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Abstract: Task-correlated motion artifacts that occur during functional magnetic resonance imaging can
be mistaken for brain activity. In this work, a new selective detrending method for reduction of arti-
facts associated with task-correlated motion (TCM) during speech in event-related functional magnetic
resonance imaging is introduced and demonstrated in an overt word generation paradigm. The per-
formance of this new method is compared with that of three existing methods for reducing artifacts
because of TCM: (1) motion parameter regression, (2) ignoring images during speech, and (3) detrend-
ing time course datasets of signal components related to TCM (deduced from artifact corrupted vox-
els). The selective detrending method outperforms the other three methods in reducing TCM artifacts
and in retaining blood oxygenation level dependent signal. Hum Brain Mapp 30:1105–1119, 2009. VVC 2008

Wiley-Liss, Inc.
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INTRODUCTION

Blood oxygenation level dependent (BOLD) functional
magnetic resonance imaging (FMRI) signal changes are of
the order of 1–10% of the baseline signal intensity in con-
ventional 1.5T and 3T MR systems. As a result, signal
changes from sources (e.g., motion artifacts) other than
functional activation must be eliminated as much as pos-
sible. Motion can impair the detection of real functional
activation in several ways. Random motions of the head
appear as additive noise in the voxel time-series and
decrease the detectability of functional activation. Task-cor-
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related motion (TCM) can mask real activation in cortical
regions and can also appear as false positive activation at
the brain edges and high-contrast regions of the brain.
Proper image registration, most often achieved with inten-
sity-based methods [Cox and Jesmanowicz, 1999; Friston
et al., 1995; Woods et al., 1998], is imperative to minimize
the effect of motion on the FMRI signal. However, motion
artifacts would persist in the FMRI time-series even after
the image registration step. One way this occurs is through
spin-history effects, where through-plane motion modu-
lates the steady-state magnetization set up by the train of
RF excitation pulses in the imaging sequence, causing sig-
nal intensity fluctuations [Bullmore et al., 1999; Friston
et al., 1996]. Motion can also cause time-dependent modu-
lations in the background magnetic field [Jezzard and
Clare, 1999], resulting in artifacts in FMRI time-series
images [Haacke et al., 1999; Jezzard and Clare, 1999; Noll,
1991]. Apart from the sources mentioned above, local and/
or nonrigid motions can also lead to significant signal
changes in the FMRI time-series. These types of signal
changes are not linearly related to global rigid motion pa-
rameters. In fact, significant signal changes in the FMRI
time-series have been observed in a restrained motionless
MRI phantom due to the motion of a separate phantom
outside the field of view [Yetkin et al., 1996].
FMRI paradigms that require overt word generation

[Barch et al., 1999; Crosson et al., 2005; Huang et al., 2002]
suffer from task-correlated signal changes arising from
speech. Speech involves local nonrigid movement of phar-
ynx, tongue, and jaw, which have been demonstrated to
change the magnetic field distribution within the brain
[Birn et al., 1998]. Speaking can induce bulk magnetic sus-
ceptibility variations due to changes in the volume of oxy-
gen in the airways. Modulation of breathing during speech
can also induce task-correlated changes in FMRI signal
[Mehta et al., 2006]. The greatest magnetic field changes
due to speaking occur in the inferior, temporal, and frontal
regions of the brain, decreasing rapidly superiorly and
posteriorly. Voxels in the inferior, temporal, and frontal
regions may exhibit more than 100% task-correlated signal
changes [Kemeny et al., 2005]. After statistical signal proc-
essing, these regions often show false positive activation
with statistical significance similar to or higher than voxels
exhibiting BOLD signal change. FMRI studies involving
language have been severely limited by these to speech-
related artifacts. Viable techniques to mitigate this artifact
will lead to the ability to perform a wider range of lan-
guage FMRI studies.
Motion-related artifacts in FMRI time-series have been

treated retrospectively by a number of different data anal-
ysis strategies. One method [Bullmore et al., 1999; Friston
et al., 1996] is to model the motion-related signal changes
in the FMRI time-series as a function of motion parameter
estimates from the image registration program. With this
approach the FMRI signal analysis problem is reduced to a
multiple linear regression fit of the FMRI time-series data
to the modeled BOLD signal changes and the modeled

motion-related signal changes. One drawback of motion
parameter regression (MPR) and motion parameter exami-
nation methods, especially as applied to FMRI of overt
speech [Basho et al., 2007; Heim et al., 2006; Palmer et al.,
2001], is that there may not be a linear relation between
global rigid motion parameters and local signal changes.
The motions occurring during speech are nonrigid and
local in nature and cause spatially inhomogeneous mag-
netic field changes.
The major portion of signal changes due to speech-

related TCM usually occurs in the first 4–5 s after speaking
begins [Birn et al. 1998, 1999, 2004; Mehta et al., 2006]. The
BOLD hemodynamic response to cognitive processes typi-
cally exhibits a delay of 1–6 s before onset, and the peak is
reached 4–6 s after onset [Cohen, 1997; Hoge and Pike,
2001]. This inherent difference in the time scales of BOLD
and TCM signal changes has been used to mitigate the
effects of TCM due to overt word production by ignoring
the first few images during and after speech, either retro-
spectively in data analysis [Barch et al., 1999; Birn et al.,
2004] or prospectively during acquisition [Abrahams et al.,
2003; Edmister et al., 1999; Gracco et al., 2005; Hall et al.,
1999]. Some related approaches are to screen images
(voxels) in which motion is indicated by temporal changes
in the signal phase [Huang et al., 2002; Soltysik and Hyde,
2006] or to correct points in the individual voxel time-
series that exhibit abnormal deviations [Huang et al., 2008]
or to model the TCM signal changes with spike-shaped
ideal regressors [Birn et al., 2004].
However, some TCM signal changes can last 8 s or more

[Gopinath, 2003; Gopinath et al., 2003; Palmer et al., 2001].
Ignoring the images acquired during speech production
does not work well if there is a significant overlap between
the time-courses of TCM and hemodynamic response [Birn
et al., 1999; Gopinath, 2003; Gopinath et al., 2003], because
reduction of TCM artifact compromises the detection and
estimation of the BOLD hemodynamic response (HDR).
Some brain areas involved in word generation, such as
supplementary motor area [Crosson et al. 2003, 2005; Peck
et al., 2004], can exhibit BOLD HDRs which start before
the stimulus cue [Abdullaev and Posner, 1998; Kraut et al.,
2003]. Voxels in these regions are particularly susceptible
to overlap of HDR and TCM. Also, in FMRI studies
involving patients with language deficits, the time lag
between stimulus delivery and overt production can be
much longer and more variable than in controls, and the
vocalization itself may be protracted [Crosson et al., 2007].
In such cases, ignoring (or screening) images during and
after speech can lead to further compromises in detection
and estimation of HDR, especially in brain regions where
the cognitive processes start before overt production does.
Inadequate resolution of the TCM and hemodynamic
signal changes also compromises the nonselective global
detrending procedure method proposed by Birn et al.
[1999], wherein TCM artifact reduction is achieved by
orthogonalizing all the voxel time-series in the FMRI data-
set with TCM signal changes derived from false positive
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voxels near the brain edge. When TCM and HDR signal
changes are not temporally well separated, application of
this method results in loss of sensitivity for detecting brain
activation [Gopinath, 2003; Gopinath et al., 2003].
Some authors [Barch et al., 1999; Bullmore et al., 1999]

have argued that the TCM artifacts vary across individuals
and thus can be mitigated by averaging across partici-
pants. However, speech-related artifacts can arise from
vocal tract movements that are generically similar across
participants, and hence not reduced by averaging. A recent
study found artifactual task-correlated activations during
speech in a group of six subjects [Kemeny et al., 2005]. In
studies conducted in our lab, it has been observed (unpub-
lished data) that TCM artifacts persist in group-averaged
activation maps even up to group sizes of 20. Further,
averaging across participants is not applicable in subject-
specific case studies such as monitoring brain activation of
stroke patients, where variations in lesion topography and
the need to visualize activity in perilesional structures pre-
vent group averaging.
In this article, a novel improvement on the TCM

detrending method [Birn et al., 1999; Gopinath et al., 2001]
is introduced and tested in an event-related overt word
generation FMRI paradigm. The difference in the evolution
of the speech-related TCM artifact and HDR time courses
is used to maximize the retention of BOLD signal and the
reduction of TCM-correlated signal changes in the FMRI
time-series. Results from this selective detrending method
are compared to those obtained from three other methods
for reducing TCM: (1) MPR [Bullmore et al., 1999; Friston
et al., 1996], (2) ignoring images during speech [Barch
et al., 1999] and (3) nonselective detrending [Birn et al.,
1999; Gopinath et al., 2001]. These comparisons are made
on eight datasets: four obtained from scanning two aphasia
patients before and after rehabilitation therapy, and four
from scanning four normal control subjects once each,
using an event-related overt word generation paradigm. A
procedure to compare the four methods in terms of their
capacity to reduce TCM artifacts and to retain HDR signal
is described. Finally, the implications of this new method
for analysis of event-related FMRI data from paradigms
susceptible to TCM are discussed.

METHODS

Subjects and Task

The artifact reduction methods were applied on a total
of 8 FMRI datasets. These datasets were obtained from
two related FMRI studies. Two aphasia patients (one
female aged 48 years and one male aged 46 years) with
left hemisphere stroke were scanned twice, once before
rehabilitation therapy and once after therapy. In the scan-
ner, patients performed an event-related overt word-gener-
ation task, for which they were asked to provide single-
word responses to semantic category cues. Pseudo-random
interstimulus intervals (ISIs) between category cues were

24.9, 26.6, 28.2, or 29.8 s, corresponding to 15, 16, 17, or 18
images, respectively. Four healthy control subjects (three
female and one male: ages 50–70 years; mean 57.8 years)
were also scanned with a similar event-related overt lan-
guage FMRI paradigm in which the subjects were asked to
provide single-word responses to semantic category cues.
Pseudo-random ISIs between category cues was 16.6, 18.3,
19.9, or 21.6 s, corresponding to 10, 11, 12, or 13 images.
The ISIs for the patients was longer than those for the
control subjects because the aphasics exhibited longer
response latencies. Further details about the tasks and
parameters are available elsewhere [Crosson et al., 2007;
Crosson et al., 2005].

Image Acquisition

MR imaging was performed on a 3T General Electric LX
scanner (GE Medical Systems, Waukesha, WI). Low-resolu-
tion functional MRIs were obtained using a 1-shot forward
spiral sequence [Noll et al., 1995]. Thirty-two 4.0–4.5 mm
thick sagittal slices covering the whole brain were
acquired. The repetition time (TR) was 1660 ms, the echo
time (TE) was 18 ms, the flip angle (FA) was 708, and the
field of view (FOV) was 200 mm. The image matrix size
after interpolation was 64 3 64 and spatial resolution
was 3.1 mm 3 3.1 mm 3 4.0–4.5 mm. Five functional runs
were acquired with 161 (for patients) or 111 (for controls)
images in each run, 1.66 s/image. A time-of-flight MR
angiogram (17 ms TR, 4.9 ms TE, 508 flip angle, 256 3 128
matrix, 200 mm FOV; 4.0–4.5 mm thickness) with the same
slice prescriptions as the spiral sequence was acquired for
angiographic reference. For anatomic reference, a high re-
solution T1-weighted 3D spoiled gradient recalled (SPGR)
sequence was acquired with scanning parameters: 240 mm
FOV, 256 3 256 image matrix, 0.9 mm 3 0.9 mm 3 1.3
mm resolution, TR 5 23 ms, TE 5 7.7 ms and FA 5 258.
Auditory stimuli were presented and subject responses
were recorded with an MRI-compatible headset and micro-
phone (Resonance Technology, Northridge, CA). Subject
responses were coded with Cool EditTM software (now
Adobe1 Audition1 2.0, San Jose, CA) into two categories,
‘‘correct’’ and ‘‘other’’ responses. The data analysis was
performed with AFNI [Cox, 1996] and Matlab (Mathworks,
Sherborn, MA) software.

Data Analysis

The five functional runs were spatially registered to the
last image of the last run (closest in time to the angiogram
and the T1-weighted high resolution anatomic) with an in-
tensity based iterated linear weighted least squares algo-
rithm [Cox and Jesmanowicz, 1999] provided in the AFNI
software package. The five functional runs were further
detrended of linear drifts and concatenated. Since the task
paradigm elicited unpredictable and often incorrect
responses from the patients, response-locked data analysis
[Maccotta et al., 2001] was employed rather than conven-
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tional stimulus-locked analysis. To estimate the TCM-
related signal changes, all the subject responses (both
‘‘correct’’ and ‘‘other’’) were pooled together and an overt
response-locked analysis vector (OAV) was constructed.
‘‘Other’’ responses included ‘‘incorrect’’ responses and
unintelligible utterances. For each voxel, the signal was
considered to be the result of a convolution of the OAV
with the voxel impulse response function (IRF) plus a con-
stant baseline and a white-noise term. IRFs were decon-
volved for each voxel from the knowledge of the observed
voxel FMRI intensity time-series and the stimulus vector.
The significance of activation at each voxel was assessed
through the use of a General Linear Model. The signifi-
cance of activation was assessed through the calculation of
the F-statistic for regression. The coefficient of determina-
tion R2 was also calculated.

Characterization of TCM and BOLD

Impulse Responses

Representative epochal TCM and BOLD signal changes
were selected from the deconvolved voxel IRFs based on
prior empirical observations of BOLD MR signal and
TCM-related signal. TCM-related signal changes arising
from speech exhibit large (sometimes >100%) and sudden
signal fluctuations [Birn et al., 1998, 1999; Gopinath et al.,
2001; Yetkin et al., 1996]. The amplitude and extent of the
TCM artifact is observed to be largest in the frontal, infe-
rior, and temporal regions of and outside the brain and is
progressively attenuated towards the posterior, superior,
and medial regions. BOLD HDRs are characterized by
smaller amplitude (up to �10%) and slower changes in
signal lasting around 10–20 s after the stimulus event and
have been well characterized in literature [Cohen, 1997;
Friston et al., 1994; Hoge and Pike, 2001].
Distinct voxel IRFs which were unambiguously TCM-

related (from a priori knowledge) at or near high contrast
boundaries, on the edge of or outside the brain, that pos-
sessed R2-values above the threshold for inferring brain
activation were chosen to characterize TCM IRFs in the
FMRI dataset. Appendix A lists the criteria used as well as
steps followed to pick the representative TCM IRFs. Figure
1 illustrates this selection procedure for the case of a few
TCM IRFs. One lateral (above) and one medial (below)
sagittal slice of the spiral FMRI dataset from P1 are shown
overlaid with their corresponding R2-activation maps. The
three green arrows point from clusters of TCM-corrupted
voxels to screen-grabs of corresponding 2-voxel 3 2-voxel
grids of IRF curves obtained through AFNI’s ‘‘Graph’’
menu. One representative TCM IRF was picked from each
of the three clusters illustrated in the figure. This process
was repeated for all other slices. Around 10–15 (depending
on the dataset) of such distinct TCM IRFs were needed to
adequately represent TCM signal changes for the whole-
brain FMRI datasets. The chosen TCM IRFs were con-
volved with the known OAV to form the corresponding
TCM vectors. Figure 2a shows some putative TCM-cor-

rupted impulse responses chosen from voxels outside the
brain for a representative FMRI dataset. Some of the TCM
IRFs (e.g. the unmarked dashed curve) are delayed and
some (unmarked solid curve) have significantly longer
lasting effects. Three to five representative BOLD HDRs
spanning all observed HDR delays to onset in the FMRI
dataset were also selected. Appendix A lists the criteria
used as well as steps followed to pick the representative
BOLD HDRs. The two blue arrows in Figure 1 point from
BOLD voxels to screen-grabs of corresponding 1-voxel IRF
curves obtained through AFNIs ‘‘Graph’’ menu. Figure 2b
shows the set of BOLD HDRs chosen from the same dataset.

Selective Detrending Algorithm

From each of the 10–15 representative TCM IRFs, a 805-
image (for patients) or a 555-image (for controls) artifact
vector was constructed by convolution with the known
OAV. For each voxel IRF in the FMRI dataset, the cross-
correlation coefficient of the voxel IRF with each of the
10–15 representative TCM IRFs, as well as the cross-
correlation coefficient with each of the 3–5 representative
BOLD HDRs was calculated. The maximum absolute value
(denoted CCT) among the voxel IRF’s cross-correlation
coefficients with the 10–15 representative TCM IRFs was
employed as an indicator of TCM corruption in the voxel
time-series. High values of CCT indicated significant TCM
corruption. Also, the maximum (denoted CCB) of the
voxel IRF’s cross-correlation coefficients with the 3–5 rep-
resentative BOLD HDRs was employed as an indicator of
BOLD signal in the voxel time-series. High values of CCB
indicated significant BOLD signal in the voxel time-series.
Prior empirical observations of the shapes of BOLD

HDRs [Cohen, 1997; Friston et al., 1994; Hoge and Pike,
2001] and epochal TCM-related signal changes [Birn et al.,
1999, 2004; Gopinath et al., 2001] were used to formulate cri-
teria for the selective detrending algorithm. These discrimi-
nation criteria were chosen to maximize the reduction of
TCM-correlated signal as well as to maximize the retention
of BOLD signal. Voxels were classified to possess significant
TCM-related signal changes, negligible TCM corruption or
both BOLD and TCM signal based on the values of CCT
and CCB, and treated accordingly. For a given voxel:

if CCT> 0:5 and CCT� CCB> s; ð1Þ

where s is a separability threshold (a tuning parameter
which encodes the tradeoff between reduction of TCM-
related signal and retention of BOLD signal), the corre-
sponding voxel time-series was deemed to possess signifi-
cant and/or predominantly TCM-related signal. Conse-
quently, the voxel time-series was detrended of components
proportional to the maximally correlated TCM vector using
linear least squares fit (Matlab; Mathworks, Sherborn, MA).
Essentially, the linear regression fit to the voxel time-series
of the maximally correlated TCM vector was subtracted
from the voxel time-series. Voxels not satisfying these crite-
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ria were deemed either to possess negligible TCM signal
(if CCT < 0.5) or to contain significant amounts of both
TCM and BOLD signal, and were left untouched.

The choice of the separability threshold s in Eq. (1) is

governed by a desire to balance the need to detrend as

many TCM corrupted voxels (characterized by possessing

high values of CCT) as possible while leaving voxels pos-

sessing significant BOLD signal (characterized by high val-

ues of CCB) intact. Figure 3 elaborates this tradeoff for the

dataset P1. Figure 3a shows the fraction of the voxels pass-

ing the criteria for detrending in Eq. (1) as a function of

TCM corruption indicator CCT, for four different levels of

separability threshold s : 0.0, 0.1, 0.2 and 0.3. Ideally as

CCT is increased (indicating strong TCM corruption) the

fraction of voxels detrended (passing the criteria in Eq. (1)

should approach 1. As the separability threshold s is

increased, the fraction of TCM corrupted voxels (those

with high CCT; say CCT > 0.9) that are detrended

becomes progressively less. Figure 3b shows the fraction of

the voxels that are not detrended (i.e. do not pass the crite-

ria of Eq. (1) as a function of CCB, for the same four levels

Figure 2.

Some representative TCM-related voxel IRFs (a); and some rep-

resentative BOLD HDRs (b) chosen from the overt speech

FMRI dataset from P1.

Figure 1.

Estimation of TCM IRFs from a lateral sagittal slice (top) and

medial sagittal slice (bottom) for dataset P1. Activation map,

thresholded at R2 > 0.16, is overlaid on low-resolution spiral

FMR images. The green arrows point from clusters of voxels sur-

mised to be TCM-corrupted and screen-grabs of the corre-

sponding 2 3 2 voxel grid TCM IRF graphs generated by AFNI.

The blue arrows are drawn between putative BOLD voxels and

their corresponding BOLD IRFs. The horizontal axis for each of

the individual voxel plots runs from 0 to 24.9 s. The vertical

scales for all the individual plots are marked in units of fractional

signal change.
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of separability threshold s (0.0, 0.1, 0.2, and 0.3). Ideally as
CCB is increased (indicating strong likelihood of BOLD
signal) the fraction of voxels retained should approach 1.
Unlike Figure 3a, as the separability threshold s is
increased, the fraction of likely BOLD activation voxels
(those with high CCB; say CCB > 0.9) that are retained
(not detrended) becomes progressively greater. To balance
these opposing constraints, the value of the separability
threshold s, was obtained by finding the value of s that
maximizes the product of fraction of voxels with CCT >
0.8 that are detrended and the fraction of voxels with CCB
> 0.7 that are left untouched. The maximization of this
product (termed ‘selectivity’ for the sake of brevity) is
illustrated for the same dataset P1 in Figure 4. For all the
datasets studied this value of s remained between 0.17 and
0.23. The choice of threshold CCB > 0.7 and threshold
CCT > 0.8 in the process of determining s weights the
selective detrending algorithm towards leaving most vox-
els with BOLD signal undetrended at the cost of leaving
some TCM corrupted voxels undetrended. For instance, if
all voxels with CCT > 0.9 were TCM corrupted (which is
almost certain) and all voxels with CCB > 0.9 possessed
BOLD signal, from Figure 3 this algorithm will leave 15%
of the TCM corrupted voxels untouched while detrending
less than 5% of voxels which possess BOLD signal.
The detrended time-series were then re-analyzed with

the GLM-based deconvolution analysis described above.
The activation due to ‘‘other’’ responses was modeled as a
nuisance signal and the partial F statistic of the ‘‘correct’’
response related signal and the corresponding R2-coeffi-
cient quantified brain activation.

Operator Dependence of Selective Detrending

Since the selective detrending method requires interac-
tive selection of putative TCM IRFs and BOLD HDRs by
the operator, potential operator-dependent variability is a

concern. To test the operator dependence of the selective
detrending algorithm, five different individuals carried out
the steps in the algorithm on the eight FMRI datasets
mentioned above. The operators (except one) were not
involved in the development of the algorithm and had
varying levels of experience with FMRI data analysis. The
independent operators were given instructions on how to
pick representative TCM IRFs and BOLD HDRs (as
described in Appendix A) and trained on a separate FMRI
dataset (not included in the study) and left to analyze the
eight datasets without further input. The Pearson product
moment correlation coefficient was used to assess reprodu-
cibility of the results of selective detrending (artifact-
reduced FMRI activation R2 statistic) across the five opera-
tors for each of the eight datasets.

Other Methods

All the other methods were implemented under GLM-
based deconvolution analysis framework in the AFNI soft-
ware package so that the results from various methods
could be compared consistently. The motion-parameter
regression method [Bullmore et al., 1999; Friston et al.,
1996] was implemented by obtaining the motion parame-
ters for each image in the time-series from the image-regis-
tration program. For each voxel, the signal at each time-
point related to rigid motion was modeled as a quadratic
function of the motion parameters in that particular time-
point and the preceding time-point. The motion-related
fluctuations along with the ‘‘other’’ response related signal
changes were modeled as nuisance signal, and the partial
F statistic of the ‘‘correct’’ response related signal and the
corresponding R2-coefficient quantified brain activation.
The method of screening images during speech [Barch
et al., 1999; Birn et al., 2004] was implemented by ignoring
the zeroth and first lags while estimating the voxel IRF by
deconvolution analysis, i.e. the minimum lag number was
set to 2 (‘ML2’). The nonselective detrending method [Birn
et al., 1999; Gopinath et al., 2001] was implemented in a

Figure 3.

(a) Fraction of voxels in dataset P1 detrended as a function of

threshold CCT for four different levels of separability, s 5 0.0

(circles), s 5 0.1 (squares), s 5 0.2 (diamonds), and s 5 0.3

(triangles). (b) Fraction of voxels in the same dataset left intact

as a function of threshold CCB for the same levels of s (see

text in Methods section).

Figure 4.

Maximization of ‘selectivity,’ the product of the fraction of TCM

voxels detrended and BOLD voxels retained as a function of

separability s (see text in Methods section) for dataset, P1.
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manner similar to the selective detrending method up to
the part regarding estimation of TCM IRFs. In the nonse-
lective detrending method, all the voxels in the FMRI data-
set were detrended (using linear least-squares fit) of com-
ponents proportional to all the chosen representative TCM
vectors. The detrended time-series were then reanalyzed
with the GLM-based deconvolution analysis similar to the
selective detrending method. In this respect this method
differs from the earlier published nonselective detrending
method of Birn, [Birn et al. 1999] which utilized multiple
regression with a fixed shape hemodynamic response
model. This variant of the non-selective detrending
method has been introduced in abstract form [Gopinath
et al. 2001]. The number of TCM vectors used in the non-
selective detrending method was determined by what was
needed to detrend TCM signal from all supra-threshold
TCM corrupted voxels outside the brain. Since quite a few
of the chosen TCM vectors used in selective detrending
were linear combinations of each other, about 5 or 6 TCM
vectors were sufficient for non-selective detrending. Thus,
the number of degrees of freedom lost in the detrending is
about 5 or 6, which is not significant given the large num-
ber of images (805 or 555).

Comparison of TCM Artifact Reduction Methods

Observations on the spatial and temporal characteristics
of the TCM artifacts [Barch et al., 1999; Birn et al., 1998,

1999, 2004; Gopinath, 2003; Gopinath et al., 2001; Huang
et al., 2002; Huang et al., 2008] and BOLD activation
[Cohen, 1997; Friston et al., 1994; Hoge and Pike, 2001]
were used to create a pool of putative BOLD voxels and a
pool of putative TCM voxels for each dataset. The per-
formance of the four TCM artifact reduction methods was
compared in terms of the reduction in significance of
‘‘activation’’ of the putative TCM voxels and retention of
the significance of activation of putative BOLD voxels.
AFNI software was used to create intensity-based brain

and nonbrain masks for each FMRI dataset. Voxels outside
the brain with R2 or F values above the threshold selected
to infer brain activation and exhibiting larger fluctuation in
the first five images than the last 11 (8 for controls) were
assigned to the pool of putative TCM-voxels. As a final
level of screening, voxels satisfying the above criteria and
activating above a threshold for R2 (R2 > 0.05) were exam-
ined visually to further ensure absence of BOLD-like vox-
els in this pool of putative TCM-voxels.
For constructing the pool of putative BOLD voxels, the

intra-cerebral voxel IRFs, specified by the brain masking
method to ignore voxels outside the brain and near brain
edges, were fitted to a generic hemodynamic response
curve. This curve, which is included in the documentation
of the AFNI software package (under the program waver)
is parameterized in terms of amplitude, delay-time, rise-
time, fall-time, restore-time, and undershoot (as a fraction
of amplitude). The functional form of the curve is given by

where A is the amplitude, tD, tR, tF and tRT are delay-time,
rise-time, fall-time, and restore-time of the hemodynamic
response, respectively, and U is the amplitude of the post-
stimulus undershoot as a fraction of A. The advantage of
this function over the conventional g-variate functions
commonly employed in FMRI literature [Cohen, 1997; Fris-
ton et al., 1994] is that it is parameterized in terms of dif-
ferent phases and temporal aspects of the HDR, which
could be used to distinguish between BOLD and TCM
voxels, as described below. The IRF of each voxel was fit-
ted to the generic HDR by means of a nonlinear optimiza-
tion method using the lsqcurvefit function of MatlabTM.
The maxima of the first four images of each voxel IRF,

max(IRF1–4) and the corresponding minima, min(IRF1–4)
were also calculated. Intra-cerebral voxel IRFs satisfying
the following criteria formed the pool of putative BOLD
voxels

A > 0

tD þ tR þ tF > 6

tD þ tR < 11

tR þ tF > 4

tR > 1

tF > 2

tD < 4

maxðIRF1�4Þ > 1:2 minðIRF1�4Þj j

ð3Þ

where the terms are as defined above. Time is expressed
in units of image TR (TR � 1.66 s). This set of criteria was
chosen to keep IRFs that closely resemble BOLD HDR
shapes reported in the literature [Cohen, 1997; Friston
et al., 1994; Hoge and Pike, 2001] while at the same time
eliminating TCM-related IRFs from contaminating the pool
of putative BOLD voxels. These criteria were devised to

hðtÞ ¼ A

2
tanh tan

p
2

1:6ðt� tDÞ
tR

� 0:8

� �� �� �
þ 1

� �
for tD < t � tD þ tR

hðtÞ ¼ A

2
ð1þUÞ tanh tan

p
2

1:6ðtF þ tg þ tD � t

tF
� 0:8

� �� �� �
�U

� �
for tD þ tR < t � tD þ tR þ tF

hðtÞ ¼ A

2
ð�UÞ tanh tan

p
2

1:6ðtF þ tg þ tD þ tRT � t

tRT
� 0:8

� �� �� �� �
for tD þ tR þ tF < t � tD þ tR þ tF þ tRT

hðtÞ ¼ 0 otherwise

ð2Þ
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keep voxels with slower signal changes characteristic of
BOLD HDRs in the pool while screening out voxels with
large deviations in signal change in the initial phases.
These phenomenological constraints on the HDR parame-
ters were arrived at after observing the fitted values of
these parameters when applying Eq. (2) to the chosen
TCM IRFs for all the eight datasets. As a final level of
screening, voxels satisfying the criteria in Eq. (3) and acti-
vating above a threshold (R2 > 0.05) were visually
inspected to ensure absence of TCM-like voxels in the pool
of putative BOLD voxels. This method of obtaining test-
beds of putative BOLD voxels rejects a number of voxels
possessing BOLD responses (e.g. HDRs, whose positive
phases are shorter than 10 s full-width at baseline) from
the BOLD test-bed. This automated method was also
slightly biased against the performance of the selective
detrending method, as it ignored a number of voxels in
which the selective detrending method outperformed the
non-selective detrending method and the method of ignor-
ing images in terms of BOLD signal retention. However,
the resultant pool was devoid of TCM-corrupted voxels.
For all the four methods as well as for the case of no

motion correction, the distributions of the number of vox-
els in the putative TCM and BOLD voxel pools detected as
a function of threshold R2 were constructed to provide a
means of comparing the capabilities of the four methods
to retain putative BOLD voxels and eliminate putative
TCM-corrupted voxels. The number of voxels registered
‘‘active’’ (at R2 > 0.16) in the selective detrending method
(‘dtsel’) and the other three methods (‘MPR,’ ‘ML2,’ and
‘dtr’) were tabulated (Tables I and II) as a fraction of the
number of voxels found ‘‘active’’ in the untreated dataset
(‘ML0’). Summary statistics, in the form of paired t-tests
between the fractional number of voxels registered
‘‘active’’ (at R2 > 0.16) in the selective detrending method
(‘dtsel’) and the other three methods (‘MPR,’ ‘ML2,’ and
‘dtr’), were computed for the data in Table I (TCM artifact
reduction) and Table II (BOLD voxels retention) across the

eight datasets. An important property of the pools was
that the methods used to obtain them were independent of
the algorithm to estimate artifactual TCM signal changes.

RESULTS

Figure 5 serves both to show the extent of TCM-corrup-
tion of an overt speech FMRI dataset and also to support
the rationale behind the method of choosing TCM IRFs.
Figure 5a shows a sagittal slice (centered 29 mm right of
midline) of the spiral FMRI dataset from P2. The overlay is
a map of the proportionality constant a, in the model fit:
voxel IRF 5 a 3 maximally correlated TCM IRF. The abso-
lute value of the proportionality constant a (estimated
through least squares linear regression) is displayed and
the color-coding in the figure goes from blue (|a| 5 0) to
red (|a| � 1). All the voxels shown with color overlay
exhibited maximal cross-correlation coefficient, CCT > 0.9.
The overlay map can be thought of as the ratio of the am-
plitude of the TCM artifact in the voxel IRF to the ampli-
tude of the maximally correlated TCM IRF. Figure 5b,c are
from progressively lateral sagittal slices 37 mm and 49 mm
left of midline respectively. From Figure 5 it is apparent
that the TCM artifact is strongest in the inferior, lateral,
temporal and frontal parts of the image, consistent with
the speech related magnetic field disturbances reported in
Birn et al., [1998]. The TCM IRFs were picked from high
contrast boundaries at the brain edges or outside the brain,
but exhibit high correlation with a significant number of
voxels inside the brain. The amplitude of the artifact in the
TCM corrupted voxels inside the brain is attenuated with
respect to the representative TCM IRFs chosen from voxels
outside the brain. Figure 6a,b shows some representative
TCM IRFs chosen for the datasets C1 and C2, respectively.
TCM IRFs showed a good degree of commonality between
different datasets. However, some distinct TCM IRFs were
also found in some datasets, especially in stroke patients.
Visual inspection of the R2-activation maps indicates

superior performance of the selective detrending method

TABLE I. Proportion of voxels in the putative TCM

voxels pool declared ‘‘active’’ R2 > 0.16 (P < 1027) in each

of the 8 overt speech FMRI datasets, after each of the

four TCM artifact reduction methods: motion parameter

regression, ‘MPR,’ ignoring two images after speech,

‘ML2,’ nonselective detrending, ‘dtr’ and selective

detrending, ‘dtsel’ as a fraction of the number of voxels

declared ‘‘active’’ in the untreated case, ‘ML0’

Dataset ML0 MPR ML2 dtr dtsel

C1 1 0.6542 0.0446 0.002 0.0071
C2 1 0.4972 0.1959 0.0002 0.0398
C3 1 0.0763 0.0967 0.0053 0.0191
C4 1 0.571 0.2509 0.0005 0.0015
P1 1 0.9379 0.0787 0.0021 0.0083
P2 1 0.1329 0.1798 0.0062 0.0128
P3 1 0.4396 0.2954 0.0008 0.0008
P4 1 0.6842 0.1491 0.0008 0.004

TABLE II. Proportion of voxels in the putative BOLD

voxels pool declared ‘‘active’’ R2 > 0.16 (P < 1027) in

each of the 8 overt speech FMRI datasets, after each of

the four TCM artifact reduction methods: motion pa-

rameter regression, ‘MPR,’ ignoring two images after

speech, ‘ML2,’ nonselective detrending, ‘dtr’ and

selective detrending, ‘dtsel’ as a fraction of the number

of voxels declared ‘‘active’’ in the untreated case, ‘ML0’

Dataset ML0 MPR ML2 dtr dtsel

C1 1 0.8969 0.8493 0.0274 0.9589
C2 1 0.9294 0.8565 0.0024 0.9718
C3 1 0.5879 0.8478 0.1386 0.974
C4 1 0.7699 0.8849 0.0885 0.9292
P1 1 0.9578 0.8397 0.0802 0.865
P2 1 0.6923 0.804 0.4169 0.8958
P3 1 0.855 0.8874 0.1947 0.9103
P4 1 1 0.7923 0.1444 0.9225
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when compared to the other methods. Figure 7a shows a
lateral sagittal slice in the left hemisphere of a high-resolu-
tion T1-weighted anatomic image with the R2-activation
map overlay for a representative FMRI dataset (P1), with-
out TCM artifact reduction, thresholded at R2 > 0.16 (P <
1027). Voxels in blue were TCM-corrupted and exhibited
IRFs similar to those shown in Figures 2a and 6. Voxels in
red possessed BOLD HDRs similar to Figure 2b and high-
light activation in the cortex along the inferior frontal sul-
cus, premotor and primary motor cortex. The BOLD acti-
vation patterns were consistent with neuropsychological
theory of semantic word generation and are described in
another publication [Crosson et al., 2005]. Figures 7b–e
show the R2-activation map for the same dataset after
MPR, after ignoring the first two time-points after speech
(‘ML2’), after nonselective detrending and after selective
detrending respectively. In this example, selective detrend-
ing (7e) dramatically outperforms the MPR method (7b) in
TCM artifact reduction. The MPR method did not have an
appreciable effect on the TCM-corrupted voxels (or BOLD
voxels) inside the brain. The MPR method did seem to

attenuate TCM-artifact outside the brain (data not shown),
where the signal changes due to motion was more linearly
related to the estimated motion parameters. The method of
ignoring the first two time-points after speech (7c) per-
forms similar to the selective detrending (7e) in terms of
retention of BOLD activation but performs slightly worse
in reducing TCM artifacts. The nonselective detrending
method (7d) removes some BOLD signal along with TCM
artifacts, leading to artificial loss of brain activation in
some voxels.
Figure 8a shows a lateral sagittal slice in the right hemi-

sphere of a high-resolution T1-weighted anatomic image
with the R2-activation map overlay for another representa-
tive FMRI dataset (P2), without TCM artifact reduction,
thresholded at R2 > 0.16 (P < 1027). Figures 8b–e show
the R2-activation map for the same dataset after MPR, after
ignoring the first two time-points after speech (‘ML2’),
after nonselective detrending and after selective detrend-
ing respectively. The voxels in blue were TCM-corrupted
and voxels in red reflected brain activation in areas
(including the inferior frontal gyrus and anterior temporal
lobe as well as premotor and primary motor cortex) con-
sistent with the language FMRI paradigm [Crosson et al.,
2005, 2007]. TCM artifacts persist in a number of voxels
even after the ignoring images during speech (8c). The
MPR method (8a) performs better than the method of
ignoring images during speech in terms of TCM artifact
reduction but at the price of reducing significance of acti-
vation in some BOLD voxels. Selective detrending (8e) per-
forms noticeably better at TCM artifact reduction while at
the same time retaining BOLD voxels. Nonselective
detrending (8d) results in loss of significance of activation
in all BOLD voxels along with all TCM corrupted voxels
in this example.
Figure 9 shows the deconvolved BOLD HDRs from a

voxel in the supplementary motor area (SMA) of an apha-
sia patient FMRI dataset. The selective detrending

Figure 5.

Individual sagittal slice maps of the absolute value of the propor-

tionality constant a (see Results section) representing the inten-

sity of the TCM artifact, overlaid on their corresponding slices

of the spiral FMRI dataset from P2. All the voxels exhibit maxi-

mal cross-correlation coefficient, CCT > 0.9. The color-coding

is from blue (|a| 5 0) to red (|a| � 1).

Figure 6.

Some representative TCM-related voxel IRFs from (a) dataset

C1 and (b) dataset C2.
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Figure 7.

Activation maps thresholded at R2 > 0.16 (P < 1027) for a rep-

resentative overt speech FMRI dataset (P1) with no TCM arti-

fact-reduction (a), with motion parameter regression (b), with

ignoring two images after speech (c), with nonselective detrend-

ing (d) and with selective detrending (e). Voxels in blue exhib-

ited characteristic TCM IRFs and voxels in red exhibited charac-

teristic BOLD HDRs. All the maps are from the same lateral

sagittal slice in the right hemisphere. BOLD areas of activity

include cortex along the inferior frontal sulcus, premotor, and

primary motor cortex.

Figure 8.

Activation maps thresholded at R2 > 0.16 (P < 1027) for a rep-

resentative overt speech FMRI dataset from an aphasic subject

(P2) with no TCM artifact-reduction (a), with motion parameter

regression (b), with ignoring two images after speech (c), with

nonselective detrending (d) and with selective detrending (e).

Voxels in blue exhibited characteristic TCM IRFs and voxels in

red exhibited characteristic BOLD HDRs. All the maps are from

the same lateral sagittal slice in the left hemisphere. BOLD areas

of activity include the inferior frontal gyrus and anterior tempo-

ral lobe as well as premotor and primary motor cortex.



algorithm left signal in this voxel intact. The BOLD HDR
(blue curve; ‘ML0-2’) starts before the word generation in
this voxel, as shown by the extension of the HDR (dashed
blue curve) before the overt response onset (at t 5 0). This
causes the ‘ML2’ method of ignoring two images after
speech (magenta curve) to miss substantial parts of the
HDR. Non-selective detrending ‘dtr’ (red curve) results in
attenuation of BOLD signal. The MPR method (green
curve) has a negligible effect on the HDR in this voxel.
Tables I and II provide a more comprehensive compari-

son of the performance of the four methods of TCM arti-
fact reduction. Table I shows the proportion of voxels in
the pool of TCM-corrupted voxels with R2 > 0.16 (P <
1027), the threshold selected for inferring brain activation
for the four methods of artifact reduction. The proportion
of voxels for each method for each dataset is expressed as
a fraction of the number of voxels with R2 > 0.16 for the
case with no TCM artifact reduction (‘ML0’). Table II
shows the results of a similar analysis for the pool of
BOLD voxels in each of the 8 datasets. As seen from the
results in Table I, the selective detrending method (‘dtsel’)
performed substantially better than both the method of
ignoring the first two images after vocal response (’ML2’)
and the MPR method (MPR) in all the datasets (paired
t-test: t7 < 24.7, P < 0.002). The selective detrending
method (‘dtsel’) performed almost as well as the nonselec-
tive detrending method (‘dtr’) in all the datasets (paired
t-test: t7 � 2.1, P < 0.08). However, as seen in Table II, the
selective detrending method was much superior to the
nonselective method in retaining putative BOLD activa-
tion, retaining significantly more voxels in the BOLD pool
(paired t-test: t7 > 15, P < 1026). Table II also shows that
the selective detrending method performs better than the
method of ignoring images during speech (‘ML2’) in terms

of retention of BOLD voxels (paired t-test: t7 > 3, P < 0.01)
and similar to the MPR method (paired t-test: t7 � 1.7,
P < 0.13). The relative performance of the MPR method
and the ‘ML2’ method seems to vary across datasets. For
instance the ‘ML2’ method performs much better at TCM
artifact reduction than the MPR method in the dataset P1,
but MPR outperforms ‘ML2’ in the dataset P2. This can
also be observed in Figures 7 and 8.
Since the selective detrending procedure involves opera-

tor-dependent selection of putative TCM IRFs and BOLD
HDRs, it is important to examine the degree of variability
in the results obtained by different operators. Table III
summarizes the Pearson moment cross-correlation coeffi-
cients between the results of the final artifact-reduced R2-
maps obtained by each operator with all the other four
operators on the datasets with most (unshaded) and least
(shaded) inter-operator correspondence. All the raters
exhibited a very high degree of correlation with results
obtained by other raters for all the datasets (Pearson
moment cross-correlation P � 0). There is very close corre-
spondence between the selective detrending results
obtained by different operators.

DISCUSSION

The extent of TCM-corruption of an overt speech FMRI
dataset is apparent from Figure 5. A number of voxels
inside the brain exhibit impulse responses very similar to
characteristic TCM IRFs selected from voxels at or near
high contrast boundaries outside the brain. Some of the
selected TCM IRFs are illustrated in Figures 2a and 6a,b.
Incidentally, TCM IRFs found inside the brain exhibited a
scaled down version of the behavior illustrated in Figure
2a and 6a,b. Thus methods proposed in literature [Huang
et al., 2008] which screen for TCM artifacts by detecting in-
ordinate spikes in the voxel time-series may be unable to
alleviate some TCM artifacts inside the brain. TCM IRF
shapes exhibited a good degree of commonality within
and across FMRI datasets as can be seen from Figure 2a
and 6a,b. However, distinct TCM IRFs were also occasion-

Figure 9.

Deconvolved BOLD HDRs from a voxel in the supplementary

motor area (SMA) of an aphasia patient without TCM artifact

reduction, ‘ML0’ (blue), after motion parameter regression,

‘MPR’ (green), after ignoring two images after speech, ‘ML2’ (ma-

genta) and after nonselective detrending, ‘dtr’ (red). The selec-

tive detrending algorithm left this voxel untreated, with the

same HDR as ‘ML0’. The blue dashed curve (‘ML0-2’) shows the

extension of the BOLD HDR up to 2 image TRs before vocal

response enunciation.

TABLE III. Pearson product moment correlation coeffi-

cient between the selective detrended R2-maps obtained

by five different operators, O1, O2, O3, O4, and O5,

with each of the other operators on the 8 FMRI

datasets: results for datasets with most (unshaded) and

least (shaded) inter-operator correspondence

Operators O1 O2 O3 O4 O5

O1 0.9394 0.9506 0.8829 0.9168
O2 0.9649 0.9406 0.8993 0.8979
O3 0.9641 0.9723 0.8901 0.9074
O4 0.9293 0.9163 0.9244 0.8781
O5 0.9817 0.9876 0.971 0.9204

All p-vals � 0.
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ally found, especially in data of patients with large ische-
mic stroke lesions.
Overall, the MPR method was the poorest method of the

four tested for reducing TCM artifact. This indicates that
the rigid motion parameters do not adequately encode the
motion-related changes in FMRI signal during speech. For
datasets in which the MPR method performed relatively
well in reducing TCM artifact, it performed poorly in
retaining BOLD signal. For example, for the dataset C3,
the MPR method adequately reduces TCM-related artifact
in 93% of the voxels in the putative TCM artifacts pool.
However, in dong so, it reduces BOLD activation to below
threshold levels in 40% of the putative BOLD voxels. In
contrast, for the dataset P1, where the MPR method per-
forms well in retaining BOLD signal, leaving intact 95% of
the voxels in the putative BOLD voxels pool, it performs
poorly in reducing TCM artifact, leaving 93% of the puta-
tive TCM voxels artifact-ridden. The performance charac-
teristics of the MPR method seem to depend on the degree
to which the global motion is related to the time-series of
vocal response events. For instance, datasets that exhibit
MPR method performance characteristics similar to C3
also display a significant linear relationship between the
inferior-superior (I-S) and pitch motion parameter vectors
and the OAV. The global I-S and pitch motion vectors of
C3 were strongly related to C3s OAV (linear regression P
< 10210). On the other hand for P1, which does not
respond significantly to MPR treatment, the global I-S and
pitch motion vectors were only weakly related to the OAV
(linear regression P > 0.1). Thus the MPR method seems
to have a significant impact on the data when there is a
strong linear relationship between the rigid global motion
of the head and the task performance, in which cases, the
effect of the MPR method is to reduce both the TCM-
related artifactual signal as well as BOLD signal due to
brain activation.
The method of ignoring images during speech (‘ML2’)

performed better than the MPR method in reducing TCM
artifact (paired t-test P < 0.02) but underperformed both
the detrending methods. The ML2 artifact reduction
method relies on the changes in FMRI signal occurring in
the first two images during after vocalization. As apparent
from Figures 2a and 6a,b some of the TCM IRFs are
delayed and/or prolonged in duration. The delay to onset
is often more than an image (1.66 s, in our case). This
delay may be caused by inter-epoch variance in the TCM
artifact, since it depends in part on enunciation [Birn et al.,
1999], which could vary from epoch to epoch. The pro-
longed TCM artifacts may be due to changes in the vocal
apparatus that have a slower time course, such as muscle
relaxation [Gopinath, 2003; Gopinath et al., 2003; Palmer
et al., 2001]. The ML2 method fails to adequately attenuate
the TCM-related artifacts in these instances. As apparent
from Figure 9, the ML2 method also masks the BOLD sig-
nal from brain activation in areas where the BOLD HDR
onsets prior to enunciation. Thus, on the whole the selec-
tive detrending method is preferable.

The nonselective detrending method (‘dtr’) performs bet-
ter than all other methods in TCM artifact reduction. How-
ever, it performs poorly in retaining BOLD activation. Fig-
ures 2 and 9 point towards the source of the suboptimal of
BOLD signal retention of this method. Since the selected
TCM IRFs span a appreciable range of delays and dura-
tions, the necessary condition of separability of the brain
activation-related BOLD HDRs from of all chosen TCM
IRFs is violated, leading to unsatisfactory performance.
The effect of selective detrending on the Type I error

rate is expected to be minimal. Although different voxels
in a given dataset are not detrended with the same vector,
the process of detrending, which entails loss of only one
degree of freedom, is not expected to affect either the acti-
vation statistic’s voxel-wise univariate or overall mass uni-
variate null distributions significantly due to the large
number of time-points in the analysis: 805 for patients and
555 for controls. Type II error estimation that relies on the
‘‘active’’ distribution also should not be significantly
affected due to the loss of only one degree of freedom in
the voxels undergoing selective detrending. The process of
manually selecting the representative TCM and BOLD
responses takes an average of thirty minutes per dataset.
This process benefits from utilization of neuroimaging soft-
ware with a good graphical interface (e.g. AFNI), where
the operator has easy visual access to voxel-level time-se-
ries data. The differences in spatial and temporal origin
and signature between TCM IRFs and BOLD HDRs, and
the degree of commonality in the shape of TCM IRFs both
within and across datasets, indicates that there may be
potential for automation in the process of selecting repre-
sentative TCM and BOLD responses. The Matlab selective
detrending program runs in about 20 min CPU time on a
64 3 64 3 32 3 805 time-series dataset on a 2 GHz dual
processor Linux workstation. From our experience the
added processing time is a penalty worth incurring, given
the superior performance of the selective detrending
method.

CONCLUSION

A new selective detrending method for reduction of arti-
fact associated with TCM in event-related FMRI paradigms
using an overt word generation task has been introduced
and tested. It performs uniformly better than three other
commonly used TCM artifact-reduction methods in retain-
ing BOLD signal and reducing TCM artifacts. The data
suggest that the selective detrending algorithm can be
automated for more convenient implementation and use in
the future.
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APPENDIX A

Operator Instructions for Picking

Representative TCM IRFs and

Representative Bold HDRs

1. Keep the 805 (555 for controls) image 3D1time spi-
ral FMRI time-series as the underlay file and the R2

statistic file (thresholded at R2 > 0.16 for datasets
P1–P4 and R2 > 0.20 for datasets C1–C4) as overlay.

2. Examine all supra-threshold voxels outside the brain
or at high contrast boundaries at the brain edges.
Supra-threshold TCM voxels will generally appear
in clusters of a couple of voxels or more. The pre-
ponderance of the TCM voxels will appear in the
inferior, frontal and temporal/lateral portions of the
acquisition volume (outside the brain). Lateral sagit-
tal slices typically exhibit a lot more TCM artifacts
than medial sagittal slices.

3. Switch the underlay file to the MR angiogram and back
to ensure that the TCM artifact is not corrupted by
draining veins at the edges of the brain or on the skull.

4. Switch the underlay file to the 16-image deconvolu-
tion analysis’ 3D 1 time impulse response dataset.
Examine the temporal evolution of the first 5 points
of the response, for sharp fluctuations in signal (10%
changes or more over 2–3 s). Often large changes in
signal will be followed by slow return to baseline as
shown in Figure 2.

5. The biggest change in the signal will occur in the 2–
3 images (time-points) of the TCM IRF, but some-
times onset of large signal changes is delayed by one
or two images (time-points).

6. The shapes of TCM IRFs will be similar within a
cluster but may vary across different clusters.

7. TCM IRFs can look similar in different slices. Visu-
ally examine the subsequent selected TCM IRFs to
guard against duplication of representative TCM
IRFs, which may increase computational load. How-
ever, every effort should be made to pick all dis-
tinctly shaped TCM IRFs. Generally, 10–15 distinct
representative TCM IRFs are sufficient to classify all
TCM corrupted voxels in the dataset.

8. For choosing representative BOLD HDRs, examine
supra-threshold voxels in regions known to activate
in the language FMRI paradigm. Regions expected
to exhibit neural activation under the semantic overt

word generation with auditory cues include, pri-
mary and secondary auditory cortex, superior tem-
poral gyrus, Broca’s area and lateral frontal cortex,
inferior frontal gyrus motor cortex, premotor cortex,
supplementary motor area and medial frontal cortex,
thalamus, basal ganglia, etc.

9. The chosen BOLD HDRs should be slowly varying
(i.e., should not exhibit large variations in signal
from one time-point to the next).

10. As the early phases of the BOLD HDRs are most
likely to overlap with TCM signal changes, care
must be taken to sample representative BOLD HDRs
that span all observed delays to onset and times to
peak of putative BOLD voxels in the dataset.

11. BOLD HDR shapes typically do not vary much
across regions and a few (3–5) representatives are
probably sufficient to enable proper classification of
all BOLD voxels in the dataset, i.e. the quantity CCB
(obtained from these representatives) remains high
for all putative BOLD voxels in the dataset.

APPENDIX B

List of AFNI Commands

Used in Selective Detrending

The following is a list of AFNI commands used in the
data analysis for selective detrending

1. 3dvolreg: for intensity-based 3D volume registration
of spiral FMRI datasets; e.g., 3dvolreg 2base overt5.
unreg1orig[160]’ 21Dfile overt1_mot.1D 2prefix
overt1.reg overt1.unreg1orig.

2. 3dTcat: for removing linear drifts followed by con-
catenation of the 5 FMRI runs. e.g., 3dTcat 2rlt11
2prefix overt overt*BRIK

3. 3dDeconvolve: 1st deconvolution analysis, to estimate
voxelwise IRFs from the input semantic word generation
OAV and TCM-corrupted 3D1805 FMRI time-series
dataset; e.g., 3dDeconvolve2input overt1orig2polort 0
2num_stimts 1 2stim_file 1 wordgen_OAV.1D 2stim_
minlag 1 0 2stim_maxlag 1 15 2iresp 1 overtML0.resp
2fout2rout2nocout overtML0.buck.

4. Choosing representative TCM IRFs and BOLD HDRs
(Appendix A).

5. Custom-built selective detrending Matlab program
seldet.m: outputs a TCM artifact reduced FMRI time-
series ’overt.seldet1orig’.

6. 3dDeconvolve: 2nd deconvolution analysis, to generate
artifact reduced impulse response files and R2 and F-sta-
tistic maps. e.g., 3dDeconvolve2input overt.seldet1orig
2polort 0 2num_stimts 1 2stim_file 1 wordgen_OAV.
1D -stim_minlag 1 0 2stim_maxlag 1 15 2iresp 1 overt.
seldet.resp2fout2rout2nocout overt.seldet.buck.

7. 3dAutomask & 3dcalc: programs used to create extra-
and intra-cerbral brain mask e.g. 3dAutomask2nograd
2dilate 12prefix brain_mask overt.seldet1 orig 3dcalc
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2prefix extra_cereb_mask2a brain_ mask1orig2expr
’1-step(a)’ e.g. 3dAutomask 2nograd 2erode 1 2prefix
intra_cereb_mask overt. seldet1orig

APPENDIX C

Glossary of Terms

TCM: Task-correlated motion
HDR: Hemodynamic response
IRF: Impulse response function
ISI: Inter-stimulus interval
OAV: Overt-response locked analysis vector, Created

by the temporal sequence of spoken words gener-
ated by the subject.

CCT: Absolute maximum of the cross-correlation coeffi-
cients between a given voxel’s IRF and each of the
10–15 representative TCM IRFs

CCB: Maximum of the cross-correlation coefficients
between a given voxel’s IRF and each of the 3–5
representative BOLD HDRs.

MPR: Motion parameter regression
‘dtsel’: Selective detrending method
‘dtr’: Non-selective detrending method
‘ML2’: method of ignoring two images after speech.

Obtained by setting the stim_minlag parameter in
AFNI’s 3dDeconvolve command to 2.

‘ML0’: uncorrected TCM artifact-ridden dataset, ob-
tained by setting the stim_minlag parameter in
AFNI’s 3dDeconvolve command to 0.

a: Least squares linear regression estimate of the pro-
portionality constant in the model: voxel IRF 5 a 3
maximally correlated TCM IRF.

GLM: General linear model
TR/TE/FA: Repetition time/Echo Time/Flip angle
FOV: Field of View
MRA: Magnetic resonance angiogram
SPGR: Spoiled gradient recalled
3D: 3-dimensional
BOLD: Blood oxygen level dependent
FMRI: Functional magnetic resonance imaging
AFNI: Analysis of Functional Neuroimages
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