
ing in a tumbling movement. In this view, then, it is not
surprising that E. coli’s tumbling interval is long and its
chemotactic response is biphasic.

Based on motility alone, we propose two different
mechanisms—independent and shared chemosensing—by
which cells of V. alginolyticus can optimize their migration
speed in a linear gradient. Interestingly, the biphasic
response appears in both types of chemotactic strategies.
We know very little at present how the chemotaxis network
of V. alginolyticus regulates the three-step motility pattern.
However, based on our calculation, it is likely that a biphasic
response is also adopted by V. alginolyticus, and awaits
verification in future experiments. Finally, it would be inter-
Biophysical Journal 100(1) 32–41
esting to generalize the above calculation to situations
where the chemical landscape is constantly changing, such
as chemical waves (12).
APPENDIX A: CALCULATION OF THE MEAN
DISPLACEMENT

In the following, we provide a more detailed derivation of the mean

displacement xi ¼ xfi þ xbi in a single three-step cycle. The displacement

is made in the two time intervals, Df and Db, and is represented by Eq. 5.

The concentration sensed by the bacterium is piecewise continuous

according to Fig. 2 and is given by

cðtÞ ¼
8<
:

c0 þ Vcv0bit;
c0 þ Vcvfit;

c0 þ VcvfiDf þ Vcvbi
�
t�Df

�
;

t < 0

0%t < Df

Df%t<Df þ Db

;

where the subscript i designates the component of the velocity along the

gradient direction. The primed and unprimed velocities correspond to t <

0 (regime I0) and t R 0 (regimes I and II), respectively.

The first part of Eq. 5 is readily calculated by integration by parts,

xfih

*ZN
0

dDf

�
� vPf

�
Df

�
vDf

�
vfiDf

+

¼
*ZN

0

dDf Pf

�
Df

�
vfi

+
; (20)

where Pf(Df) is given by Eq. 3, which contains an integration in time t over

the range

�q%t%Df � q:

Because Df varies from 0 to N, we have to distinguish two cases in the

integration: �
i
�
Df � q < 0 and

�
ii
�
Df � q > 0:

One can deal with these two mutually exclusive cases by the use of

Heaviside functions H(x), i.e., we write

ZN
0

dDf ð.Þh
ZN
0

dDf

�
H
�
q� Df

�þ H
�
Df�q

�
ð.Þ: (21)

The first Heaviside function confines the integral to t < 0, and because

hv0bivfii ¼ 0, there is no contribution from this term. The integration con-

strained by the second Heaviside function yields

xfi ¼ afVchv2fiit2f exp
�
� q

tf

�
: (22)

This equation is identical to that found by de Gennes when he calculated

the drift velocity for E. coli cells (5).

The second part of Eq. 5 is more complicated because one has to take

into account more possibilities. Again, we used integration by parts to

obtain
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xbih

*ZN
0

dDf

ZN
0

dDb

�
� vPf

�
Df

�
vDf

�

�
�
� vPb

�
Db;Df

�
vDb

�
vbiDb

+

¼
*
Pf ð0Þ

ZN
0

dDbPbðDb; 0Þvbi
+

þ
*ZN

0

dDf

ZN
0

dDbPf

�
Df

�vPb

�
Db;Df

�
vDf

vbi

+
:

(23)
ZDf þDb�q

Df�q

dtcðtÞ ¼

8>>><
>>>:

c0
�
Df þ Db � q

� þ 1
2
Vcvfi

�
Df þ Db � q

�2
;

c0Df þ 1
2
VcvfiD

2
f þ c1ðDb � qÞ þ 1

2
VcvbiðDb � qÞ2;

c0Db þ VcvfiDb

�
Df þ 1

2
Db � q

�
;

c0q þ Vcvfiq
�
Df � q

2

� þ c1ðDb � qÞ þ 1
2
VcvbiðDb � qÞ2;

ðiiÞ
ðiiiÞ
ðivÞ
ðvÞ

(26)
Let the first term in the above equation be x
hbbi
bi and the second term be

x
hbf i
bi . Because Pf(0) ¼ 1 and Pb(Db, 0) ¼ Pf(Db), it follows that the integra-

tion in the first term is identical to Eq. 20 with the replacement of the

subscript f by b. This yields

xhbbibi ¼ abVc
�
v2bi
	
t2bexp

�
� q

tb

�
: (24)

Now, let us examine the anticorrelation term x
hbf i
bi , which corresponds to

the situation when the bacterium swims down the gradient but it still keeps

its ‘‘old good memory’’. Dropping the nonlinear terms in concentration c,

we found

x
hbf i
bi ¼ ab

tb

*ZN
0

dDf

ZN
0

dDbexp

�
� Df

tf

�

� exp

�
� Db

tb

�
v

vDf

ZDf þDb�q

Df�q

dtcðtÞvbi
+
:

(25)

When integrating over Df, there are two possibilities for the lower limit

of the t-integration, i.e., either Df – q < 0 or Df – q R 0. These will be de-

limited by the Heaviside functions as before. For each of these cases, while

integrating over Db, there are additional possibilities for the upper limit of

the t-integration. For the first case, when Df � q <0, there are three

possibilities,

�
i
�
Df � q%Df þ Db � q%0;

ðiiÞ 0%Df þ Db � q%Df ;
and �
iii
�
Df%Df þ Db � q%Df þ Db;

0
corresponding to the regimes I , I, and II in Fig. 2, respectively. However,

because motion is uncorrelated after a flick or hv0bivbii ¼ 0, the first

possibility does not contribute to the displacement. In the second case,

when Df � q R 0, there are two additional possibilities,�
iv
�
Df � q%Df þ Db � q%Df

and �
v
�
Df%Df þ Db � q%Df þ Db;

corresponding to the regimes I and II in Fig. 2, respectively. The corre-

sponding time integrals for the above four possibilities (ii–v) are given by
where c1 h c0 þ VcvfiDf. Using the above expressions, we take the deriv-

ative with respect to Df to obtain

v

vDf

ZDf þDb�q

Df�q

dtcðtÞ ¼

8>><
>>:

c0 þ Vcvfi
�
Df þ Db � q

�
;

c0 þ Vcvfi
�
Df þ Db � q

�
;

VcvfiDb;
VcvfiDb:

ðiiÞ
ðiiiÞ
ðivÞ
ðvÞ
(27)

Again, using the Heaviside functions to represent these four nontrivial

possibilities, we have the identityZN
0

dDf

ZN
0

dDbð.Þ ¼
ZN
0

dDf

ZN
0

dDb

�
H
�
q� Df

�

� �
H
�
Df þ Db � q

�
Hðq� DbÞ þ HðDb � qÞHðqÞ


þ H
�
Df � q

�½HðDbÞHðq� DbÞ þ HðDb � qÞHðqÞ��ð.Þ:
(28)

Substituting this equation into Eq. 25, we found

x
hbf i
bi ¼ ab

tb

*ZN
0

dDf

ZN
0

dDbexp

�
� Df

tf

�
exp

�
� Db

tb

�

��
H
�
q� Df

��
H
�
Df þ Db � q

�
Hðq� DbÞðiiÞ

þ HðDb � qÞHðqÞðiiiÞ
 þ H
�
Df � q

�½HðDbÞ

� Hðq� DbÞðivÞ þ HðDb � qÞHðqÞðvÞ��vbi
+
;

(29)
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where (ii), (iii), (iv), and (v) are the terms given in Eq. 27. The four integra-

tions in the above equation are delimited by different combinations of

Heaviside functions, yielding different lower and upper integration limits

for each integral. Designating these integrals as

�
x
hbf i
bi

�
ii
;
�
x
hbf i
bi

�
iii
;
�
x
hbf i
bi

�
iv
; and

�
x
hbf i
bi

�
v
;

we found

�
x
hbf i
bi

�
ii
¼ ab

tb
Vc

�
vfivbi

	 Zq

0

dDf

Zq

q�Df

dDbexp

�
� Df

tf

�

� exp

�
� Db

tb

� �
Df þ Db � q

�
¼ abVc

�
vfivbi

	 tf
tf �tb

exp

�
� q

�
1

tb
þ 1

tf

�


�
�
t2b

�
exp

�
q

tb

�
� 1



� t2f

�
exp

�
q

tf

�
� 1




þ q
�
tf � tb

��
;

(30)

�
x
hbf i
bi

�
iii
¼ ab

tb
Vc

�
vfivbi

	 Zq

0

dDf

ZN
q

dDbexp

�
� Df

tf

�

� exp

�
� Db

tb

��
Df þ Db � q

�
¼ abVc

�
vfivbi

	
tf

�
tf þ tb �

�
tf þ tb þ q

�
� exp

�
� q

tf

�

exp

�
� q

tb

�
; (31)

�
x
hbf i
bi

�
iv
¼ ab

tb
Vc

�
vfivbi

	 ZN
q

dDf

Zq

0

dDbexp

�
� Df

tf

�

� exp

�
� Db

tb

�
Db

¼ abVc
�
vfivbi

	
tf

�
tb � ðq þ tbÞexp

�
� q

tb

�


� exp

�
� q

tf

�
;

(32)

�
x
hbf i
bi

�
v
¼ ab

tb
Vc

�
vfivbi

	 ZN
q

dDf

ZN
q

dDbexp

�
� Df

tf

�

� exp

�
� Db

tb

�
Db

¼ abVc
�
vfivbi

	
tf ðtb þ qÞexp

�
� q

tf

�
exp

�
� q

tb

�
: (33)
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In the above calculation, the terms involving c0 do not contribute

because hvbii ¼ 0. The anticorrelation term due to all the above contribu-

tions is then given by

x
hbf i
bi ¼

�
x
hbf i
bi

�
ii
þ
�
x
hbf i
bi

�
iii
þ
�
x
hbf i
bi

�
iv
þ
�
x
hbf i
bi

�
v

¼ abVc
�
vfivbi

	 t2f t
2
b

tb�tf

�
1

tf
exp

�
� q

tb

�
� 1

tb
exp

�
� q

tf

�

:

(34)

Combining Eqs. 22, 24, and 34, we finally obtain the mean displacement

in a given cycle for the three-step swimmer,

xi ¼ afVc
D
v2fi

E
t2f exp

�
� q

tf

�
þ abVc

�
v2bi
	
t2bexp

�
� q

tb

�

þ abVc
�
vfivbi

	 t2f t
2
b

tb � tf

�
1

tf
exp

�
� q

tb

�
� 1

tb
exp

�
� q

tf

�

:

(35)

APPENDIX B: DRIFTING VELOCITY OPTIMIZATION

For the first chemotactic strategy, Rf(t) and Rb(t) in Eq. 9 are independently

optimized. The procedure requires us to constrain a family of response

functions Rs(t), where s ¼ f, b. We followed Clark and Grant’s approach

(1) and assumed that Rs(t) is finite, continuous, and decays to zero for large

t. The simplest way to impose the constraint is to assume a finite variance

ZN
0

R2
s ðtÞdt ¼ s2

s=ts (36)

that is to be satisfied by all curves in the family. Optimizing kwith the above

constraint is equivalent to

d

dRsðtÞ
ZN
0

dt

�
RsðtÞKsðtÞ � l

�
R2
s ðtÞ �

s2
s

ts

�

¼ 0; (37)

where Ks(t) is the kernel that weights the forward (s ¼ f) and the backward

(s ¼ b) response functions,

Kf ðtÞ ¼ exp

�
� t

tf

�
; (38)

KbðtÞ ¼ exp

�
� q

tb

�
� t2f
tf � tb

�
1

tb
exp

�
� q

tf

�

� 1

tf
exp

�
� q

tb

��
:

(39)

Aside from normalization constants, the optimized response functions

are given in Eqs. 10 and 11.

The similar procedure can also be applied to the second chemotactic

strategy, resulting in the optimized response function given by Eq. 13.

This work is supported by the National Science Foundation under grant No.

DMR-BP0646573.



Three-Step Swimming Patterns in Chemotaxis 41
REFERENCES

1. Clark, D. A., and L. C. Grant. 2005. The bacterial chemotactic response
reflects a compromise between transient and steady-state behavior.
Proc. Natl. Acad. Sci. USA. 102:9150–9155.

2. Celani, A., and M. Vergassola. 2010. Bacterial strategies for chemo-
taxis response. Proc. Natl. Acad. Sci. USA. 107:1391–1396.

3. Block, S. M., J. E. Segall, and H. C. Berg. 1983. Adaptation kinetics in
bacterial chemotaxis. J. Bacteriol. 154:312–323.

4. Schnitzer, M. J., S. M. Block, ., E. M. Purcell. 1990. Strategies for
chemotaxis. Symp. Soc. Gen. Microbiol. 46:15–34.

5. de Gennes, P. G. 2004. Chemotaxis: the role of internal delays. Eur.
Biophys. J. 33:691–693.

6. Xie, L., T. Altindal,., X. L. Wu. 2010. Flagellum as a propeller and as
a rudder for efficient bacterial chemotaxis. Proc. Natl. Acad. Sci. USA.,
In press.

7. Springer, M. S., M. F. Goy, and J. Adler. 1979. Protein methylation in
behavioral control mechanisms and in signal transduction. Nature.
280:279–284.
8. Ciccarelli, F. D., T. Doerks,., P. Bork. 2006. Toward automatic recon-

struction of a highly resolved tree of life. Science. 311:1283–1287.

9. Kojima, M., R. Kubo, ., I. Kawagishi. 2007. The bidirectional polar

and unidirectional lateral flagellar motors of Vibrio alginolyticus are

controlled by a single CheY species. Mol. Microbiol. 64:57–67.

10. Korobkova, E., T. Emonet,., P. Cluzel. 2004. Frommolecular noise to

behavioral variability in a single bacterium. Nature. 428:574–578.

11. Khan, S., K. Amoyaw, ., D. R. Trentham. 1992. Bacterial chemore-

ceptor signaling probed by flash photorelease of a caged serine. Bio-

phys. J. 62:67–68.

12. Goldstein, R. E. 1996. Traveling-wave chemotaxis. Phys. Rev. Lett.

77:775–778.

13. Tu, Y., T. S. Shimizu, and H. C. Berg. 2008. Modeling the chemotactic

response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad.

Sci. USA. 105:14855–14860.

14. Segall, J. E., S. M. Block, and H. C. Berg. 1986. Temporal comparisons

in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 83:8987–8991.
Biophysical Journal 100(1) 32–41


	Implications of Three-Step Swimming Patterns in Bacterial Chemotaxis
	Introduction
	Appendix A: Calculation of the Mean Displacement
	Appendix B: Drifting Velocity Optimization
	References


