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Abstract
We apply an efficient approach from computational engineering, the finite-element method, to
numerically solve the Fokker-Planck equation in two dimensions. This approach permits us to find
the solution to stochastic problems that cannot be solved analytically. We illustrate our strategy
with an example from neuroscience that recently has attracted considerable attention -
synchronization of neural oscillators. In particular, we show that resonators (type II neural
oscillators) respond and synchronize more reliably when provided correlated stochastic inputs than
do integrators (type I neural oscillators). This result is consistent with recent experimental and
computational work. We briefly discuss its relevance for neuroscience.

Keywords
stochastic synchronization; neuronal reliability; integrators; resonators; computational engineering

Introduction
The interest in stochastic processes has increased remarkably in the last few years, in part
motivated by the need to account for the effects of noise in biological systems [1]. A
quantitative description of these phenomena often requires the solution of the Fokker-Planck
equation (FPE), which is derived from the equations of motion modeling stochastic
processes [2]. The FPE, however, rarely has an analytical solution in more than one
dimensions and when it has an analytical solution, it usually involves integrals of rapidly
increasing functions which make even numerical evaluation difficult. Furthermore, in many
situations, especially those of current interest in biological sciences, boundary conditions
must be added to the FPE, as well as spatial or temporal correlations of the stochastic
driving forces. It is usually in these cases, however, when an unexpected constructive role
for noise may emerge (e.g., from temporal correlations: [3-5]; from spatial correlations:
[6-9]).

For these reasons, an efficient numerical approach to solving the FPE and related equations
must be easy to generalize to more than one dimensions; it must be adaptive, so that
integration can be accurate in those parts of the spatiotemporal domain where the actual
solution changes quickly; and its computer implementation should be as efficient as
possible. The finite-element method (FEM), an approach for solving partial differential
equations (PDE) that is widely used in engineering [10], satisfies these requirements.
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Surprisingly, this approach is rarely used in physics and only recently has been applied to
solve the FPE in simple problems [11]. Here we use the FEM to calculate the numerical
solution of a two-dimensional stochastic problem with boundary conditions that cannot be
solved analytically and where the application of perturbation theory in some limit cases is
not sufficient to gain insight into the general behavior of the underlying physical
phenomenon, namely, noise-induced synchronization of phase oscillators.

In the FEM, the spatial domain [should you say what you mean by spatial domain?] of
interest is covered with a mesh of N knots, which need not be evenly spaced. Then, a set of
N basis functions is defined over the mesh. The basis typically consists of “tent functions”:
the n-th tent function, νn takes value one on the n-th knot and zero anywhere else on the
mesh. Then, the PDE is projected onto the basis set by multiplying the equation by νn and
integrating over the entire domain. Thus, one ends up with a matrix equation that in the case
of the FPE has the general form:

(1)

where ui is the numerical solution to the PDE on the i-th knot, with i=1,..,N. The value of
the solution on an arbitrary point of the spatial domain that is not a knot can be found by
simple interpolation. The matrix Aij (which is very sparse) and the vector fi (which is derived
from the inhomogeneous terms of the PDE and of the Neumann’s boundary conditions) are
time independent if so are the coefficients of the PDE and the boundary conditions. If one is
interested only in the stationary solution, the left hand side of equation (1) can be directly set
to zero.

At present, there are several commercial and freely available software packages of the FEM
in two and three dimension. Here we have used the package freeFEM++ developed by F.
Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, which can be freely downloaded from
the Internet [12].<<I would avoid this text and just list this as a reference when you say that
we solved this system...

