Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):o3316. doi: 10.1107/S1600536810047549

4-Meth­oxy­anilinium iodide

Rui-jun Xu a,*
PMCID: PMC3011521  PMID: 21589593

Abstract

The crystal structure of the title compound, C7H10NO+·I, displays N—H⋯I hydrogen bonds between the 4-meth­oxy­anilinium cations and the iodide anion together with weaker C—H⋯π contacts.

Related literature

The title compound was invesitgated as a potential candidate for having good dielectric properties. For compounds with dielectric–ferroelectric properties, see: Hang et al. (2009); Li et al. (2008). graphic file with name e-66-o3316-scheme1.jpg

Experimental

Crystal data

  • C7H10NO+·I

  • M r = 251.06

  • Orthorhombic, Inline graphic

  • a = 12.290 (3) Å

  • b = 7.1302 (14) Å

  • c = 20.304 (4) Å

  • V = 1779.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.291, T max = 0.493

  • 16921 measured reflections

  • 2040 independent reflections

  • 1803 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.065

  • S = 1.25

  • 2040 reflections

  • 104 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047549/bg2356sup1.cif

e-66-o3316-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047549/bg2356Isup2.hkl

e-66-o3316-Isup2.hkl (100.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯I1i 0.86 (3) 2.67 (2) 3.503 (3) 165 (5)
N1—H1F⋯I1ii 0.86 (1) 2.75 (2) 3.566 (3) 159 (3)
N1—H1E⋯I1 0.86 (4) 2.75 (4) 3.568 (3) 159 (4)
C4—H4⋯Cg1iii 0.93 2.87 3.627 (4) 140
C7—H7⋯Cg1iv 0.93 2.62 3.483 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The author thanks Southeast University for financial support of this research and is very grateful for the guidance of Professor Wen Zhang.

supplementary crystallographic information

Comment

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrids. We were interested in the title compound as a potential candidate for having good dielectric properties. Unfortunately, the capacitance and dielectric loss measurements did not show any distinct anomaly when observed from 93 K to 455 K (its sublimation temperaure). Regarding its crystal structure, the asymmetric unit of the title compound contains a (4-methoxyanilinium) cation and a iodide anion (Fig.1). The structure is stabilized by C—H···π interactions (C4—H4···Cg1 3.627 (4) Å and C7—H7···Cg1 3.483 (4) Å) as well as weak N—H···I hydrogen bonds involving the NH3 group and linking the cations and anions into a 3D structure (Fig. 2 and Tab. 1).

Experimental

The title compound was obtained by the addition of hydriodic acid (4.12 ml, 0.022 mol) to a solution of 4-methoxyanilin (2.26 g, 0.02 mol) in ethanol, in the stoichiometric ratio 1.1:1. Good quality single crystals were obtained by slow evaporation after two weeks.

Refinement

Positional parameters of all the H atoms were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H10NO+·I F(000) = 960
Mr = 251.06 Dx = 1.875 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7161 reflections
a = 12.290 (3) Å θ = 3.0–27.7°
b = 7.1302 (14) Å µ = 3.54 mm1
c = 20.304 (4) Å T = 298 K
V = 1779.2 (6) Å3 Prism, colourless
Z = 8 0.40 × 0.30 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer 2040 independent reflections
Radiation source: fine-focus sealed tube 1803 reflections with I > 2σ(I)
graphite Rint = 0.052
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.3°
ω scans h = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −9→9
Tmin = 0.291, Tmax = 0.493 l = −26→26
16921 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.2835P] where P = (Fo2 + 2Fc2)/3
S = 1.25 (Δ/σ)max < 0.001
2040 reflections Δρmax = 0.51 e Å3
104 parameters Δρmin = −0.44 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0053 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.613461 (19) 0.22260 (3) 0.471872 (12) 0.04311 (12)
C1 0.3182 (4) 0.1321 (6) 0.88673 (18) 0.0580 (11)
H1A 0.3321 0.0724 0.9283 0.087*
H1B 0.2444 0.1083 0.8736 0.087*
H1C 0.3293 0.2648 0.8909 0.087*
C2 0.3836 (3) 0.1268 (4) 0.77653 (15) 0.0332 (7)
C3 0.3010 (3) 0.2400 (4) 0.75290 (18) 0.0347 (7)
H3 0.2448 0.2778 0.7806 0.042*
C4 0.3024 (3) 0.2967 (4) 0.68761 (16) 0.0327 (7)
H4 0.2472 0.3728 0.6713 0.039*
C5 0.3856 (2) 0.2399 (4) 0.64723 (16) 0.0303 (7)
C6 0.4686 (3) 0.1275 (5) 0.67025 (17) 0.0377 (8)
H6 0.5244 0.0896 0.6423 0.045*
C7 0.4676 (3) 0.0724 (5) 0.73515 (18) 0.0425 (8)
H7 0.5237 −0.0019 0.7514 0.051*
N1 0.3861 (3) 0.2978 (5) 0.57794 (16) 0.0402 (7)
H1F 0.400 (3) 0.4157 (18) 0.5742 (18) 0.041 (10)*
H1E 0.438 (3) 0.248 (5) 0.5554 (19) 0.059 (13)*
H1D 0.324 (2) 0.281 (6) 0.559 (2) 0.077 (16)*
O1 0.3897 (2) 0.0598 (4) 0.83889 (12) 0.0517 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.04084 (17) 0.04212 (17) 0.04635 (17) −0.00309 (9) 0.01153 (9) −0.00348 (10)
C1 0.078 (3) 0.064 (3) 0.032 (2) 0.008 (2) 0.0061 (19) 0.0060 (18)
C2 0.041 (2) 0.0286 (17) 0.0296 (17) −0.0015 (14) −0.0032 (13) 0.0018 (12)
C3 0.0360 (17) 0.0326 (17) 0.0354 (18) 0.0031 (13) 0.0052 (14) −0.0018 (13)
C4 0.0299 (16) 0.0293 (16) 0.0388 (18) 0.0051 (13) −0.0023 (13) 0.0015 (13)
C5 0.0321 (17) 0.0284 (16) 0.0303 (16) −0.0021 (12) 0.0010 (12) 0.0009 (12)
C6 0.0309 (17) 0.042 (2) 0.0404 (19) 0.0093 (14) 0.0065 (14) 0.0018 (15)
C7 0.040 (2) 0.043 (2) 0.044 (2) 0.0164 (16) −0.0033 (15) 0.0045 (16)
N1 0.0400 (18) 0.0456 (19) 0.0352 (16) 0.0018 (15) 0.0045 (13) 0.0085 (14)
O1 0.0712 (19) 0.0532 (16) 0.0307 (13) 0.0172 (13) 0.0012 (12) 0.0097 (11)

Geometric parameters (Å, °)

C1—O1 1.407 (4) C4—H4 0.9300
C1—H1A 0.9600 C5—C6 1.380 (4)
C1—H1B 0.9600 C5—N1 1.466 (4)
C1—H1C 0.9600 C6—C7 1.375 (5)
C2—O1 1.355 (4) C6—H6 0.9300
C2—C3 1.383 (5) C7—H7 0.9300
C2—C7 1.386 (5) N1—H1F 0.860 (10)
C3—C4 1.386 (5) N1—H1E 0.86 (4)
C3—H3 0.9300 N1—H1D 0.86 (3)
C4—C5 1.371 (4)
O1—C1—H1A 109.5 C4—C5—N1 119.6 (3)
O1—C1—H1B 109.5 C6—C5—N1 119.0 (3)
H1A—C1—H1B 109.5 C7—C6—C5 119.0 (3)
O1—C1—H1C 109.5 C7—C6—H6 120.5
H1A—C1—H1C 109.5 C5—C6—H6 120.5
H1B—C1—H1C 109.5 C6—C7—C2 120.5 (3)
O1—C2—C3 124.8 (3) C6—C7—H7 119.8
O1—C2—C7 115.2 (3) C2—C7—H7 119.8
C3—C2—C7 120.0 (3) C5—N1—H1F 111 (3)
C2—C3—C4 119.5 (3) C5—N1—H1E 113 (3)
C2—C3—H3 120.3 H1F—N1—H1E 102 (3)
C4—C3—H3 120.3 C5—N1—H1D 113 (4)
C5—C4—C3 119.7 (3) H1F—N1—H1D 105 (4)
C5—C4—H4 120.1 H1E—N1—H1D 111 (5)
C3—C4—H4 120.1 C2—O1—C1 118.8 (3)
C4—C5—C6 121.3 (3)
O1—C2—C3—C4 −178.6 (3) N1—C5—C6—C7 −179.6 (3)
C7—C2—C3—C4 0.6 (5) C5—C6—C7—C2 0.9 (5)
C2—C3—C4—C5 0.0 (5) O1—C2—C7—C6 178.2 (3)
C3—C4—C5—C6 −0.2 (5) C3—C2—C7—C6 −1.1 (5)
C3—C4—C5—N1 179.1 (3) C3—C2—O1—C1 −10.9 (5)
C4—C5—C6—C7 −0.3 (5) C7—C2—O1—C1 169.8 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1D···I1i 0.86 (3) 2.67 (2) 3.503 (3) 165 (5)
N1—H1F···I1ii 0.86 (1) 2.75 (2) 3.566 (3) 159 (3)
N1—H1E···I1 0.86 (4) 2.75 (4) 3.568 (3) 159 (4)
C4—H4···Cg1iii 0.93 2.87 3.627 (4) 140
C7—H7···Cg1iv 0.93 2.62 3.483 (4) 155

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y+1/2, z; (iv) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2356).

References

  1. Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  2. Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047549/bg2356sup1.cif

e-66-o3316-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047549/bg2356Isup2.hkl

e-66-o3316-Isup2.hkl (100.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES