Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 24;66(Pt 12):o3270. doi: 10.1107/S160053681004794X

2,4,5-Trimeth­oxy­benzaldehyde monohydrate

Abdullah M Asiri a,b, Salman A Khan b, M Nawaz Tahir c,*
PMCID: PMC3011575  PMID: 21589553

Abstract

In the title compound, C10H12O4·H2O, the 2,4,5-trimeth­oxy­benzaldehyde mol­ecule is almost planar (rms deviation = 0.0183 Å). There is an R 1 2(5) ring motif due to O—H⋯O hydrogen bonding. In the crystal, the mol­ecules are stabilized in the form of one-dimensional polymeric chains extending along [010] due to O—H⋯O hydrogen bonding with adjacent water mol­ecules. The H atoms involved in inter­molecular hydrogen bonding are disordered over two sets of sites of equal occupancy.

Related literature

For related background and related structures, see: Asiri et al. (2010a,b ), Hussain et al. (2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o3270-scheme1.jpg

Experimental

Crystal data

  • C10H12O4·H2O

  • M r = 214.21

  • Monoclinic, Inline graphic

  • a = 18.084 (5) Å

  • b = 4.2456 (10) Å

  • c = 14.600 (4) Å

  • β = 108.290 (9)°

  • V = 1064.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.22 × 0.10 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.992, T max = 0.995

  • 8287 measured reflections

  • 1915 independent reflections

  • 983 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.212

  • S = 1.05

  • 1915 reflections

  • 148 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004794X/dn2621sup1.cif

e-66-o3270-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004794X/dn2621Isup2.hkl

e-66-o3270-Isup2.hkl (92.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2 0.85 (4) 2.54 (5) 3.181 (5) 133 (4)
O5—H51⋯O3 0.85 (4) 2.19 (4) 3.006 (5) 160 (4)
O5—H52⋯O5i 0.83 (10) 1.89 (10) 2.710 (6) 174 (19)
O5—H53⋯O5ii 0.86 (10) 1.86 (10) 2.714 (6) 169 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work via grant No. (3–045/430).

supplementary crystallographic information

Comment

The crystal structure of (II) i.e., (E)-1-(2,5-dimethyl-3-thienyl)-3- (2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a), (III) i.e., 3,4-dimethyl-N-(2,4,5-trimethoxybenzylidene)-1,2-isoxazol-5-amine (Asiri et al., 2010b) and (IV) i.e., 2,3-Dimethyl-N-[(E)-2,4,5 -trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain the aldehyde moiety. The title compound (I, Fig. 1) is being reported here in which the aldehyde has reacted with water instead of aniline.

In (I), the 2,4,5-trimethoxybenzaldehyde is planar with r. m. s. deviation of 0.0183 Å. One of the H-atoms of water molecule is disordered over two set of sites with equal occupancy ratio. The non-disordered H-atom of H2O makes H-bonding with adjacent two methoxy groups through O—H···O type and complete an R12(5) ring motif (Bernstein et al., 1995). The disordered H-atoms of H2O makes H-bonding of O—H···O type with adjacent water molecules (Table 1, Fig. 2). Due to these H-bondings molecules are stabilized in the form of one dimensional polymeric chains extending along the b axis i.e [010]. There does not appear any appreciable π interaction.

Experimental

A mixture of 2,4,5-methoxy benzaldehyde (0.50 g, 2.5 mmol) and 4H-[1,2,4] Triazol-3-ylamine (0.21 g, 2.5 mmol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with ethanol to give the starting aldehyde coordinated to water. m.p. 376 K

Refinement

The coordinates of H-atoms of water molecule are refined under distance restraints. One H-atom of H2O is disordered over two sites with equal occupancy ratio. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted lines represent the intramolecular H-bondings or bonds of disordered H-atoms.

Fig. 2.

Fig. 2.

Partial packing view showing the polymeric chains extending along the b axis.

