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Abstract

Background: Resveratrol (3, 49, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory,
antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-
inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was
designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of
prostate cancer.

Methodology/Principal Findings: Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by
inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of
resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors,
resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of
Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by
reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The
combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial
growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the
cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding
activity.

Conclusions/Significance: These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by
activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and
enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the
management of prostate cancer.
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Introduction

Resveratrol (3, 4’, 5 tri-hydroxystilbene), a naturally occurring

polyphenol, exhibits pleiotropic health benefits including anti-

inflammatory, antioxidant, cardioprotective and antitumor activ-

ities [1,2,3,4]. Currently, numerous preclinical findings suggest

resveratrol as a promising agent for cancer prevention and/or

treatment. As a potential anti-cancer agent, resveratrol has been

shown to inhibit or retard the growth of various cancer cells in vitro

and implanted tumors in vivo [5,6,7,8,9]. Resveratrol has been

shown to inhibit the activation of JAK2-STAT3, Src-STAT3,

AKT and IKK-NFkB pathways and to induce apoptosis in several

cancer cell lines [10,11,12,13]. We have recently demonstrated

that resveratrol downregulated the expression of Bcl-2, Bcl-XL and

survivin and upregulated the expression of Bax, Bak, PUMA,

Noxa, and Bim and death receptors (TRAIL-R1/DR4 and

TRAIL-R2/DR5) [1,14,15]. Furthermore, Treatment of prostate

cancer cells with resveratrol resulted in generation of reactive

oxygen species (ROS), translocation of Bax to mitochondria and

subsequent drop in mitochondrial membrane potential, release of

mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF)

to cytosol, activation of effector caspase-3 and caspase-9, and

induction of apoptosis [1,14,15]. Resveratrol-induced ROS

production, caspase-3 activity and apoptosis were inhibited by

N-acetylcysteine, suggesting the ROS production, at least in part,

plays a role in mediating anticancer activities of resveratrol

[1,14,15]. Resveratrol enhanced the apoptosis-inducing potential

of TRAIL in PC-3 cells and sensitized TRAIL-resistant prostate
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cancer LNCaP cells in vitro [1,14,15]. Overall, these data suggest

that resveratrol can regulate multiple signaling pathways and

possesses several therapeutic benefits.

PI3K signaling plays a pivotal role in intracellular signal

transduction pathways involved in cellular transformation, cell

growth, and tumorigenesis [16,17]. Inactivation of AKT results in

dephosphorylation and activation of FOXO transcription factors,

reported to mediate cell cycle arrest, DNA repair, and apoptosis

[18,19]. These transcription factors, belong to the ‘O’ subgroup of

winged-helix/forkhead transcription-factor family, consist princi-

pally of four members FOXO1, FOXO3a, FOXO4, and FOXO6

[20]. FOXO proteins are evolutionarily conserved transcription

factors implicated in several fundamental cellular processes,

functioning as end-point for transcriptional programs involved in

apoptosis, stress response and longevity [21,22]. Since abrogation

of FOXO function is frequently observed in human cancer, the

reactivation of FOXO proteins will be an attractive strategy for

cancer therapy and prevention. The FOXO proteins integrate

regulatory inputs from a variety of upstream signaling pathways,

most importantly in response to growth factor and stress signaling

[23]. Recently, FOXO factors have been established as tumor

suppressors, promoting the transcription of pro-apoptotic mole-

cules like FasL and Bim when the PI3K/AKT pathway is

downregulated due to nutrient or serum starvation and cellular

stress [24,25]. Triple knockout mouse models proved the tumor

suppressor properties of FOXOs, as mice simultaneously lacking

the principal members of the mammalian FOXO subfamily,

FOXO1, FOXO3a and FOXO4, are prone to develop heman-

giomas and lymphoproliferative diseases [26]. Conversely, the

individual or paired inactivation of FOXO1, FOXO3a or

FOXO4 resulted in a less severe phenotype, supporting the idea

of functional redundancy of these FOXO factors [26]. Further-

more, forced expression of FOXO has been shown to inhibit

tumorigenesis in xenograft models in nude mice [27,28].

Therefore, reactivation of FOXO based on its tumor suppressor

properties is considered as a very attractive anti-cancer strategy.

Since FOXO proteins were reported to be critical mediators of

apoptosis induced by anticancer drugs, we postulated that FOXO

expression or transcriptional activity could be important event in

mediating the effects of resveratrol.

TNF-related apoptosis-inducing ligand (TRAIL) has been

shown to TRAIL-R1/DR4 and TRAIL-R2/DR5 [29]. We and

others have shown that TRAIL can induce apoptosis in various

cancer cell types [29,30,31,32,33]. Based on preclinical data, it

appears that TRAIL has great promise as a selective anticancer

agent [31,32]. Resveratrol has been shown to enhance the

therapeutic potential of TRAIL in vitro [14,34]. The interactions

of resveratrol and TRAIL were blocked by either dominant

negative FADD or caspase-8 siRNA [14,15]. The combination

of resveratrol and TRAIL enhanced the mitochondrial dysfunc-

tions during apoptosis. Resveratrol treatment can activate the

extrinsic TRAIL-receptor-mediated death pathway, thereby

increasing sensitivity to TRAIL in prostate cancer cells.