Results
Populations of periodically firing neurons will fire synchronized action potentials when they
receive correlated fluctuations as input [8].<<This first sentence is unclear. I am not sure
that my rephrasing is what you mean. This phenomenon, called stochastic synchrony, can be
modeled with two identical phase oscillators that are driven by correlated stochastic inputs
starting with different initial conditions [13]:

(2)

where φi(0)= φi(2π), i=1,2, is the instantaneous phase of the oscillating neuron i; ω is the
average angular firing frequency; Z(φ) is the phase-dependent sensitivity [14] (a.k.a. phase
response or phase-resetting curve) of the neuronal oscillator, which can be estimated
experimentally [15]; ηi(t) are zero-mean, white-noise stochastic inputs,

, that are spatially correlated <η1(t)η2(t)>=c, thus, the correlation
coefficient of the inputs is r=c/(σ1σ2). As inputs become more correlated (i.e. in the limit of
r→1) stochastic synchrony is equivalent to spike-time reliability [16]: two repetitions of the
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same rapidly fluctuating stimulus, η1(t)=η2(t), yield highly reproducible responses φ1(t),
φ2(t), in a single neuron. This limit has been recently studied in detail by J. Teramae and D.
Tanaka [7].

An interesting question for neuroscience is how intrinsic cell properties embodied in Z(φ)
influence the amount of stochastic synchronization for each level of input correlation, r. In a
first, but useful approximation, one can classify single neural dynamics in two major types:
integrators, or type I, whose phase response Z(φ) is nonnegative, and resonators or type II,
whose phase response is partially positive and partially negative. To study the effect of the
phase response on stochastic synchronization, one can numerically integrate system (2) and,
e.g., investigate the histograms of the phase difference, φ1-φ2 as a function of r, for different
phase responses. Alternatively, for a more thorough study, one can use stochastic theory.
Consider the FPE for stochastic system (2) that determines the probability P≡P(φ1,φ2,t) of
finding the system at point (φ1,φ2) at time t:

(3)

with initial condition at point (φ10,φ20): P(φ1,φ2,0) = δ(φ1 - φ10)δ(φ2-φ20); periodic boundary
conditions: P(0,φ2,t) = P(2π,φ2,t), P(φ1,0,t) = P(φ1,2π,t) ; and the normalization condition

over the square domain Ω ⊂ [0,2π) × [0,2π), at any time t: . This
problem can readily be solved with the FEM at each point in time. For our purposes,
however, we will focus on the stationary probability distribution, which satisfies eq. (3)
setting ∂P/∂t=0.

Note that eq. (3) involves mixed derivatives and non-constant coefficients. In principle, a
change of variables can be applied to remove the cross derivatives. However, the boundary
conditions would then mix the new spatial variables. Furthermore, the coefficients of the
derivatives are complicated functions of the spatial variables. As a result, problem (3) does
not have an obvious analytical solution. Nevertheless, it can be efficiently solved with the
FEM. To do so, we first project eq. (3) onto the finite elements of a square mesh with
N=50×50 regularly spaced knots covering the domain, Ω. We thus obtain a homogeneous
algebraic equation satisfied by the finite-element representation of the stationary
distribution. In matrix notation, we have . There are two solutions of this problem.
One is the trivial solution, , and the other is any vector belonging to the null space of
A, i.e. an eigenvector with zero eigenvalue, which in this case is a constant vector, .
This property is a consequence of lacking Dirichlet boundary conditions, i.e., it is due to the
fact that the exact solution is not given along any part of the boundary a priori. This in turn
implies that the solution to the linear problem with any right hand side,  is determined only
up to an additive, arbitrary constant vector, :

Since the projection of the solution to the FPE, P onto the FEM space,  is defined up to an
additive constant, it seems reasonable to go back to the original problem and try the change
of variables: Q=P+1. This leads to an inhomogeneous FPE in Q which in turn leads to an
inhomogeneous algebraic problem, , whose solution is actually not determined
because A is not invertible due to the zero eigenvalue. However, we can perturb the diagonal
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of A with a small constant, ε. This shifts the zero eigenvalue to ε, turning A into a full-rank
matrix, which allows us to solve the linear problem. The solution obtained is neither zero
nor constant and has a bias term proportional to 1/ε, but since  is defined only up to an
arbitrary constant, we can ignore this term. In summary, with the FEM we obtain the
stationary probability distribution up to an additive constant (which also precludes the
application of the normalization condition). Nevertheless, this solution, which for simplicity
we will still call P, is sufficient to study stochastic synchronization of system (2) for
different phase-response curves, Z(φ) and increasing input correlation, r.

Figure 1 shows P(φ1,φ2) for r=0.6, for a prototypical phase response of type I neurons, Z(φ)
= N(1 + cos(φ +π)) and for a prototypical phase response of type II neurons, Z (φ) =-M sinφ,
being N and M normalization constants, such that the integral of the phase response squared
is one (equation parameters: ω=1, σ1=σ2=1). At this level of intermediate input correlation,
it is clear that both, type I and type II pairs tend to synchronize on average as indicated by
the white band along the diagonal. However, stochastic synchronization is larger for type II.
Although not necessary, we have made an educated guess on the undetermined additive
constant of P(φ1, φ2). We know that in the limit of r=1, synchrony must be maximal
whereas anti-synchrony must be close to zero. Thus, we took the minimal value of
P(φ1,φ1+π) for r=1 as the undetermined offset and assuming to be the same for all r, we
subtracted it from P.

From P(φ1,φ2) we can easily obtain the “probability density” P(Δ) of the phase difference
Δ=φ2-φ1. As shown in Fig. 2, the probability of synchrony, P(Δ=0) increases with
increasing input correlation for both neural types, but it is larger for type II. Figure 2 is in
agreement with the phase-difference histograms obtained from numerical integration of
system (2) presented in [13]. To quantify the increase of stochastic synchronization as a
function of the input correlation, we calculate the area of P(Δ) between -π/4 and π/4 relative
to the total area and plot this result in Fig. 3. Clearly, synchronization monotonically
improves with increasing correlation of the stochastic inputs in both cases, but type II
neurons are more efficient at synchronizing than type I are for each r, except for the limits
r=0 and r=1 where both are equal.

Discussion
We have presented an application of the FEM to the solution of stochastic problems that
frequently emerge in the study of physical and biological processes. In particular, the FEM
has permitted us to investigate an important phenomenon of neuroscience, namely,
stochastic synchronization of neurons that cannot be treated analytically in the general case.
We have shown that neuronal resonators (type II excitable neurons) are more reliable and
more susceptible to synchronize through stochastic correlated inputs than integrators (type I
excitable neurons) are. These correlated inputs closely resemble the synaptic currents
observed in real neurons [8], suggesting that neurons that have to reliably encode sensory
information, as well as those that are likely to process or route information through
synchrony and accurate spike timing, should have evolved to resonators. On the other hand,
neurons that relay information through firing rates rather than spike timing might have
evolved to integrators. Interestingly, we have previously shown that principal neurons in the
olfactory system are indeed resonators [15,17]. Moreover, recent work by T. Tateno and
H.P. Robinson [18] shows that fast-spiking cells in the neocortex, which are thought to
synchronize generating fast network oscillations in cortical areas, are type II, whereas
regularly-spiking cells that communicate across cortical columns are type I. Furthermore, in
agreement with the predictions presented here, the cited authors report a remarkably higher
reliability of the responses to fluctuating inputs in fast-spiking cells than in regularly-spiking
cells [18].
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In conclusion, the FEM has permitted us to investigate in detail a fundamental problem in
current neuroscience. We believe that the physicists’ community will considerably profit in
the future from the application of this approach of computational engineering to physical
and biological problems.
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Figure 1.
Probability density (up to an additive, arbitrary constant) P(φ1,φ2). The probability of the
synchronous states, φ1=φ2 is larger for type II than for type I. The correlation coefficient of
the stochastic inputs was r=0.6. Equation parameters: ω=1, σ1=σ2=1.
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Figure 2.
Probability density of the phase difference, P(Δ). Stochastic synchronization increases with
increasing input correlation, but it is larger for type II than for type I. This result is in
agreement with computer simulations of system (2) presented in [13].
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Figure 3.
Stochastic synchronization improves with increasing input correlation, r but it is
systematically larger for type II than for type I.
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