Crystal data

C10H12O4·H2O F(000) = 456
Mr = 214.21 Dx = 1.337 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 983 reflections
a = 18.084 (5) Å θ = 2.4–25.3°
b = 4.2456 (10) Å µ = 0.11 mm1
c = 14.600 (4) Å T = 296 K
β = 108.290 (9)° Needle, colourless
V = 1064.3 (5) Å3 0.22 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1915 independent reflections
Radiation source: fine-focus sealed tube 983 reflections with I > 2σ(I)
graphite Rint = 0.066
Detector resolution: 8.20 pixels mm-1 θmax = 25.3°, θmin = 2.4°
ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −3→5
Tmin = 0.992, Tmax = 0.995 l = −17→17
8287 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0973P)2 + 0.249P] where P = (Fo2 + 2Fc2)/3
1915 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.18 e Å3
3 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.08087 (15) 0.7631 (7) 0.1135 (2) 0.0705 (11)
O2 0.33240 (14) 0.6231 (6) 0.35470 (16) 0.0572 (9)
O3 0.38101 (14) 0.2960 (6) 0.23792 (17) 0.0588 (9)
O4 0.14718 (16) 0.2497 (8) −0.0759 (2) 0.0873 (14)
C1 0.1290 (2) 0.4010 (10) −0.0160 (3) 0.0697 (16)
C2 0.1803 (2) 0.4721 (8) 0.0809 (2) 0.0501 (12)
C3 0.1560 (2) 0.6509 (8) 0.1459 (3) 0.0511 (12)
C4 0.2054 (2) 0.7063 (8) 0.2389 (3) 0.0480 (12)
C5 0.2800 (2) 0.5845 (7) 0.2667 (2) 0.0452 (11)
C6 0.3059 (2) 0.4044 (8) 0.2018 (2) 0.0454 (12)
C7 0.2562 (2) 0.3514 (8) 0.1105 (3) 0.0479 (12)
C8 0.0523 (2) 0.9331 (10) 0.1787 (3) 0.0740 (16)
C9 0.3107 (2) 0.8019 (9) 0.4243 (3) 0.0635 (16)
C10 0.4117 (2) 0.1230 (9) 0.1747 (3) 0.0636 (14)
O5 0.4918 (2) 0.2497 (10) 0.4398 (3) 0.0985 (18)
H1 0.07829 0.47778 −0.03301 0.0837*
H4 0.18830 0.82431 0.28205 0.0578*
H7 0.27321 0.23288 0.06748 0.0575*
H8A 0.08262 1.12102 0.19862 0.1111*
H8B 0.05607 0.80482 0.23412 0.1111*
H8C −0.00117 0.98883 0.14757 0.1111*
H9A 0.26526 0.71063 0.43414 0.0950*
H9B 0.29959 1.01451 0.40177 0.0950*
H9C 0.35269 0.80171 0.48406 0.0950*
H10A 0.41096 0.25222 0.12043 0.0949*
H10B 0.38052 −0.06151 0.15245 0.0949*
H10C 0.46429 0.06141 0.20837 0.0949*
H51 0.452 (2) 0.274 (13) 0.390 (3) 0.1180*
H52 0.498 (9) 0.09 (2) 0.474 (9) 0.1180* 0.500
H53 0.492 (9) 0.42 (2) 0.472 (9) 0.1180* 0.500

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0409 (16) 0.094 (2) 0.0703 (19) 0.0102 (14) 0.0084 (14) −0.0162 (15)
O2 0.0539 (16) 0.0718 (16) 0.0397 (14) 0.0065 (12) 0.0060 (13) −0.0050 (12)
O3 0.0494 (16) 0.0691 (17) 0.0519 (16) 0.0141 (13) 0.0071 (13) −0.0061 (12)
O4 0.056 (2) 0.140 (3) 0.0593 (19) 0.0016 (17) 0.0087 (16) −0.0300 (19)
C1 0.047 (2) 0.095 (3) 0.059 (3) 0.000 (2) 0.005 (2) −0.012 (2)
C2 0.043 (2) 0.058 (2) 0.048 (2) −0.0036 (18) 0.0126 (18) 0.0013 (18)
C3 0.038 (2) 0.058 (2) 0.056 (2) −0.0028 (17) 0.0127 (19) 0.0030 (18)
C4 0.045 (2) 0.053 (2) 0.045 (2) 0.0003 (17) 0.0127 (18) −0.0022 (16)
C5 0.047 (2) 0.0455 (19) 0.040 (2) −0.0056 (17) 0.0092 (18) 0.0024 (15)
C6 0.040 (2) 0.050 (2) 0.045 (2) 0.0006 (16) 0.0115 (18) 0.0065 (16)
C7 0.044 (2) 0.055 (2) 0.047 (2) −0.0051 (17) 0.0177 (18) −0.0022 (17)
C8 0.045 (2) 0.080 (3) 0.095 (3) 0.005 (2) 0.019 (2) −0.011 (2)
C9 0.068 (3) 0.068 (3) 0.050 (2) 0.000 (2) 0.012 (2) −0.0073 (19)
C10 0.052 (2) 0.067 (2) 0.069 (3) 0.0106 (19) 0.015 (2) −0.005 (2)
O5 0.074 (2) 0.124 (4) 0.083 (3) 0.002 (3) 0.004 (2) 0.020 (2)

Geometric parameters (Å, °)

O1—C3 1.376 (5) C5—C6 1.407 (5)
O1—C8 1.415 (5) C6—C7 1.372 (5)
O2—C5 1.346 (4) C1—H1 0.9300
O2—C9 1.419 (5) C4—H4 0.9300
O3—C6 1.373 (4) C7—H7 0.9300
O3—C10 1.422 (5) C8—H8A 0.9600
O4—C1 1.211 (5) C8—H8B 0.9600
O5—H53 0.86 (10) C8—H8C 0.9600
O5—H51 0.85 (4) C9—H9C 0.9600
O5—H52 0.83 (10) C9—H9A 0.9600
C1—C2 1.459 (5) C9—H9B 0.9600
C2—C3 1.390 (5) C10—H10A 0.9600
C2—C7 1.400 (5) C10—H10B 0.9600
C3—C4 1.391 (6) C10—H10C 0.9600
C4—C5 1.382 (5)
O2···O3 2.559 (4) H4···C9 2.5200
O2···O5 3.181 (5) H4···H9B 2.3600
O3···O5 3.006 (5) H4···H9A 2.2700
O3···O2 2.559 (4) H4···C8 2.4900
O5···O5i 2.714 (6) H7···O4 2.5700
O5···C10ii 3.191 (6) H7···C10 2.5500
O5···O3 3.006 (5) H7···H10A 2.3700
O5···O5iii 2.710 (6) H7···H10B 2.3100
O5···O2 3.181 (5) H8A···C3vii 2.8400
O1···H1 2.4500 H8A···C4 2.7500
O2···H51 2.54 (5) H8A···H4 2.2900
O2···H9Biv 2.7900 H8B···C4 2.7100
O3···H10Cii 2.8900 H8B···C8xii 3.0800
O3···H51 2.19 (4) H8B···H4 2.2700
O4···H9Av 2.8600 H8C···O4vi 2.7100
O4···H7 2.5700 H8C···C1vi 3.0000
O4···H8Cvi 2.7100 H9A···H4 2.2700
O5···H9Ci 2.6900 H9A···C4 2.7100
O5···H10Cii 2.8500 H9A···O4xiii 2.8600
O5···H52iii 1.89 (10) H9B···C4 2.7800
O5···H53i 1.86 (11) H9B···O2vii 2.7900
C4···C7vii 3.597 (5) H9B···H4 2.3600
C7···C4iv 3.597 (5) H9B···C5vii 3.0700
C7···C9viii 3.494 (6) H9C···O5i 2.6900
C9···C7ix 3.494 (6) H9C···H10Bxiii 2.5600
C10···O5x 3.191 (6) H10A···H7 2.3700
C1···H8Cvi 3.0000 H10A···C7 2.7900
C3···H8Aiv 2.8400 H10B···C6iv 2.8400
C4···H8B 2.7100 H10B···H9Cv 2.5600
C4···H9A 2.7100 H10B···H7 2.3100
C4···H9B 2.7800 H10B···C7 2.7600
C4···H8A 2.7500 H10C···O5x 2.8500
C5···H9Biv 3.0700 H10C···O3x 2.8900
C6···H10Bvii 2.8400 H10C···H10Cii 2.5800
C7···H10B 2.7600 H10C···C10x 3.0000
C7···H10A 2.7900 H10C···H10Cx 2.5800
C8···H8Bxi 3.0800 H51···O2 2.54 (5)
C8···H4 2.4900 H51···O3 2.19 (4)
C9···H4 2.5200 H51···C10 3.06 (4)
C10···H7 2.5500 H51···H52iii 2.45 (12)
C10···H10Cii 3.0000 H51···H53i 2.34 (13)
C10···H51 3.06 (4) H52···O5iii 1.89 (10)
H1···O1 2.4500 H52···H51iii 2.45 (12)
H4···H8A 2.2900 H53···O5i 1.86 (10)
H4···H8B 2.2700 H53···H51i 2.34 (12)
C3—O1—C8 118.4 (3) C3—C4—H4 120.00
C5—O2—C9 118.6 (3) C5—C4—H4 120.00
C6—O3—C10 117.7 (3) C6—C7—H7 119.00
H52—O5—H53 112 (10) C2—C7—H7 119.00
H51—O5—H52 122 (10) O1—C8—H8A 109.00
H51—O5—H53 103 (10) O1—C8—H8B 109.00
O4—C1—C2 125.2 (4) O1—C8—H8C 109.00
C3—C2—C7 118.6 (3) H8B—C8—H8C 109.00
C1—C2—C3 122.3 (3) H8A—C8—H8B 109.00
C1—C2—C7 119.1 (3) H8A—C8—H8C 109.00
O1—C3—C2 116.4 (3) O2—C9—H9B 109.00
O1—C3—C4 122.6 (3) H9A—C9—H9C 110.00
C2—C3—C4 121.0 (3) O2—C9—H9C 109.00
C3—C4—C5 119.5 (3) H9A—C9—H9B 110.00
C4—C5—C6 120.4 (3) O2—C9—H9A 109.00
O2—C5—C6 115.2 (3) H9B—C9—H9C 109.00
O2—C5—C4 124.4 (3) O3—C10—H10C 110.00
C5—C6—C7 119.2 (3) H10A—C10—H10C 109.00
O3—C6—C7 125.8 (3) H10B—C10—H10C 109.00
O3—C6—C5 114.9 (3) H10A—C10—H10B 109.00
C2—C7—C6 121.3 (3) O3—C10—H10A 109.00
O4—C1—H1 117.00 O3—C10—H10B 109.00
C2—C1—H1 117.00
C8—O1—C3—C2 176.9 (3) C1—C2—C7—C6 −178.2 (3)
C8—O1—C3—C4 −2.0 (5) C3—C2—C7—C6 0.6 (5)
C9—O2—C5—C4 −0.4 (5) O1—C3—C4—C5 179.6 (3)
C9—O2—C5—C6 −180.0 (3) C2—C3—C4—C5 0.7 (5)
C10—O3—C6—C5 −177.6 (3) C3—C4—C5—O2 −179.9 (3)
C10—O3—C6—C7 2.5 (5) C3—C4—C5—C6 −0.3 (5)
O4—C1—C2—C3 179.2 (4) O2—C5—C6—O3 −0.3 (4)
O4—C1—C2—C7 −2.1 (6) O2—C5—C6—C7 179.7 (3)
C1—C2—C3—O1 −1.1 (5) C4—C5—C6—O3 −179.9 (3)
C1—C2—C3—C4 177.9 (3) C4—C5—C6—C7 0.1 (5)
C7—C2—C3—O1 −179.8 (3) O3—C6—C7—C2 179.7 (3)
C7—C2—C3—C4 −0.8 (5) C5—C6—C7—C2 −0.2 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x, y−1, z; (v) x, −y+1/2, z−1/2; (vi) −x, −y+1, −z; (vii) x, y+1, z; (viii) x, −y+3/2, z−1/2; (ix) x, −y+3/2, z+1/2; (x) −x+1, y−1/2, −z+1/2; (xi) −x, y+1/2, −z+1/2; (xii) −x, y−1/2, −z+1/2; (xiii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H51···O2 0.85 (4) 2.54 (5) 3.181 (5) 133 (4)
O5—H51···O3 0.85 (4) 2.19 (4) 3.006 (5) 160 (4)
O5—H52···O5iii 0.83 (10) 1.89 (10) 2.710 (6) 174 (19)
O5—H53···O5i 0.86 (10) 1.86 (10) 2.714 (6) 169 (7)

Symmetry codes: (iii) −x+1, −y, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2621).

References

  1. Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099. [DOI] [PMC free article] [PubMed]
  2. Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, o2019. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004794X/dn2621sup1.cif

e-66-o3270-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004794X/dn2621Isup2.hkl

e-66-o3270-Isup2.hkl (92.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES