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Introduction

Integrin cell adhesion receptors serve as integrators of the cell’s 
exterior and interior, after which property they are named. Each 
integrin has its own signaling properties.1 a8b1 integrin is one of 
the latest integrins to be discovered. The only partner of a8 inte-
grin is the b1-subunit. In contrast to a5b1, whose only known 
ligand is fibronectin, a8b1 can bind to several matrix compo-
nents, including fibronectin,2 osteopontin,3 vitronectin, tenascin-
C,4-6 tenascin-W7 and nephronectin.8

a8b1 integrin is highly expressed during kidney and lung 
development and a8-deficient mice display abnormal renal 
development suggesting that a8b1 integrin plays a critical role 
in organogenesis.9,10 Using FISH and genomic database analysis, 
Ekwa-Ekoka et al. have shown that a8 gene maps to chromo-
some 10p13 and consists of >200 kbp organized into 30 exons.11
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a8b1 integrin is highly expressed in cells with contractile 
function, such as mesangial cells of the kidneys and vascular 
smooth muscle cells (VSMCs). Although it promotes migration 
of neural crest cells and breast cancer cells, recent studies 
suggest that a8 integrin has a negative regulatory role in VSMC 
migration. In this Review, the question of why a8b1 integrin 
plays a dual role in cell migration is raised and discussed. It 
seems that cells require optimum contractility and balanced 
tensile forces for migration. a8b1 integrin promotes migration 
of cells that are initially in a less than optimal contractile state 
(e.g., neural cells) and reduces the migration of cells known as 
contractile cells. a8b1 integrin can be called “Tensegrin” as it 
fits perfectly into the tensegrity model (tensional integrity) 
and seems to play a prominent role in the integration of the 
tensile forces.
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a8b1 integrin, is intensely expressed in vascular smooth 
muscle cells (VSMCs), visceral smooth muscle cells, kidney 
mesangial cells, liver stellate cells and lung interstitial cells.4 In 
the adult lung, a8 integrin is expressed in contractile interstitial 
cells, including alveolar myofibroblasts, lipid-containing fibro-
blasts and pericytes.12 It seems that a8b1 integrin is expressed 
in cells with contractile properties. Existent evidence indicates a 
link between a8b1 integrin expression and cardiac, lung, kidney  
and liver fibrosis.12-14 When we look at the pathological condi-
tions in which a8 expression is increased, we see that there is 
one property in common. In these fibrotic organs, tensile forces 
are increased.

Using gain and loss of function strategies, we demonstrated 
that a8 integrin functions to retard vascular smooth muscle 
cell (VSMC) migration.15,16 These observations have become 
controversial, as some reports have implicated a8 integrin as a 
positive regulator of motility in different cell types. Although 
data about a8 integrin’s role in differentiated epithelial cells is 
sparse, what is worthy of attention is that a8 integrin is upregu-
lated during the migration of neural and breast cancer cells.

In neuronal cells, a8 integrin is found to promote cell 
attachment, spreading and neurite outgrowth.2 In addition, a8 
integrin promotes breast cancer cell migration.7 It is interesting 
that a8 integrin can positively and negatively control migration 
in different contexts. Therefore, it seems that the role of a8b1 
integrin is depending on the cell types.

Although it is speculative, whether a8 integrin can promote 
or inhibit migration may depend on the initial or differentiated 
state of the cells. In cells, which are differentiated for contrac-
tile function, including mesangial cells of kidney and VSMCs, 
reduced a8 integrin expression heightens migration, whereas in 
cells which are not initially contractile (e.g., neural cells), a8 
integrin upregulation may promote migration.

In this work, we reviewed literature regarding a8b1 integ-
rin’s role in different cell types with a stronger focus on VSMC 
function. Lessons from a8b1 integrin function in VSMCs may 
shed light on its dual role in different situations.
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the de-differentiation state of VSMC and leads to the heightened 
VSMC migration,15 while a8 integrin overexpression in de-dif-
ferentiated VSMCs attenuates migratory activity.16 Interestingly, 
it has been reported that a8b1 integrin is upregulated during 
the differentiation of mesenchymal cells from the kidney and 
lung.9,25 Therefore, a8b1 integrin seems to be upregulated during  
the differentiation of cells with contractile abilities and can serve 
as a differentiation marker of these cells.

Taken together, a8 integrin in all these conditions has a posi-
tive relationship with contractile state. Therefore, the question is: 
why does a8 integrin promote migration in cancer, while inhibit-
ing it in VSMCs and mesangial cells? The answer resides in the 
concept that cells require adjustment for optimal adhesion and 
contractility to migrate.

Migration and Contractility

Cell movement is a complicated process involving dissolution of 
the cell’s contacts with other cells and the extracellular matrix 
(ECM), the formation of lamellipodia and new contacts with the 
environment and the contraction of actin filaments in the trailing 
edge, eliciting movement of the cell body.7 On an optimally-stiff 
surface, cells form adhesions and assemble actin structures that 
are sufficient to permit attachment and generate enough trac-
tional force for movement, yet not so adhesive or contractile as to 
inhibit the release of adhesions at the trailing edge necessary to 
translocate the cell body.26

Because their primary function is contraction, VSMCs are in 
a highly contractile state. In this phenotype, the tensile forces 
exerted at the connecting point between the cell-ECM result in 
the development of focal adhesions and the assembly of parallel 
actin stress fibers.27 The consequence of this feature of cell-ECM 
interaction is excessive adhesiveness and contractility accompa-
nied by reduced migratory activity.27

As mentioned earlier, cells require optimum adhesiveness and 
contractility to migrate. It has been shown that integrins may 
contribute to an increase in migration if adhesion is initially less 
than optimal.28 However, if cells are initially in an optimal adhe-
sion state,28 integrins may decrease migration. It also appears that 
cells require optimum contractility to migrate. If cells are ini-
tially in a prestress situation and contractile mode (e.g., VSMCs 
and mesangial cells), the increase in contractility reduces migra-
tion. On the other hand, in cells, which are not initially contrac-
tile in nature (e.g., neuronal cells and ductal epithelial cells of 
breast) increase in contractility promotes migration (Fig. 1). In 
this context, a8 integrin may provide tensile forces required for 
optimal contractility and adhesiveness.

Therefore, the initial state of the cells and the balance between 
tensile forces outside and inside the cells can account for the dif-
ferent modes of a8 integrin action in different cell types.

Tensegrity and Integrins

In an attempt to explain the balance between internal and 
external forces, Donald Ingber introduced the tensional integ-
rity model, which proposes that the whole cell is a prestressed 

a8b1 Integrin Promotes Cell Migration

a8b1 integrin was first identified in the chick embryo nervous 
system.17

Zhang et al. have shown that a8 integrin is upregulated 
during development of the chicken optic tectum.18 a8 integ-
rin promotes the migration of immature neurons during this  
process. It is noteworthy that neurite outgrowth is also driven by 
tension19,20 and application of tensional forces through the ECM 
directly promotes axon elongation.21

Another condition with which a8 integrin upregulation is 
associated is heightened migratory activity in human tumors,22 
especially in more malignant tumors.7 Mammary tumors have 
high exogenous tension compared to normal mammary glands.23 
The gradient in exogenous tension is high in tumors and low in 
surrounding tissues. Interestingly, a8 integrin is increased in the 
more invasive and migratory regions of tumors.7

a8 Integrin as a Differentiation Marker  
and a Negative Regulator of Migration

The main function of VSMCs is contraction to maintain vascu-
lar tone. Thus, VSMCs are differentiated for contractile function. 
After vascular injury, VSMCs are modulated from the contractile 
to the less contractile phenotype, which is a prerequisite for their 
migratory activity. Then, VSMCs migrate from the tunica media 
toward the intima, resulting in neointima formation.

After balloon injury concomitant with loss of the contrac-
tile phenotype, a8b1 integrin is downregulated in the tunica 
media.15 a8 integrin gene silencing evokes the downregula-
tion of VSMC contractile markers and the upregulation of de-
differentiation markers.24 Moreover, a8 integrin gene silencing 
results in the VSMC changes from spindle to polygonal shape 
and stress fiber fragmentation into short bundles that are moved 
to the perinuclear region.24 These changes are characteristics of 

Figure 1. Contractility and migration. The blue line shows that the 
cells, which are not initially in the contractile state (1), increase their 
contractility and approach the optimum level (2) in order to reach 
their maximum migratory ability. However, contractile cells (3) have 
maximum migration when their contractility is reduced (red line).
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integrins into two groups: contractile and less contractile integ-
rins. However, there is always a balance between the expressions 
of different integrins. In our work, we observed that when a8 
integrin is knocked down, a1 integrin is downregulated, whereas 
integrins which are poorly expressed in differentiated VSMCs, 
including a2, a5 and av, are upregulated. Moreover, concomi-
tant with loss of the VSMC-differentiated phenotype after sev-
eral passages, a8b1 integrin is downregulated while avb3 is 
upregulated.24 It has been demonstrated that avb3/b5 and a5b1 
integrins were found to be elevated on the lumen side of the neo-
intima44 and their expression was lower on the medial side, while 
our data disclosed that a8b1 integrin was expressed and distrib-
uted more on the medial side of the neointima. Interestingly, the 
lack of a1 integrin is accompanied by an increase in av and a5 
integrins.45 Therefore, it appears that the integrins involved in 
contractile function counterbalance other integrins.

Taken together, it seems that among different members of the 
integrin superfamily, a8 integrin’s role is prominent in the induc-
ing of tensile forces and its expression is always accompanied with 
an increase in contractility.

To further highlight the unique properties of a8 integrin, it 
should be noted that a8b1 integrin binds to the RGD site in 
ECM proteins through mechanisms that are distinct and separate 
from a5 and av integrins.4 The cytoplasmic domain sequence of 
a8 integrin is distinct from all other known a-subunit cytoplas-
mic domains, including av and a5. av and a5 along with aIIb 
are the a-subunits most closely related to a8 (42–43% amino 
acid identity).4

a8 Integrin and Contractile Ability in VSMC

In vitro studies have confirmed that a8b1 integrin is upregu-
lated in the VSMC contractile state while downregulated during 
phenotype modulation.15 It has been shown that transforming 
growth factor-beta (TGFb) can revert the phenotype of less 
contractile VSMCs to the contractile phenotype.46 However, in 
the presence of siRNA-a8 integrin, TGFb stimulation fails to 
induce VSMC re-differentiation.24 Moreover, TGFb-induced 
myofibroblastic features are impaired in a8 knocked down fibro-
blasts.47 On the other hand, in VSMCs that exhibit a less con-
tractile phenotype, high-passage cells, a8 integrin overexpression 
elicits the restoration of contractile phenotype characteristics.16 
Therefore, a8 integrin seems to exert a prominent role on both 
sides of VSMC phenotypic transition.

Moreover, a8 integrin as well as SM a-actin are upregulated 
in the neointima during constrictive remodeling concomitant 
with the late lumen loss.47

It seems likely that a8 integrin downregulation can shut down 
the mechanisms responsible for the VSMC contractile pheno-
type. It is well-documented that RhoA activity is critical for con-
trolling the VSMC contractile phenotype,48 the assembly of actin 
stress fibers and focal adhesions.49 To be fully functional, RhoA 
needs to be anchored to the cell membrane. However, the mem-
brane-associated molecules with which RhoA interacts remain 
uncharacterized.50 Interestingly, there is an interaction between 
a8 integrin and RhoA in VSMCs and a8 integrin gene silencing 

structure.29 In this model, tensional forces are balanced by forces 
that resist compression. He explains how individual filaments 
can have dual functions and, therefore, exert either tension or 
compression in different structural contexts. The efficiency of 
mechanical coupling between these forces depends on the type 
of molecular adhesion complex that forms on the cell surface. We 
know that tension in the environment surrounding the cell is dis-
tributed by integrins. Integrins regulate cellular tension by trig-
gering actin cytoskeleton organization.30 The tensegrity model 
holds that changes in the balance of mechanical forces across 
integrins can provide additional signaling to regulate cell func-
tion.31 By showing that with the same growth factors and integrin 
signaling different outcomes could result, depending on whether 
the cell is spread or round,29 Ingber emphasized the situation in 
cells before applying tensile forces. However, the question that 
can be raised is whether this tensegrity role is a general role attrib-
uted to all integrins or restricted to a small group of integrins?

To address this question I will discuss the role of different 
integrins in VSMC, which is a cell type with a prominent con-
tractile function.

Integrin or Integrins?

Each integrin ab combination has its own signaling properties1 

and different functions. It is likely that different integrins recruit 
different signaling molecules and differentially control cell sig-
naling and cellular tension.32 Hence, we should avoid using the 
term “integrin” in general, which sounds as if all members of 
the group act synonymously. For instance, the pattern of integrin 
expression changes during VSMC phenotype modulation from 
contractile to non-contractile state. Some of the integrins that are 
poorly expressed in contractile VSMCs, especially a2b1, a5b1 
and avb3, become more prominent in non-contractile state33 and 
mediate VSMC migration.34-37

a2b1 integrin, a collagen receptor, has been implicated in 
platelet-derived growth factor (PDGF)-induced VSMC migra-
tion.34 It has been reported that stress fiber disassembly by fibro-
blast growth factor may promote the differential utilization of 
a2b1 integrin for VSMC motility.38 Bix et al. have demonstrated 
that the interaction between a2b1 integrin and endorepellin 
triggers a unique signaling pathway that leads to the disassembly 
of focal adhesions and stress fibers.39 a5b1 and a6b1 are  poorly 
expressed in contractile VSMCs. However, they are upregulated 
in phenotype-modulated VSMCs and promote migration.35,36 
avb3 is one of the most-studied integrins. avb3 and avb5 inte-
grins both mediate VSMC migration.37 Moreover, endothelin1, 
which is known to enhance contractility, inhibits av expression.40 
Therefore, it appears that av integrin is downregulated in condi-
tions of increased contractile forces. On the other hand, some 
other integrins are more related to the contractile state of VSMCs 
including a8b1,25 a1b1,41 and a7b1 integrins.42 a8b1 integrin is 
one of the integrins that is intensely expressed in VSMCs. It has 
been reported that a1 integrin is also another integrin involved in 
contraction.43 Downregulation of some other integrins, including 
a7,42 and a1,33 has been shown to be associated with the VSMC 
noncontractile phenotype. Therefore, it is plausible to divide 
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focal adhesion sites (Fig. 2B). Moreover, siRNA-a8 leads to 
the reduced membrane associated-RhoA (Fig. 2A). It appears 
that after a8 gene silencing, RhoA cannot be anchored to the 
plasma membrane, thus, it leads to the disassembly of focal adhe-
sions and stress fibers as well as the shape alteration, which are 
all characteristics of phenotype-modulated VSMCs. Although it 
seems that a8 integrin and RhoA may be closely intertwined, our 
knowledge of a8 integrin signaling is insufficient; hence, further 
clarification is fundamentally important.

Lessons from Parallel Universes

Cell types with contractile function share many characteris-
tics with VSMCs and could be considered as parallel universes. 
Patterns of expression and function of a8 integrin in these cells 
and also in pathological conditions where a8 is upregulated 
could further elucidate its tensional role.

a8 integrin is expressed in mesangial cells of the glomeru-
lus.13 Stellate cells of the liver, lung alveolar myofibroblasts, and 
lung interstitial cells are other cell types with intense a8 integrin 

leads to reduced membrane-anchored RhoA, a hallmark of RhoA 
activity51 (Fig. 2A).

Tension-Dependent Growth and a8 Integrin

Another example of a biological process, in which tensile forces 
are increased, is proliferation. Proliferation requires augmented 
tension and contractility.52 Although the cellular mechanism 
involved is not clear, Rho proteins may play an important role in 
tension-dependent growth control,53 as they regulate cytoskeletal 
contractility and G

1
 progression.54,55 It has been suggested that 

expression of the proliferation genes is associated with the expres-
sion of contractile marker genes.56 The relationship between 
enhanced VSMC contractility and accelerated proliferation also 
seems to be reasonable according to studies by Ingber et al.57 who 
demonstrated that the cell’s ability to respond to surrounding 
mitogens is enhanced by increased contractility.

Interestingly, a8 integrin is upregulated in proliferating 
VSMCs and its gene silencing reduces DNA synthesis,58 disas-
sembly of actin stress fibers and dislocation of vinculin from 

Figure 2. Reduced membrane-associated RhoA after a8 integrin gene silencing. (A) Western blotting analysis showed that a8 gene silencing de-
creased membrane-associated RhoA (right diagram and blots), while cytosolic RhoA was not significantly changed (left diagram and blots). siRNA-lu-
ciferase served as the control for siRNA-a8. Adapted from ref. 51. (B) Schematic presentation of VSMC phenotype modulation after a8 gene silencing. 
a8 gene silencing leads to the disassembly of actin stress fibers, and dislocation of RhoA from focal adhesion sites. Actin fibers are shown as red lines 
and RhoA as purple dots. Left part is before applying siRNA-a8 and right part is after applying siRNA.
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a8 integrin properties seems to be different from those of 
other integrins. To the best of our knowledge, a8 integrin is the 
only integrin that has been reported to inhibit VSMC migra-
tion. Does a8 integrin induce conformational changes in the 
b1-subunit that are different from those of the other a-subunit 
partners of b1 integrin? The uniqueness of a8 signaling com-
pared to other integrin subunits is an exciting issue that needs to 
be investigated.

One of the easiest ways to elucidate a8 integrin role in cell 
migration is to silence it in the different cell types (Mesangial 
cells, as an example of contractile cell and neural cell, as an exam-
ple of non-contractile cell) and see how migration occurs. My 
speculation is that a8 integrin downregulation might promote 
migration in mesangial cells, while reducing migration in neural 
cells. To verify if the effect of a8 is due to the increase of tensile 
forces we can pretreat cells with RhoA activators and inhibitors.

Pretreatment of mesengial cells with Rho-kinase inhibitor 
Y-27632 can reduce tensile forces.65 Then, we can overexpress 
a8 integrin and examine whether it can increase tensile forces 
leading to the reduced migration or not. On the other hand, we 
can increase tensile forces in neural cells by activating actin fibers 
assembly or by RhoA activators and examine the migratory activ-
ity. After this step, siRNA-a8 can be applied to verify if reducing 
a8 inhibits migratory activity.

Another important experiment would be to verify if the tensile 
effect of a8 integrin is unique to a8 or applies to other contractile 
integrins (e.g., a1, a7) as well. The suggested experiment exam-
ines whether overexpression of al integrin in VSMCs can over-
come the reduced tensile forces due to a8 integrin gene-silencing.

Doubtless, further studies, especially in vivo experiments, are 
necessary to unveil some elements of a8b1 integrin’s mode of 
action.

Finally, a8 integrin fits perfectly into the tensegrity model 
(tensional integrity). Integrins serve as integrators of the cell’s 
exterior and interior and a8 integrin seems to play a more promi-
nent role in the integration of tensile forces. Therefore, inspired 
by the tensegrity model of Donald Ingber, I coin the name 
“Tensegrin” for a8b1 integrin. I hope that future investigations 
may shed light on its mysterious role in cell biology.
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expression in which contraction is a common feature. It has been 
shown that a8-deficient mice have a defect in sensory hair cells 
of the inner ear.59 The role of tension in the morphogenesis and 
function of these cells has also been reported.60 When we look at 
the pathological conditions in which a8 expression is increased, 
for example, after injury in models of pulmonary and hepatic 
fibrosis, in carotid constrictive remodeling after angioplasty or 
glomerulonephritis13,47,61 there is one property in common. In 
these fibrotic organs, tensile forces are increased. The other ave-
nues where a significant role for a8 is observed are in develop-
ment, in which tension is a central factor,62 especially in the later 
stages of morphogenesis. In these situations, cytoskeletal tension 
rises within nearby cells.63 Expectedly, a8 integrin is a marker 
for lung mesenchymal cells, starting early in development, and 
plays a role in branching morphogenesis.25 a8 integrin is criti-
cally important for epithelio-mesenchymal interactions during 
kidney morphogenesis.9 In a recent study, Benjamin et al.64 have 
verified a role for a8 integrin in lung development using a8-null 
mice. By using in vivo and in vitro studies they demonstrated 
that a8 integrin-null fetal lung mesenchymal cells fail to form 
stable adhesions and have increased migration. They suggested a 
critical role for a8 integrin in lung morphogenesis by regulating 
mesenchymal cell adhesion and migration.

Altogether, a8 integrin expression in the pathological and 
physiological conditions in which tensile forces required led us to 
propose an important tensile role for this integrin.

Conclusion

a8b1 integrin seems to play a critical role in regulating cell 
migration. a8b1 integrin reduces the migration of cells known 
as contractile cells. However, it promotes the migration of breast 
tumor cells as well as neural cells, which are initially in a less 
than optimal contractile state. As mentioned earlier, cells require 
optimum contractility to migrate. If cells are initially in a con-
tractile mode (e.g., VSMCs and mesangial cells) the increase in 
contractility by a8 integrin reduces migration. On the other 
hand, in cells that are not initially contractile in nature (e.g., 
neuronal cells and ductal epithelial cells of breast) a8 integrin 
may provide tensile forces required for optimal contractility and 
migration. Therefore, a8b1 integrin is upregulated when ten-
sion and contractility are required and its effect on cell migration 
may depend on the overall contractile nature of the cells and 
their environment.
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