However, the molecular mechanisms by which resveratrol can

enhance the therapeutic potential of TRAIL in vivo has not been

examined.

The purpose of our study was to investigate the molecular

mechanisms by which resveratrol enhances the therapeutic

potential of TRAIL in prostate cancer xenografts in nude mice.

Our results indicated that resveratrol inhibited PC-3 xenograft

growth and markers of metastasis, and angiogenesis through

activation of FOXO transcription factors. Thus, our data suggest

that resveratrol can be used alone or in combination with TRAIL

for the management of of prostate cancer.

Results

Resveratrol enhances antitumor tumor activity of TRAIL
in PC-3 xenografts in vivo

We have recently shown that resveratrol can enhance the

apoptosis inducing potential of TRAIL in vitro. Therefore, in the

present study, we examined whether resveratrol can enhance the

antitumor activity of TRAIL in vivo. PC-3 cells were xenografted in

Balb c nude mice. After tumor formation, these mice were treated

with resveratrol, TRAIL, or resveratrol plus TRAIL for 6 weeks

and the effects of these agents on tumor growth were examined.

Resveratrol and TRAIL alone inhibited growth of PC-3

xenografts (Fig. 1). By comparison, the combination of resveratrol

and TRAIL was more effective in inhibiting tumor growth than

single agent alone.

These data suggest that resveratrol can enhance the antitumor

activity of TRAIL in prostate cancer.

Regulation of tumor cell proliferation and apoptosis by
resveratrol and/or TRAIL in PC-3 xenografts

Tumor cell proliferation and apoptosis can regulate the size of

tumor at any given time. Therefore, we performed immunohis-

tochemistry in tumor tissues to measure the expression of Ki67

and PCNA, and TUNEL assay to measure apoptosis (Fig. 2A).

Tumor cell proliferation was measured by counting Ki67 and

PCNA positive cells, and apoptosis was measured by counting

TUNEL positive cells (Fig. 2B–D). Treatment of mice with

resveratrol and TRAIL alone resulted in inhibition of tumor cell

proliferation, and induction in apoptosis. The combination of

resveratrol and TRAIL was more effective in inhibiting tumor cell

proliferation and inducing apoptosis than single agent alone.

These data suggest that resveratrol, although effective alone, can

enhance the antitumor activity of TRAIL in prostate cancer.

In vivo regulation of death receptor TRAIL-R1/DR4 and
TRAIL-R2/DR5 by resveratrol and/or TRAIL

Since resveratrol enhances the therapeutic potential of TRAIL

by inducing apoptosis in vivo, we sought to examine the molecular

mechanisms by which resveratrol enhances the antitumor activity

of TRAIL in PC-3 xenografts. We next examined the effects of

resveratrol and/or TRAIL on the expression of death receptors

(TRAIL-R1/DR4 and TRAIL-R2/DR5) by immunohistochem-

istry in tumor tissues derived from in vivo experiment (Fig. 3A, left

Figure 1. Resveratrol enhances apoptosis-inducing potential of
TRAIL in PC-3 xenografts. (A), PC-3 cells were injected into the right
flanks of Balb c nude mice. After tumor formation (about 100 mm3),
mice were treated with saline, resveratrol (30 mg/kg, three days per
week), TRAIL (15 mg/kg, four times during first three weeks) or
resveratrol plus TRAIL. Tumor volume was measured weekly. Data
represent mean 6 SE. *, # and $ are significantly different from control,
P,0.05).
doi:10.1371/journal.pone.0015627.g001
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and right panels). Treatment of mice with resveratrol enhanced

the expressions of DR4 and DR5. TRAIL slightly induced the

expression of DR4 and DR5. On the other hand, treatment of

mice with a combination of resveratrol plus TRAIL significantly

showed enhanced expressions of DR4 and DR5 proteins than that

of mice treated with resveratrol alone or TRAIL alone.

We confirmed the immunohistochemistry data by examining

the expression of these proteins by the Western blot analysis

(Fig. 3B). Treatment of mice with Resveratrol and TRAIL alone

resulted in upregulation of death receptors DR4 and DR5. By

comparison, resveratrol plus TRAIL treatments had more effects

on the induction of DR4 and DR5 compared to single agent

alone. These data are in agreement with immunohistochemistry

data where the proapoptotic DR4 and DR5 proteins were

upregulated.

We next confirmed the immunohistochemistry and western blot

data by examining the expressions of DRs by ELISA (Fig. 3C,

right panel). Treatment of mice with resveratrol and TRAIL alone

upregulated the expression of death receptors (DR4 and DR5). By

comparison, the combination of resveratrol plus TRAIL induced

more DR4 and DR5 expressions than single agent alone. These

data are in agreement with immunohistochemistry and western

blot data where the proapoptotic DR4 and DR5 proteins were

upregulated by resveratrol and TRAIL. Up-regulation of DRs

may enhance the apoptosis-inducing potential of TRAIL.

In vivo regulation of Bcl-2 family members and cell cycle
regulatory proteins by resveratrol and/or TRAIL

Since Bcl-2 family members play a major role in apoptosis, we

sought to examine the expression of Bax and Bcl-2 in tumor tissues

derived from resveratrol and/or TRAIL-treated mice (Fig. 4A, left

panel). Treatment of mice with resveratrol and TRAIL alone

resulted in upregulation of Bax, and inhibition of Bcl-2 expression.

By comparison, the combination of resveratrol plus TRAIL was

more effective in upregulating Bax and inhibiting Bcl-2. We next

confirmed the Western blot data by examining the expressions of

these proteins by immunohistochemistry (Fig. 4A, middle and

right panels). Treatment of mice with resveratrol upregulated the

expression of Bax and inhibited the expression of Bcl-2. By

comparison, treatment of mice with a combination of resveratrol

plus TRAIL had more effects on the upregulation of Bax and

inhibition of Bcl-2 than single agent alone.

Figure 2. Effects of resveratrol and/or TRAIL on tumor cell proliferation and apoptosis. (A), Immunohistochemistry was performed in
tumor tissues derived from control, resveratrol and/or TRAIL treated mice on week 6 to measure cell proliferation by Ki67 and PCNA staining and
apoptosis by TUNEL assay. (B, C and D), Quantification of Ki67, PCNA and TUNEL positive tumor cells. Tumor slides of different treatment groups were
visualized under microscope, and Ki67, PCNA and TUNEL positive cells were quantified. Data represent mean 6 SE. * and ** are significantly different
from their respective controls, P,0.05).
doi:10.1371/journal.pone.0015627.g002
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Figure 3. Effects of resveratrol and/or TRAIL on the expression of TRAIL-death receptors. (A), Immunohistochemistry was performed to measure
the expressions of TRAIL-R1/DR4 and TRAIL-R2/DR5 in tumor tissues derived from control and treated mice on week 6. Quantification of DR4 and DR5
positive cells are also shown on right panel. (B), Expressions of TRAIL-R1/DR4, TRAIL-R2/DR5 and b-actin in tumor tissues derived on week 6. Western
blot analysis was performed to measure the expression of DRs (left panel). Quantification of DR4 and DR5 positive tumor cells (right panel). (C), Mea-
surement of DR4 and DR5 by ELISA. Proteins extracts were prepared and the expressions of DRs were measured as per manufacturer’s instructions.
doi:10.1371/journal.pone.0015627.g003

Figure 4. Effects of resveratrol and/or TRAIL on Bcl-2 family members and cell cycle regulatory proteins. (A), Western blot analysis was
performed to measure the expressions of Bax and Bcl-2 in tumor tissues derived from control, resveratrol and/or TRAIL treated mice on week 6 (left
panel). Immunohistochemistry was performed to measure the expressions of Bax and Bcl-2 in tumor tissues derived from control and drug treated
mice on week 6 (middle panel). Quantification of Bax and Bcl-2 positive cells in tumor cells (right panel). (B), Western blot analysis was performed to
measure the expressions of p27/KIP1 and cyclin D1 in tumor tissues derived from control and drug treated mice on week 6 (left panel).
Immunohistochemistry was performed to measure the expressions of p27/KIP1 and cyclin D1 in tumor tissues derived from control and drug treated
mice on week 6 (middle panel). Quantification of p27/KIP1 and cyclin D1 positive cells in tumor tissues (right panel).
doi:10.1371/journal.pone.0015627.g004
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We next examined the effects of resveratrol and/or TRAIL on

the expression of p27/KIP1 and cyclin D1 in tumor tissues by

Western blotting and immunohistochemistry (Fig. 4B). Treatment

of mice with resveratrol resulted in the induction of cell cycle

inhibitor p27/KIP1 and inhibition of cyclin D1 expression (Fig. 4B).

By comparison, TRAIL had no significant effect on p27

expression, but slightly inhibited the expression of cyclin D1

compared to control group. However, the combination of

resveratrol and TRAIL showed upregulation of p27, and

inhibition of cyclin D1 compared to single agent alone. We next

confirmed the Western blot data with immunohistochemistry data

by examining the expressions of these proteins (Fig. 4B, middle

and right panels). TRAIL has no significant effect on the

expression of p27 but slightly inhibited the expression of cyclin

D1. By comparison, resveratrol induced the expressions of p27,

and inhibited the expression of cyclin D1. These data suggest that

resveratrol can regulate cell cycle by up-regulating the expression

of p27 and inhibiting the expression of cyclin D1.

In vivo regulation of MMP-2 and MMP-9 expression by
resveratrol and/or TRAIL

Elevated expressions of matrix metalloproteinases (MMPs) are

associated with increased metastatic potential in many tumor cells

[35,36,37]. We therefore sought to examine the effects of

resveratrol on MMP-2 and MMP-9 expressions in tumor tissues

derived from xenografted nude mice by immunohistochemistry

and Western blot analysis. Treatment of xenogrfated mice with

resveratrol resulted in inhibition of MMP-2 and MMP-9

expressions than those of control or TRAIL treated group

(Fig. 5A and B). The combination of resveratrol and TRAIL

was more effective in inhibiting MMP-2 and MMP-9 expressions

than single agent alone. We next confirmed the immunohisto-

chemistry data by examining the expressions of these proteins by

Western blot analysis (Fig. 5C). TRAIL has no significant effect on

the expressions of MMP-2 and MMP-9. By comparison,

resveratrol or resveratrol plus TRAIL inhibited the expressions

of MMP-2 and MMP-9. These data suggest that resveratrol and/

or TRAIL may inhibit prostate cancer metastasis by inhibiting

MMP-2 and MMP-9.

In vivo regulation of angiogenesis by resveratrol and/or
TRAIL

Whether regression in tumor growth by resveratrol and/or

TRAIL was due to inhibition of angiogenesis, we analyzed the

markers of angiogenesis by immunohistochemistry in tumor tissues

derived from control and treated mice (Fig. 6). We first examined

the effects of resveratrol and/or TRAIL treatment on number of

blood vessels in tumor tissues by utilizing three different

approaches (Fig. 6A). Blood vessels were examined by staining

the tumor tissues by H&E, anti-CD31 antibody, and anti-vWF

antibody. Treatment of mice with resveratrol or TRAIL caused an

inhibition in number of blood vessels. By comparison, the

treatment of mice with a combination of resveratrol plus TRAIL

further inhibited the number of blood vessels.

We next examined the expression of VEGF by immunohisto-

chemistry and Western blot analysis (Fig 6). Examination of tumor

tissues by immunohistochemistry showed that control mice had

increased VEGF-positive endothelial cells compared to resveratrol

Figure 5. Effects of resveratrol and/or TRAIL on markers of metastasis. (A), Immunohistochemistry was performed to measure the
expressions of MMP-2 and MMP-9 in tumor tissues derived from control, resveratrol and/or TRAILtreated mice on week 6. (B), Quantification of MMP-2
and MMP-9 positive cells in tumor tissues. (C), Expressions of MMP-2, MMP-9 and b-actin in tumor tissues were measured on week 6 by the Western
blot analysis.
doi:10.1371/journal.pone.0015627.g005
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or TRAIL treated mice (Fig. 6B, left and right panels). The

combination of resveratrol plus TRAIL showed significantly less

VEGF staining than single agent alone. We next confirmed the

immunohistochemistry data of VEGF expression by examining

the protein levels by Western blot analysis (Fig. 6B, lower panel).

Treatment of mice with resveratrol and TRAIL alone inhibited

VEGF expression. By comparison, resveratrol plus TRAIL

inhibited the expression of VEGF.

We have demonstrated that numbers of circulating vascular

endothelial growth factor receptor 2 (VEGF-R2)-positive endo-

thelial cells correlate directly with increase in tumor angiogenesis

and can serve as in vivo indicators of tumor angiogenesis [31,38].

As expected, control mice had increased circulating VEGF-R2-

positive endothelial cells compared to resveratrol treated mice

(Fig. 6C). Resveratrol plus TRAIL-treated group demonstrated

significantly less VEGFR2-positive cells than that of resveratrol or

TRAIL treated group. These data strongly demonstrate that

resveratrol can inhibit tumor growth by inhibiting angiogenesis,

and may also promote antitumor activity of TRAIL in vivo.

In vivo regulation of transcription factor FKHRL1
AKT has been shown to phosphorylate FKHRL1, and the

inhibition of FKHRL1 phosphorylation causes its nuclear

translocation, enhanced DNA binding and transcriptional activity

[39]. We next examined whether antitumor activities of resveratrol

and/or TRAIL are exerted through activation of FKHRL1

Figure 6. Effects of resveratrol and/or TRAIL on markers of angiogenesis. (A), Left panel, tumor tissue sections derived from control,
resveratrol and/or TRAIL treated mice on week 6 were stained with H & E and the numbers of blood vessels were counted at 400 X magnification.
Each column represents the mean 6 SD. * or ** = significantly different from control, P,0.05. Middle panel, blood vessel quantification in tumors
derived on week 6. Tumor sections from control and drug treated mice were stained with anti-CD31 antibody, and the numbers of CD31-positive
blood vessels were counted. The results are shown as the mean 6 SD. * or ** = significantly different from control, P,0.05. Right panel, tumor
sections from control and drug treated mice obtained on week 6 were stained with anti-von Willebrand Factor (vWF) antibody to evaluate blood
vessels. The results are shown as the mean 6 SD. * or ** = significantly different from control, P,0.05. (B), Left panel, immunohistochemistry was
performed to measure the expression of VEGF in tumor tissues derived from control and drug treated mice on week 6. Right panel, quantification of
VEGF positive cells in tumor tissues. Right panel, quantification of VEGF positive cells. The results are shown as the mean 6 SD. * or ** = significantly
different from control, P,0.05. Bottom panel, expressions of VEGF and b-actin in tumor tissues derived on week 6 were measured by the Western
blot analysis. (C), VEGF receptor 2 (VEGF-R2)-positive circulating endothelial cells in mice on week 6. The blood cells from peripheral blood attached
to the slide were stained with anti-VEGF-R2 antibody, and the number of VEGF-R2 positive cells was counted under a microscope. The results are
shown as the mean 6 SD. * or ** = significantly different from control, P,0.05.
doi:10.1371/journal.pone.0015627.g006
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(Fig. 7). Resveratrol and TRAIL inhibited the phosphorylation of

FKHRL1; however, resveratrol was more effective than TRAIL.

The combination of resveratrol and TRAIL had more effect in

inhibiting phosphorylation of FKHRL1 than single agent alone.

We next examined the phosphorylation of FKHRL1 in tumor

tissues by immunohistochemistry (Fig. 7B and C). Resveratrol and

TRAIL inhibited the cytoplasmic levels of phosphorylated

FKHRL1 as shown in Fig. 7B and quantified in Fig. 7C. The

combination of resveratrol plus TRAIL had more effect in

inhibiting cytoplamic levels of phosphorylated FKHRL1 than

single agent alone. These data suggest that resveratrol and TRAIL

can inhibit the phosphorylation of FKHRL1, which may results in

its nuclear translocation and activation.

We next examined the FKHRL1-DNA binding activity by

gelshift assay (Fig. 7D). Nuclear extracts were prepared from

tumor tissues derived from resveratrol and/or TRAIL treated

mice. Gelshift data revealed that TRAIL and resveratrol enhanced

FKHRL1-DNA binding activities. The combination of resveratrol

and TRAIL had significantly more FKHRL1-DNA binding

activity than single agent alone. Overall, these data suggest that

resveratrol and TRAIL can inhibit the phosphorylation of

FKHRL1 leading to its enhanced nuclear translocation and

DNA binding activities.

Discussion

We have recently shown that resveratrol induces apoptosis in

TRAIL-sensitive PC-3 cells, and sensitizes TRAIL-resistant

LNCaP cells in vitro through activation of multiple signaling

pathways [14,15]. Resveratrol-induced apoptosis engages mito-

chondria, as was shown by a drop in mitochondrial membrane

potential and activation of caspase-3 and caspase-9 in both

prostate cancer PC-3 and LNCaP cells [14,15]. Resveratrol

induced expression of proapoptotic proteins (Bax, Bak, PUMA,

Noxa and Bim), death receptors (TRAIL-R1/DR4 and TRAIL-

R2/DR5), and inhibited expression of anti-apoptotic proteins (Bcl-

2 and Bcl-XL) and IAPs (XIAP and survivin). In our recent study,

resveratrol regulated the expression of TRAIL, DR4, DR5, Bim,

p27/KIP1 and cyclin D1 through FOXO transcription factors in

vitro, and inhibition of FKHRL1, FKHR and AFX by RNAi

blocked these affects of resveratrol [40]. In the present study, we

have validated our in vitro findings and demonstrated that

Figure 7. Activation of transcription factor FKHRL1 by resveratrol. (A), Inhibition of FKHRL1 phosphorylation by resveratrol. Western blot
analysis was performed to measure the expression of phospho-FKHRL1 in tumor tissues derived from control and/or drug treated mice on week 6. (B),
Immunohistochemical examination of phospho-FKHRL1. Immunohistochemistry was performed to measure the expression of phospho-FKHRL1 in
tumor tissues derived from control, resveratrol and/or TRAIL treated mice on week 6. (C), Quantification of FKHRL-positive cells in tumor tissues. (D),
FKHRL1-DNA binding activity. Nuclear extracts were prepared from tumor tissues derived from control and drug-treated mice. Gelshift assay was
performed to measure the FKHRL1-DNA binding activity as described in Materials and Methods.
doi:10.1371/journal.pone.0015627.g007
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resveratrol and TRAIL alone inhibited the growth of PC-3

xenografts, metastasis and angiogenesis through activation of

FOXO transcription factors. Interestingly, the combination of

resveratrol and TRAIL had greater effect on the inhibition of

tumor growth, metastasis and angiogenesis than either agent

alone.

In vitro resveratrol downregulated the expressions of Bcl-2 and

Bcl-XL and upregulated the expressions of p53, Bax, Bak, PUMA,

Noxa, and Bim at mRNA and protein levels in prostate cancer

cells [41]. We have also demonstrated that resveratrol upregulated

the expression, phosphorylation, and acetylation of p53 in

androgen-dependent LNCaP cells [41]. The ability of resveratrol

to regulate gene transcription was also evident as it caused

acetylation of histone H3 and H4 in LNCaP cells [41].

Furthermore, treatment of LNCaP cells with resveratrol resulted

in translocation of Bax and p53 to mitochondria, production of

reactive oxygen species, drop in mitochondrial membrane

potential, release of mitochondrial proteins (cytochrome c,

Smac/DIABLO and Omi/HtrA2), and activation of caspase-3

leading to apoptosis [41]. Furthermore, deletion of Bax and Bak

genes completely inhibited resveratrol-induced cytochrome c and

Smac/DIABLO release in mouse embryonic fibroblasts [42]. In

the present study, treatment of xenografted mice with resveratrol

resulted in downregulation of Bcl-2 and up-regulation of Bax. The

combination of resveratrol plus TRAIL was more effective in

regulating Bcl-2 family members than single agent alone. Our

previously published in vitro data are in agreement with current in

vivo studies which demonstrate that resveratrol can engage cell-

intrinsic pathway of apoptosis by regulating the expression of Bcl-2

family of proteins.

FOXO transcription factors are tumor suppressors that are

inactivated in the majority of human cancers, owing to the

overactivation of the PI3K/AKT pathway [43]. FOXO proteins

can regulate a variety of genes that influence cell proliferation,

survival, metabolism and response to stress [19,20,44]. FOXO

transcription factors are regulated by synthesis, acetylation,

phosphorylation and ubiquitination at three different levels:

subcellular localization, stability and transcriptional activity

[19,20,44]. Upon activation of PI3K/AKT signaling, FOXOs

undergo AKT-mediated phosphorylation, which promotes bind-

ing to 14-3-3, nuclear export through CRM1 and cytoplasmic

sequestration. Under stress conditions or in the absence of growth

or survival factors, when the PI3K/AKT pathway is inhibited,

FOXO proteins translocate to the cell nucleus, where their

transcriptional functions can be executed [45]. A second

regulatory layer is FOXO acetylation by p300, Cbp (CREB-

binding protein) and Pcaf (p300/CBP-associated factors) in

response to oxidative stress or DNA binding [46,47,48], followed

by deacetylation by class I and II histone deacetylases [48,49,50],

including Sirt1, the NAD+-dependent deacetylase encoded by the

ortholog of yeast longevity gene Sir2 [51]. We have recently

demonstrated that inhibition of PI3K/AKT pathway enhanced

FOXO-DNA binding and transcriptional activity [40,52]. Fur-

thermore, phosphorylation deficient mutant of FOXO enhanced

resveratrol-induced FOXO transcriptional activity and apoptosis.

Post-translational modification of FOXO proteins is an important

mechanism that regulates the ability of different transcription

factors to activate distinct gene sets, involved in cell cycle

inhibition [53], apoptosis [54], defense against oxidative stress

and DNA repair [55]. The enhanced DNA binding activity also

serves to limit the availability of FOXO proteins for phosphor-

ylation by AKT [46]. In the present study, we have shown that

resveratrol induced apoptosis in prostate cancer cells through

activation of FOXO transcription factors. Similarly in another

study, we have demonstrated that inhibition of FOXO transcrip-

tion factors by shRNA blocked resveratrol-induced upregulation of

Bim, TRAIL, DR4, DR5, p27/Kip1 and apoptosis, and resveratrol-

induced inhibition of cyclin D1 in prostate cancer cells in vitro [40].

Our data suggest that resveratrol induces cell cycle arrest and

apoptosis through regulation of FOXO transcription factors in

prostate cancer cells.

The FOXO transcription factors have been shown to be

constitutively activated in various human malignancies, including

prostate cancer [39,56]. FOXOs are shown to contribute to

development and/or progression of malignancy by regulating the

expression of genes involved in cell growth, differentiation,

apoptosis, angiogenesis and metastasis [39,56]. We have recently

demonstrated that FOXO transcription factors and VEGF

neutralizing antibody enhance anti-angiogenic effects of resvera-

trol [57]. Prostate cancer cells have been reported to have

constitutive FOXO activity due to increased activity of the AKT

and ERK kinases. Activation of FOXO may inhibit cell growth,

proliferation and angiogenesis, and induce apoptosis by regulating

expression of genes such as FasL, Bim, cyclin D1, p27 and TRAIL

[39,40,56]. Thus, FOXO-mediated expression of genes, involved

in angiogenesis, invasion and metastasis may further contribute to

the progression of prostate cancer. Constitutive FOXO activity

has also been demonstrated in primary prostate cancer tissue

samples and suggested to have prognostic importance for a subset

of primary tumors. In the present study, resveratrol induced the

activation of FKHRL1 and its gene products in PC-3 xenografted

tumors. These findings suggest that FOXO may play a role in

human prostate cancer development, and/or progression, and

resveratrol can inhibit these processes through regulation of

FOXO-regulated gene products.

During malignant neoplastic progression the cells undergo

genetic and epigenetic cancer specific alterations that finally lead

to a loss of tissue homeostasis and restructuring of the

microenvironment. The invasion of cancer cells through connec-

tive tissue is a crucial prerequisite for metastasis formation. MMPs

are up-regulated in many tumors and have been implicated in

tumor progression and metastasis. MMPs are critical for

pericellular degradation of the extracellular matrix, thereby

promoting tumor cell invasion and dissemination. To grow

efficiently in vivo, tumor cells induce angiogenesis in both primary

solid tumors and metastatic foci. In the present study, treatment of

xenografted mice with resveratrol plus TRAIL significantly

inhibited tumor cell proliferation, metastasis and angiogenesis,

and induced apoptosis than single agent alone. Furthermore,

resveratrol inhibited the growth of PC-3 xenografts and enhanced

the apoptosis-inducing potential of TRAIL probably through

regulation of apoptosis, angiogenesis and metastasis.

TRAIL induces apoptosis in cancer cells which express TRAIL-

R1/DR4 and TRAIL-R2/DR5. We have shown that the

upregulation of death receptors by chemotherapeutic drugs,

irradiation and chemopreventive agents enhance or sensitize cancer

cells to TRAIL treatment [1,14,15,29,32,58,59,60,61,62,63]. Spe-

cifically, TRAIL-resistant LNCaP cells can be sensitized by

chemotherapeutic drugs and irradiation through upregulation of

death receptors DR4 and/or DR5 [31,32]. Similarly, our in vitro

study has demonstrated the upregulation of DR4 and DR5 in PC-3

and LNCaP cells by resveratrol [14,15]. Interestingly, resveratrol

sensitized TRAIL-resistant LNCaP xenografts by inhibiting tumor

cell proliferation and inducing apoptosis which were correlated with

induction of death receptors DR4 and DR5. Death receptor (DR4

and/or DR5) regulation has been shown to be under the control of

transcription factor NFkB, SP1 and p53 [64,65,66]. Inducible

silencing of DR5 in vivo promoted bioluminescent colon tumor
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xenograft growth and confers resistance to chemotherapeutic agent

5-fluorouracil [67]. These finding suggest that upregulation of DR4

and DR5 by resveratrol may be one of the mechanisms by which

resveratrol enhances the therapeutic potential of TRAIL.

In a recent report, resveratrol and resveratrol-49-O-sulfate were

able to inhibit the activity of COX-1 and -2, at concentrations that

have been shown to be achievable in human plasma [68]. These

data indicate that resveratrol and its 49-O-sulfate metabolite may

mediate or contribute to the health benefits attributed previously

only to resveratrol. Resveratrol and its 49-O-sulfate metabolite

inhibit COX-1 and COX-2 with similar efficacy, and X-ray

structural and computational studies indicate these compounds

bind in the cyclooxygenase sites of the enzymes. In another study,

resveratrol was identified as a potent, mechanistic-based inhibitor

of COX-1 (but not COX-2) [69]. In the same study, resveratrol

was also found to be an ineffective inhibitor against COX-2.

Several studies, which measured the PGE2 production using this

immunoassay system, have shown that resveratrol is an inhibitor of

both COX-1 and -2 enzymatic activities [70]. Furthermore, it has

been demonstrated that resveratrol binds directly to COX-2 and

that this binding is absolutely required for the inhibition of cancer

cell growth by resveratrol [70]. Therefore, the observation that

resveratrol and its 49-Osulfate metabolite inhibit both COX-1 and

COX-2 enzymes with nearly the same efficacy is of importance

since selective inhibition of either one of the enzymes has shown to

lead to serious side effects such as gastric ulcer, heart attack, and

stroke. Compounds that target both enzymes equipotently instead

might provide beneficial effects without the complications due to

single enzyme inhibition.

In summary, our in vivo experiments have demonstrated that

resveratrol can enhance the therapeutic potential of TRAIL

through multiple mechanisms. It induces death receptors (DR4

and DR5) and cell cycle inhibitor p27/KIP1, upregulates Bax,

inhibits antiapoptotic Bcl-2 protein and markers of cell prolifer-

ation (PCNA and Ki67), metastasis (MM2 and MMP7) and

angiogenesis (VEGF and VEGF-R2). Furthermore, resveratrol

activates FKHRL1 which may result in regulation of Bim,

TRAIL, p27, and cyclin D1. FOXO transcription factor has

been shown to regulate invasion, metastasis and angiogenesis. All

these events will significantly contribute to the antiproliferative and

antitumor activities of resveratrol. Our studies demonstrate strong

clinical potential because resveratrol, either alone or in combina-

tion with TRAIL, can be used for the management of prostate

cancer.

Methods

Ethics statement
All experiments involving animals were approved by the

Institutional Animal Care and Use Committee (IACUC) at the

University of Texas Health Science Center at Tyler, protocol

#373.

Reagents
Antibodies against Bcl-2, Bax, TRAIL-R1/DR4, TRAIL-R2/

DR5, CD31, VEGF, VEGFR2 and b-actin were purchased from

Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Antibodies

against p27/KIP1, phospho-FKHRL1, cyclin D1, MMP-2 and

MMP-9 were purchased from Cell Signaling Technology, Inc.

(Danvers, MA). Enhanced chemiluminescence (ECL) Western blot

detection reagents were from Amersham Life Sciences Inc.

(Arlington Heights, IL). Terminal Deoxynucleotidyl Transferase

Biotin-dUTP Nick End Labeling (TUNEL) assay kit was

purchased from EMD Biosciences (San Diego, CA). TRAIL was

purified as described elsewhere [71]. Resveratrol was purchased

from LKT Laboratories, Inc. (St. Paul, MN).

Western Blot Analysis
Western blots were performed as we described earlier [42]. In

brief, tumors were lysed in RIPA buffer containing 1 X protease

inhibitor cocktail, and protein concentrations were determined

using the Bradford assay (Bio-Rad, Philadelphia, PA). Proteins

were separated by 12.5% SDS/PAGE and transferred to

Immobilon membranes (Millipore, Bedford, MA) using semidry

method. After blotting in 5% nonfat dry milk in TBS, the

membranes were incubated with primary antibodies at 1:1,000

dilution in TBS overnight at 4uC, and then secondary antibodies

conjugated with horseradish peroxidase at 1:5,000 dilution in

TBS-Tween 20 for 1 hour at room temperature. Membranes were

washed three times with TBS-Tween 20, and protein bands were

visualized on X-ray film using an enhanced chemiluminescence

system.

Xenograft Assays in Nude Mice
Athymic nude mice (Balb c nu/nu, 4–6 weeks old) were

purchased from the National Cancer Institute (Frederick, MD).

PC-3 cells (26106 cells as a 50% suspension in matrigel, Becton

Dickinson, Bedford, MA) in a final volume of 0.1 ml were injected

subcutaneously at right flank of Balb c nude mice. When the

average tumor volume reached about 100 mm3, mice were

randomized into four groups of 10 mice/group, and the following

treatment protocol was implemented: Group 1, vehicle control

(0.1 ml normal saline) administered through gavage, three times/

week (Monday, Wednesday and Friday) beginning when tumor

volume reached about 100 mm3; Group 2, TRAIL (15 mg/kg)

administered through i.v. on day 1, 7, 14, and 21; Group 3,

resveratrol (30 mg/kg, in 0.1 ml normal saline) administered

through gavage, three times/week (Monday, Wednesday and

Friday); Group 4, resveratrol and TRAIL, resveratrol administered

through gavage, and TRAIL administered through i.v. Mice were

housed under pathogen-free conditions and maintained on a 12 h

light/12 h dark cycle, with food and water supplied ad libitum.

Immunohistochemistry
Immunohistochemistry was performed as described earlier (28,

29). In brief, tumor tissues were collected, excised and fixed with

10% formalin, embedded in paraffin and sectioned. Tissue

sections were stained with primary antibodies against Bax, Bcl-2,

DR4, DR5, Ki-67, PCNA, p27/Kip1, phospho-FKHRL1, CD31,

VEGF, VEGFR2, MMP-2 and MMP-9 or TUNEL reaction

mixture. For immunohistochemistry, sections were fixed, air-dried,

and incubated with various primary antibodies at room temper-

ature for 4 h. Subsequently, slides were washed three times in PBS

and incubated with secondary antibody at room temperature for

1 h. Finally, alkaline phosphatase or hydrogen peroxide polymer-

AEC chromagen substrate kits were used as per manufacturer’s

instructions (Lab Vision Corporation). After washing with PBS,

Vectashield (Vector Laboratories) mounting medium was applied

and sections were coverslipped and imaged.

Electrophoretic Mobility Shift Assay
Nuclear extracts from tumor samples were incubated with 32P-

labeled FOXO consensus sequence in a buffer containing 20 mM

HEPES (pH 7.9), 20% glycerol, 100 mM KCl, 0.2 mM EDTA,

0.5 mM phenylmethylsulfonyl fluoride, and 0.5 mM DTT for

30 min at 25uC. Protein-DNA complexes were resolved on a high

ionic strength 5% polyacrylamide gel containing 0.5 x Tris-borate
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EDTA buffer [380 mM glycine, 45 mM Tris base (pH 8.5),

45 nM boric acid, and 2 mM EDTA]. Dried gels were subjected

to autoradiography.

Statistical Analysis
The mean and SD were calculated for each experimental

group. Differences between groups were analyzed by one or two

way ANOVA using PRISM statistical analysis software (GrafPad

Software, Inc., San Diego, CA). The non-parametric Mann-

Whitney U test was performed to assess the difference of tumor

volume between control and treatment groups. Significant

differences among groups were calculated at P,0.05.
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